home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
lapack
/
zpotrf.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
6KB
|
188 lines
SUBROUTINE ZPOTRF( UPLO, N, A, LDA, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * )
* ..
*
* Purpose
* =======
*
* ZPOTRF computes the Cholesky factorization of a complex Hermitian
* positive definite matrix A.
*
* The factorization has the form
* A = U**H * U, if UPLO = 'U', or
* A = L * L**H, if UPLO = 'L',
* where U is an upper triangular matrix and L is lower triangular.
*
* This is the block version of the algorithm, calling Level 3 BLAS.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the Hermitian matrix A. If UPLO = 'U', the leading
* N-by-N upper triangular part of A contains the upper
* triangular part of the matrix A, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading N-by-N lower triangular part of A contains the lower
* triangular part of the matrix A, and the strictly upper
* triangular part of A is not referenced.
*
* On exit, if INFO = 0, the factor U or L from the Cholesky
* factorization A = U**H*U or A = L*L**H.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the leading minor of order i is not
* positive definite, and the factorization could not be
* completed.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
COMPLEX*16 CONE
PARAMETER ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, JB, NB
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGEMM, ZHERK, ZPOTF2, ZTRSM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZPOTRF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Determine the block size for this environment.
*
NB = ILAENV( 1, 'ZPOTRF', UPLO, N, -1, -1, -1 )
IF( NB.LE.1 .OR. NB.GE.N ) THEN
*
* Use unblocked code.
*
CALL ZPOTF2( UPLO, N, A, LDA, INFO )
ELSE
*
* Use blocked code.
*
IF( UPPER ) THEN
*
* Compute the Cholesky factorization A = U'*U.
*
DO 10 J = 1, N, NB
*
* Update and factorize the current diagonal block and test
* for non-positive-definiteness.
*
JB = MIN( NB, N-J+1 )
CALL ZHERK( 'Upper', 'Conjugate transpose', JB, J-1,
$ -ONE, A( 1, J ), LDA, ONE, A( J, J ), LDA )
CALL ZPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
IF( INFO.NE.0 )
$ GO TO 30
IF( J+JB.LE.N ) THEN
*
* Compute the current block row.
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', JB,
$ N-J-JB+1, J-1, -CONE, A( 1, J ), LDA,
$ A( 1, J+JB ), LDA, CONE, A( J, J+JB ),
$ LDA )
CALL ZTRSM( 'Left', 'Upper', 'Conjugate transpose',
$ 'Non-unit', JB, N-J-JB+1, CONE, A( J, J ),
$ LDA, A( J, J+JB ), LDA )
END IF
10 CONTINUE
*
ELSE
*
* Compute the Cholesky factorization A = L*L'.
*
DO 20 J = 1, N, NB
*
* Update and factorize the current diagonal block and test
* for non-positive-definiteness.
*
JB = MIN( NB, N-J+1 )
CALL ZHERK( 'Lower', 'No transpose', JB, J-1, -ONE,
$ A( J, 1 ), LDA, ONE, A( J, J ), LDA )
CALL ZPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
IF( INFO.NE.0 )
$ GO TO 30
IF( J+JB.LE.N ) THEN
*
* Compute the current block column.
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose',
$ N-J-JB+1, JB, J-1, -CONE, A( J+JB, 1 ),
$ LDA, A( J, 1 ), LDA, CONE, A( J+JB, J ),
$ LDA )
CALL ZTRSM( 'Right', 'Lower', 'Conjugate transpose',
$ 'Non-unit', N-J-JB+1, JB, CONE, A( J, J ),
$ LDA, A( J+JB, J ), LDA )
END IF
20 CONTINUE
END IF
END IF
GO TO 40
*
30 CONTINUE
INFO = INFO + J - 1
*
40 CONTINUE
RETURN
*
* End of ZPOTRF
*
END