home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
quadpack
/
dqagpe.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
21KB
|
557 lines
SUBROUTINE DQAGPE(F,A,B,NPTS2,POINTS,EPSABS,EPSREL,LIMIT,RESULT,
* ABSERR,NEVAL,IER,ALIST,BLIST,RLIST,ELIST,PTS,IORD,LEVEL,NDIN,
* LAST)
C***BEGIN PROLOGUE DQAGPE
C***DATE WRITTEN 800101 (YYMMDD)
C***REVISION DATE 830518 (YYMMDD)
C***CATEGORY NO. H2A2A1
C***KEYWORDS AUTOMATIC INTEGRATOR, GENERAL-PURPOSE,
C SINGULARITIES AT USER SPECIFIED POINTS,
C EXTRAPOLATION, GLOBALLY ADAPTIVE.
C***AUTHOR PIESSENS,ROBERT ,APPL. MATH. & PROGR. DIV. - K.U.LEUVEN
C DE DONCKER,ELISE,APPL. MATH. & PROGR. DIV. - K.U.LEUVEN
C***PURPOSE THE ROUTINE CALCULATES AN APPROXIMATION RESULT TO A GIVEN
C DEFINITE INTEGRAL I = INTEGRAL OF F OVER (A,B), HOPEFULLY
C SATISFYING FOLLOWING CLAIM FOR ACCURACY ABS(I-RESULT).LE.
C MAX(EPSABS,EPSREL*ABS(I)). BREAK POINTS OF THE INTEGRATION
C INTERVAL, WHERE LOCAL DIFFICULTIES OF THE INTEGRAND MAY
C OCCUR(E.G. SINGULARITIES,DISCONTINUITIES),PROVIDED BY USER.
C***DESCRIPTION
C
C COMPUTATION OF A DEFINITE INTEGRAL
C STANDARD FORTRAN SUBROUTINE
C DOUBLE PRECISION VERSION
C
C PARAMETERS
C ON ENTRY
C F - DOUBLE PRECISION
C FUNCTION SUBPROGRAM DEFINING THE INTEGRAND
C FUNCTION F(X). THE ACTUAL NAME FOR F NEEDS TO BE
C DECLARED E X T E R N A L IN THE DRIVER PROGRAM.
C
C A - DOUBLE PRECISION
C LOWER LIMIT OF INTEGRATION
C
C B - DOUBLE PRECISION
C UPPER LIMIT OF INTEGRATION
C
C NPTS2 - INTEGER
C NUMBER EQUAL TO TWO MORE THAN THE NUMBER OF
C USER-SUPPLIED BREAK POINTS WITHIN THE INTEGRATION
C RANGE, NPTS2.GE.2.
C IF NPTS2.LT.2, THE ROUTINE WILL END WITH IER = 6.
C
C POINTS - DOUBLE PRECISION
C VECTOR OF DIMENSION NPTS2, THE FIRST (NPTS2-2)
C ELEMENTS OF WHICH ARE THE USER PROVIDED BREAK
C POINTS. IF THESE POINTS DO NOT CONSTITUTE AN
C ASCENDING SEQUENCE THERE WILL BE AN AUTOMATIC
C SORTING.
C
C EPSABS - DOUBLE PRECISION
C ABSOLUTE ACCURACY REQUESTED
C EPSREL - DOUBLE PRECISION
C RELATIVE ACCURACY REQUESTED
C IF EPSABS.LE.0
C AND EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
C THE ROUTINE WILL END WITH IER = 6.
C
C LIMIT - INTEGER
C GIVES AN UPPER BOUND ON THE NUMBER OF SUBINTERVALS
C IN THE PARTITION OF (A,B), LIMIT.GE.NPTS2
C IF LIMIT.LT.NPTS2, THE ROUTINE WILL END WITH
C IER = 6.
C
C ON RETURN
C RESULT - DOUBLE PRECISION
C APPROXIMATION TO THE INTEGRAL
C
C ABSERR - DOUBLE PRECISION
C ESTIMATE OF THE MODULUS OF THE ABSOLUTE ERROR,
C WHICH SHOULD EQUAL OR EXCEED ABS(I-RESULT)
C
C NEVAL - INTEGER
C NUMBER OF INTEGRAND EVALUATIONS
C
C IER - INTEGER
C IER = 0 NORMAL AND RELIABLE TERMINATION OF THE
C ROUTINE. IT IS ASSUMED THAT THE REQUESTED
C ACCURACY HAS BEEN ACHIEVED.
C IER.GT.0 ABNORMAL TERMINATION OF THE ROUTINE.
C THE ESTIMATES FOR INTEGRAL AND ERROR ARE
C LESS RELIABLE. IT IS ASSUMED THAT THE
C REQUESTED ACCURACY HAS NOT BEEN ACHIEVED.
C IER.LT.0 EXIT REQUESTED FROM USER-SUPPLIED
C FUNCTION.
C
C ERROR MESSAGES
C IER = 1 MAXIMUM NUMBER OF SUBDIVISIONS ALLOWED
C HAS BEEN ACHIEVED. ONE CAN ALLOW MORE
C SUBDIVISIONS BY INCREASING THE VALUE OF
C LIMIT (AND TAKING THE ACCORDING DIMENSION
C ADJUSTMENTS INTO ACCOUNT). HOWEVER, IF
C THIS YIELDS NO IMPROVEMENT IT IS ADVISED
C TO ANALYZE THE INTEGRAND IN ORDER TO
C DETERMINE THE INTEGRATION DIFFICULTIES. IF
C THE POSITION OF A LOCAL DIFFICULTY CAN BE
C DETERMINED (I.E. SINGULARITY,
C DISCONTINUITY WITHIN THE INTERVAL), IT
C SHOULD BE SUPPLIED TO THE ROUTINE AS AN
C ELEMENT OF THE VECTOR POINTS. IF NECESSARY
C AN APPROPRIATE SPECIAL-PURPOSE INTEGRATOR
C MUST BE USED, WHICH IS DESIGNED FOR
C HANDLING THE TYPE OF DIFFICULTY INVOLVED.
C = 2 THE OCCURRENCE OF ROUNDOFF ERROR IS
C DETECTED, WHICH PREVENTS THE REQUESTED
C TOLERANCE FROM BEING ACHIEVED.
C THE ERROR MAY BE UNDER-ESTIMATED.
C = 3 EXTREMELY BAD INTEGRAND BEHAVIOUR OCCURS
C AT SOME POINTS OF THE INTEGRATION
C INTERVAL.
C = 4 THE ALGORITHM DOES NOT CONVERGE.
C ROUNDOFF ERROR IS DETECTED IN THE
C EXTRAPOLATION TABLE. IT IS PRESUMED THAT
C THE REQUESTED TOLERANCE CANNOT BE
C ACHIEVED, AND THAT THE RETURNED RESULT IS
C THE BEST WHICH CAN BE OBTAINED.
C = 5 THE INTEGRAL IS PROBABLY DIVERGENT, OR
C SLOWLY CONVERGENT. IT MUST BE NOTED THAT
C DIVERGENCE CAN OCCUR WITH ANY OTHER VALUE
C OF IER.GT.0.
C = 6 THE INPUT IS INVALID BECAUSE
C NPTS2.LT.2 OR
C BREAK POINTS ARE SPECIFIED OUTSIDE
C THE INTEGRATION RANGE OR
C (EPSABS.LE.0 AND
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
C OR LIMIT.LT.NPTS2.
C RESULT, ABSERR, NEVAL, LAST, RLIST(1),
C AND ELIST(1) ARE SET TO ZERO. ALIST(1) AND
C BLIST(1) ARE SET TO A AND B RESPECTIVELY.
C
C ALIST - DOUBLE PRECISION
C VECTOR OF DIMENSION AT LEAST LIMIT, THE FIRST
C LAST ELEMENTS OF WHICH ARE THE LEFT END POINTS
C OF THE SUBINTERVALS IN THE PARTITION OF THE GIVEN
C INTEGRATION RANGE (A,B)
C
C BLIST - DOUBLE PRECISION
C VECTOR OF DIMENSION AT LEAST LIMIT, THE FIRST
C LAST ELEMENTS OF WHICH ARE THE RIGHT END POINTS
C OF THE SUBINTERVALS IN THE PARTITION OF THE GIVEN
C INTEGRATION RANGE (A,B)
C
C RLIST - DOUBLE PRECISION
C VECTOR OF DIMENSION AT LEAST LIMIT, THE FIRST
C LAST ELEMENTS OF WHICH ARE THE INTEGRAL
C APPROXIMATIONS ON THE SUBINTERVALS
C
C ELIST - DOUBLE PRECISION
C VECTOR OF DIMENSION AT LEAST LIMIT, THE FIRST
C LAST ELEMENTS OF WHICH ARE THE MODULI OF THE
C ABSOLUTE ERROR ESTIMATES ON THE SUBINTERVALS
C
C PTS - DOUBLE PRECISION
C VECTOR OF DIMENSION AT LEAST NPTS2, CONTAINING THE
C INTEGRATION LIMITS AND THE BREAK POINTS OF THE
C INTERVAL IN ASCENDING SEQUENCE.
C
C LEVEL - INTEGER
C VECTOR OF DIMENSION AT LEAST LIMIT, CONTAINING THE
C SUBDIVISION LEVELS OF THE SUBINTERVAL, I.E. IF
C (AA,BB) IS A SUBINTERVAL OF (P1,P2) WHERE P1 AS
C WELL AS P2 IS A USER-PROVIDED BREAK POINT OR
C INTEGRATION LIMIT, THEN (AA,BB) HAS LEVEL L IF
C ABS(BB-AA) = ABS(P2-P1)*2**(-L).
C
C NDIN - INTEGER
C VECTOR OF DIMENSION AT LEAST NPTS2, AFTER FIRST
C INTEGRATION OVER THE INTERVALS (PTS(I)),PTS(I+1),
C I = 0,1, ..., NPTS2-2, THE ERROR ESTIMATES OVER
C SOME OF THE INTERVALS MAY HAVE BEEN INCREASED
C ARTIFICIALLY, IN ORDER TO PUT THEIR SUBDIVISION
C FORWARD. IF THIS HAPPENS FOR THE SUBINTERVAL
C NUMBERED K, NDIN(K) IS PUT TO 1, OTHERWISE
C NDIN(K) = 0.
C
C IORD - INTEGER
C VECTOR OF DIMENSION AT LEAST LIMIT, THE FIRST K
C ELEMENTS OF WHICH ARE POINTERS TO THE
C ERROR ESTIMATES OVER THE SUBINTERVALS,
C SUCH THAT ELIST(IORD(1)), ..., ELIST(IORD(K))
C FORM A DECREASING SEQUENCE, WITH K = LAST
C IF LAST.LE.(LIMIT/2+2), AND K = LIMIT+1-LAST
C OTHERWISE
C
C LAST - INTEGER
C NUMBER OF SUBINTERVALS ACTUALLY PRODUCED IN THE
C SUBDIVISIONS PROCESS
C
C***REFERENCES (NONE)
C***ROUTINES CALLED D1MACH,DQELG,DQK21,DQPSRT
C***END PROLOGUE DQAGPE
DOUBLE PRECISION A,ABSEPS,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,
* A2,B,BLIST,B1,B2,CORREC,DABS,DEFABS,DEFAB1,DEFAB2,DMAX1,DMIN1,
* DRES,D1MACH,ELIST,EPMACH,EPSABS,EPSREL,ERLARG,ERLAST,ERRBND,
* ERRMAX,ERROR1,ERRO12,ERROR2,ERRSUM,ERTEST,F,OFLOW,POINTS,PTS,
* RESA,RESABS,RESEPS,RESULT,RES3LA,RLIST,RLIST2,SIGN,TEMP,UFLOW
INTEGER I,ID,IER,IERRO,IND1,IND2,IORD,IP1,IROFF1,IROFF2,IROFF3,J,
* JLOW,JUPBND,K,KSGN,KTMIN,LAST,LEVCUR,LEVEL,LEVMAX,LIMIT,MAXERR,
* NDIN,NEVAL,NINT,NINTP1,NPTS,NPTS2,NRES,NRMAX,NUMRL2
LOGICAL EXTRAP,NOEXT
C
C
DIMENSION ALIST(LIMIT),BLIST(LIMIT),ELIST(LIMIT),IORD(LIMIT),
* LEVEL(LIMIT),NDIN(NPTS2),POINTS(NPTS2),PTS(NPTS2),RES3LA(3),
* RLIST(LIMIT),RLIST2(52)
C
EXTERNAL F
C
C THE DIMENSION OF RLIST2 IS DETERMINED BY THE VALUE OF
C LIMEXP IN SUBROUTINE EPSALG (RLIST2 SHOULD BE OF DIMENSION
C (LIMEXP+2) AT LEAST).
C
C
C LIST OF MAJOR VARIABLES
C -----------------------
C
C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
C CONSIDERED UP TO NOW
C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
C CONSIDERED UP TO NOW
C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
C (ALIST(I),BLIST(I))
C RLIST2 - ARRAY OF DIMENSION AT LEAST LIMEXP+2
C CONTAINING THE PART OF THE EPSILON TABLE WHICH
C IS STILL NEEDED FOR FURTHER COMPUTATIONS
C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
C MAXERR - POINTER TO THE INTERVAL WITH LARGEST ERROR
C ESTIMATE
C ERRMAX - ELIST(MAXERR)
C ERLAST - ERROR ON THE INTERVAL CURRENTLY SUBDIVIDED
C (BEFORE THAT SUBDIVISION HAS TAKEN PLACE)
C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
C ABS(RESULT))
C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
C LAST - INDEX FOR SUBDIVISION
C NRES - NUMBER OF CALLS TO THE EXTRAPOLATION ROUTINE
C NUMRL2 - NUMBER OF ELEMENTS IN RLIST2. IF AN APPROPRIATE
C APPROXIMATION TO THE COMPOUNDED INTEGRAL HAS
C BEEN OBTAINED, IT IS PUT IN RLIST2(NUMRL2) AFTER
C NUMRL2 HAS BEEN INCREASED BY ONE.
C ERLARG - SUM OF THE ERRORS OVER THE INTERVALS LARGER
C THAN THE SMALLEST INTERVAL CONSIDERED UP TO NOW
C EXTRAP - LOGICAL VARIABLE DENOTING THAT THE ROUTINE
C IS ATTEMPTING TO PERFORM EXTRAPOLATION. I.E.
C BEFORE SUBDIVIDING THE SMALLEST INTERVAL WE
C TRY TO DECREASE THE VALUE OF ERLARG.
C NOEXT - LOGICAL VARIABLE DENOTING THAT EXTRAPOLATION IS
C NO LONGER ALLOWED (TRUE-VALUE)
C
C MACHINE DEPENDENT CONSTANTS
C ---------------------------
C
C EPMACH IS THE LARGEST RELATIVE SPACING.
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
C OFLOW IS THE LARGEST POSITIVE MAGNITUDE.
C
C***FIRST EXECUTABLE STATEMENT DQAGPE
EPMACH = D1MACH(4)
C
C TEST ON VALIDITY OF PARAMETERS
C -----------------------------
C
IER = 0
NEVAL = 0
LAST = 0
RESULT = 0.0D+00
ABSERR = 0.0D+00
ALIST(1) = A
BLIST(1) = B
RLIST(1) = 0.0D+00
ELIST(1) = 0.0D+00
IORD(1) = 0
LEVEL(1) = 0
NPTS = NPTS2-2
IF(NPTS2.LT.2.OR.LIMIT.LE.NPTS.OR.(EPSABS.LE.0.0D+00.AND.
* EPSREL.LT.DMAX1(0.5D+02*EPMACH,0.5D-28))) IER = 6
IF(IER.EQ.6) GO TO 999
C
C IF ANY BREAK POINTS ARE PROVIDED, SORT THEM INTO AN
C ASCENDING SEQUENCE.
C
SIGN = 1.0D+00
IF(A.GT.B) SIGN = -1.0D+00
PTS(1) = DMIN1(A,B)
IF(NPTS.EQ.0) GO TO 15
DO 10 I = 1,NPTS
PTS(I+1) = POINTS(I)
10 CONTINUE
15 PTS(NPTS+2) = DMAX1(A,B)
NINT = NPTS+1
A1 = PTS(1)
IF(NPTS.EQ.0) GO TO 40
NINTP1 = NINT+1
DO 20 I = 1,NINT
IP1 = I+1
DO 20 J = IP1,NINTP1
IF(PTS(I).LE.PTS(J)) GO TO 20
TEMP = PTS(I)
PTS(I) = PTS(J)
PTS(J) = TEMP
20 CONTINUE
IF(PTS(1).NE.DMIN1(A,B).OR.PTS(NINTP1).NE.DMAX1(A,B)) IER = 6
IF(IER.EQ.6) GO TO 999
C
C COMPUTE FIRST INTEGRAL AND ERROR APPROXIMATIONS.
C ------------------------------------------------
C
40 RESABS = 0.0D+00
DO 50 I = 1,NINT
B1 = PTS(I+1)
CALL DQK21(F,A1,B1,AREA1,ERROR1,DEFABS,RESA,IER)
IF (IER .LT. 0) RETURN
ABSERR = ABSERR+ERROR1
RESULT = RESULT+AREA1
NDIN(I) = 0
IF(ERROR1.EQ.RESA.AND.ERROR1.NE.0.0D+00) NDIN(I) = 1
RESABS = RESABS+DEFABS
LEVEL(I) = 0
ELIST(I) = ERROR1
ALIST(I) = A1
BLIST(I) = B1
RLIST(I) = AREA1
IORD(I) = I
A1 = B1
50 CONTINUE
ERRSUM = 0.0D+00
DO 55 I = 1,NINT
IF(NDIN(I).EQ.1) ELIST(I) = ABSERR
ERRSUM = ERRSUM+ELIST(I)
55 CONTINUE
C
C TEST ON ACCURACY.
C
LAST = NINT
NEVAL = 21*NINT
DRES = DABS(RESULT)
ERRBND = DMAX1(EPSABS,EPSREL*DRES)
IF(ABSERR.LE.0.1D+03*EPMACH*RESABS.AND.ABSERR.GT.ERRBND) IER = 2
IF(NINT.EQ.1) GO TO 80
DO 70 I = 1,NPTS
JLOW = I+1
IND1 = IORD(I)
DO 60 J = JLOW,NINT
IND2 = IORD(J)
IF(ELIST(IND1).GT.ELIST(IND2)) GO TO 60
IND1 = IND2
K = J
60 CONTINUE
IF(IND1.EQ.IORD(I)) GO TO 70
IORD(K) = IORD(I)
IORD(I) = IND1
70 CONTINUE
IF(LIMIT.LT.NPTS2) IER = 1
80 IF(IER.NE.0.OR.ABSERR.LE.ERRBND) GO TO 210
C
C INITIALIZATION
C --------------
C
RLIST2(1) = RESULT
MAXERR = IORD(1)
ERRMAX = ELIST(MAXERR)
AREA = RESULT
NRMAX = 1
NRES = 0
NUMRL2 = 1
KTMIN = 0
EXTRAP = .FALSE.
NOEXT = .FALSE.
ERLARG = ERRSUM
ERTEST = ERRBND
LEVMAX = 1
IROFF1 = 0
IROFF2 = 0
IROFF3 = 0
IERRO = 0
UFLOW = D1MACH(1)
OFLOW = D1MACH(2)
ABSERR = OFLOW
KSGN = -1
IF(DRES.GE.(0.1D+01-0.5D+02*EPMACH)*RESABS) KSGN = 1
C
C MAIN DO-LOOP
C ------------
C
DO 160 LAST = NPTS2,LIMIT
C
C BISECT THE SUBINTERVAL WITH THE NRMAX-TH LARGEST ERROR
C ESTIMATE.
C
LEVCUR = LEVEL(MAXERR)+1
A1 = ALIST(MAXERR)
B1 = 0.5D+00*(ALIST(MAXERR)+BLIST(MAXERR))
A2 = B1
B2 = BLIST(MAXERR)
ERLAST = ERRMAX
CALL DQK21(F,A1,B1,AREA1,ERROR1,RESA,DEFAB1,IER)
IF (IER .LT. 0) RETURN
CALL DQK21(F,A2,B2,AREA2,ERROR2,RESA,DEFAB2,IER)
IF (IER .LT. 0) RETURN
C
C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
C AND ERROR AND TEST FOR ACCURACY.
C
NEVAL = NEVAL+42
AREA12 = AREA1+AREA2
ERRO12 = ERROR1+ERROR2
ERRSUM = ERRSUM+ERRO12-ERRMAX
AREA = AREA+AREA12-RLIST(MAXERR)
IF(DEFAB1.EQ.ERROR1.OR.DEFAB2.EQ.ERROR2) GO TO 95
IF(DABS(RLIST(MAXERR)-AREA12).GT.0.1D-04*DABS(AREA12)
* .OR.ERRO12.LT.0.99D+00*ERRMAX) GO TO 90
IF(EXTRAP) IROFF2 = IROFF2+1
IF(.NOT.EXTRAP) IROFF1 = IROFF1+1
90 IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF3 = IROFF3+1
95 LEVEL(MAXERR) = LEVCUR
LEVEL(LAST) = LEVCUR
RLIST(MAXERR) = AREA1
RLIST(LAST) = AREA2
ERRBND = DMAX1(EPSABS,EPSREL*DABS(AREA))
C
C TEST FOR ROUNDOFF ERROR AND EVENTUALLY SET ERROR FLAG.
C
IF(IROFF1+IROFF2.GE.10.OR.IROFF3.GE.20) IER = 2
IF(IROFF2.GE.5) IERRO = 3
C
C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF
C SUBINTERVALS EQUALS LIMIT.
C
IF(LAST.EQ.LIMIT) IER = 1
C
C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
C AT A POINT OF THE INTEGRATION RANGE
C
IF(DMAX1(DABS(A1),DABS(B2)).LE.(0.1D+01+0.1D+03*EPMACH)*
* (DABS(A2)+0.1D+04*UFLOW)) IER = 4
C
C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
C
IF(ERROR2.GT.ERROR1) GO TO 100
ALIST(LAST) = A2
BLIST(MAXERR) = B1
BLIST(LAST) = B2
ELIST(MAXERR) = ERROR1
ELIST(LAST) = ERROR2
GO TO 110
100 ALIST(MAXERR) = A2
ALIST(LAST) = A1
BLIST(LAST) = B1
RLIST(MAXERR) = AREA2
RLIST(LAST) = AREA1
ELIST(MAXERR) = ERROR2
ELIST(LAST) = ERROR1
C
C CALL SUBROUTINE DQPSRT TO MAINTAIN THE DESCENDING ORDERING
C IN THE LIST OF ERROR ESTIMATES AND SELECT THE SUBINTERVAL
C WITH NRMAX-TH LARGEST ERROR ESTIMATE (TO BE BISECTED NEXT).
C
110 CALL DQPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
C ***JUMP OUT OF DO-LOOP
IF(ERRSUM.LE.ERRBND) GO TO 190
C ***JUMP OUT OF DO-LOOP
IF(IER.NE.0) GO TO 170
IF(NOEXT) GO TO 160
ERLARG = ERLARG-ERLAST
IF(LEVCUR+1.LE.LEVMAX) ERLARG = ERLARG+ERRO12
IF(EXTRAP) GO TO 120
C
C TEST WHETHER THE INTERVAL TO BE BISECTED NEXT IS THE
C SMALLEST INTERVAL.
C
IF(LEVEL(MAXERR)+1.LE.LEVMAX) GO TO 160
EXTRAP = .TRUE.
NRMAX = 2
120 IF(IERRO.EQ.3.OR.ERLARG.LE.ERTEST) GO TO 140
C
C THE SMALLEST INTERVAL HAS THE LARGEST ERROR.
C BEFORE BISECTING DECREASE THE SUM OF THE ERRORS OVER
C THE LARGER INTERVALS (ERLARG) AND PERFORM EXTRAPOLATION.
C
ID = NRMAX
JUPBND = LAST
IF(LAST.GT.(2+LIMIT/2)) JUPBND = LIMIT+3-LAST
DO 130 K = ID,JUPBND
MAXERR = IORD(NRMAX)
ERRMAX = ELIST(MAXERR)
C ***JUMP OUT OF DO-LOOP
IF(LEVEL(MAXERR)+1.LE.LEVMAX) GO TO 160
NRMAX = NRMAX+1
130 CONTINUE
C
C PERFORM EXTRAPOLATION.
C
140 NUMRL2 = NUMRL2+1
RLIST2(NUMRL2) = AREA
IF(NUMRL2.LE.2) GO TO 155
CALL DQELG(NUMRL2,RLIST2,RESEPS,ABSEPS,RES3LA,NRES)
KTMIN = KTMIN+1
IF(KTMIN.GT.5.AND.ABSERR.LT.0.1D-02*ERRSUM) IER = 5
IF(ABSEPS.GE.ABSERR) GO TO 150
KTMIN = 0
ABSERR = ABSEPS
RESULT = RESEPS
CORREC = ERLARG
ERTEST = DMAX1(EPSABS,EPSREL*DABS(RESEPS))
C ***JUMP OUT OF DO-LOOP
IF(ABSERR.LT.ERTEST) GO TO 170
C
C PREPARE BISECTION OF THE SMALLEST INTERVAL.
C
150 IF(NUMRL2.EQ.1) NOEXT = .TRUE.
IF(IER.GE.5) GO TO 170
155 MAXERR = IORD(1)
ERRMAX = ELIST(MAXERR)
NRMAX = 1
EXTRAP = .FALSE.
LEVMAX = LEVMAX+1
ERLARG = ERRSUM
160 CONTINUE
C
C SET THE FINAL RESULT.
C ---------------------
C
C
170 IF(ABSERR.EQ.OFLOW) GO TO 190
IF((IER+IERRO).EQ.0) GO TO 180
IF(IERRO.EQ.3) ABSERR = ABSERR+CORREC
IF(IER.EQ.0) IER = 3
IF(RESULT.NE.0.0D+00.AND.AREA.NE.0.0D+00)GO TO 175
IF(ABSERR.GT.ERRSUM)GO TO 190
IF(AREA.EQ.0.0D+00) GO TO 210
GO TO 180
175 IF(ABSERR/DABS(RESULT).GT.ERRSUM/DABS(AREA))GO TO 190
C
C TEST ON DIVERGENCE.
C
180 IF(KSGN.EQ.(-1).AND.DMAX1(DABS(RESULT),DABS(AREA)).LE.
* RESABS*0.1D-01) GO TO 210
IF(0.1D-01.GT.(RESULT/AREA).OR.(RESULT/AREA).GT.0.1D+03.OR.
* ERRSUM.GT.DABS(AREA)) IER = 6
GO TO 210
C
C COMPUTE GLOBAL INTEGRAL SUM.
C
190 RESULT = 0.0D+00
DO 200 K = 1,LAST
RESULT = RESULT+RLIST(K)
200 CONTINUE
ABSERR = ERRSUM
210 IF(IER.GT.2) IER = IER-1
RESULT = RESULT*SIGN
999 RETURN
END