home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
quadpack
/
dqk15i.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
8KB
|
213 lines
SUBROUTINE DQK15I(F,BOUN,INF,A,B,RESULT,ABSERR,RESABS,RESASC,
1 IERR)
C***BEGIN PROLOGUE DQK15I
C***DATE WRITTEN 800101 (YYMMDD)
C***REVISION DATE 830518 (YYMMDD)
C***CATEGORY NO. H2A3A2,H2A4A2
C***KEYWORDS 15-POINT TRANSFORMED GAUSS-KRONROD RULES
C***AUTHOR PIESSENS,ROBERT,APPL. MATH. & PROGR. DIV. - K.U.LEUVEN
C DE DONCKER,ELISE,APPL. MATH. & PROGR. DIV. - K.U.LEUVEN
C***PURPOSE THE ORIGINAL (INFINITE INTEGRATION RANGE IS MAPPED
C ONTO THE INTERVAL (0,1) AND (A,B) IS A PART OF (0,1).
C IT IS THE PURPOSE TO COMPUTE
C I = INTEGRAL OF TRANSFORMED INTEGRAND OVER (A,B),
C J = INTEGRAL OF ABS(TRANSFORMED INTEGRAND) OVER (A,B).
C***DESCRIPTION
C
C INTEGRATION RULE
C STANDARD FORTRAN SUBROUTINE
C DOUBLE PRECISION VERSION
C
C PARAMETERS
C ON ENTRY
C F - DOUBLE PRECISION
C FUCTION SUBPROGRAM DEFINING THE INTEGRAND
C FUNCTION F(X). THE ACTUAL NAME FOR F NEEDS TO BE
C DECLARED E X T E R N A L IN THE CALLING PROGRAM.
C
C BOUN - DOUBLE PRECISION
C FINITE BOUND OF ORIGINAL INTEGRATION
C RANGE (SET TO ZERO IF INF = +2)
C
C INF - INTEGER
C IF INF = -1, THE ORIGINAL INTERVAL IS
C (-INFINITY,BOUND),
C IF INF = +1, THE ORIGINAL INTERVAL IS
C (BOUND,+INFINITY),
C IF INF = +2, THE ORIGINAL INTERVAL IS
C (-INFINITY,+INFINITY) AND
C THE INTEGRAL IS COMPUTED AS THE SUM OF TWO
C INTEGRALS, ONE OVER (-INFINITY,0) AND ONE OVER
C (0,+INFINITY).
C
C A - DOUBLE PRECISION
C LOWER LIMIT FOR INTEGRATION OVER SUBRANGE
C OF (0,1)
C
C B - DOUBLE PRECISION
C UPPER LIMIT FOR INTEGRATION OVER SUBRANGE
C OF (0,1)
C
C ON RETURN
C RESULT - DOUBLE PRECISION
C APPROXIMATION TO THE INTEGRAL I
C RESULT IS COMPUTED BY APPLYING THE 15-POINT
C KRONROD RULE(RESK) OBTAINED BY OPTIMAL ADDITION
C OF ABSCISSAE TO THE 7-POINT GAUSS RULE(RESG).
C
C ABSERR - DOUBLE PRECISION
C ESTIMATE OF THE MODULUS OF THE ABSOLUTE ERROR,
C WHICH SHOULD EQUAL OR EXCEED ABS(I-RESULT)
C
C RESABS - DOUBLE PRECISION
C APPROXIMATION TO THE INTEGRAL J
C
C RESASC - DOUBLE PRECISION
C APPROXIMATION TO THE INTEGRAL OF
C ABS((TRANSFORMED INTEGRAND)-I/(B-A)) OVER (A,B)
C
C***REFERENCES (NONE)
C***ROUTINES CALLED D1MACH
C***END PROLOGUE DQK15I
C
DOUBLE PRECISION A,ABSC,ABSC1,ABSC2,ABSERR,B,BOUN,CENTR,DABS,DINF,
* DMAX1,DMIN1,D1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,
* RESABS,RESASC,RESG,RESK,RESKH,RESULT,TABSC1,TABSC2,UFLOW,WG,WGK,
* XGK,FVALT
INTEGER INF,J
EXTERNAL F
C
DIMENSION FV1(7),FV2(7),XGK(8),WGK(8),WG(8)
C
C THE ABSCISSAE AND WEIGHTS ARE SUPPLIED FOR THE INTERVAL
C (-1,1). BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND
C THEIR CORRESPONDING WEIGHTS ARE GIVEN.
C
C XGK - ABSCISSAE OF THE 15-POINT KRONROD RULE
C XGK(2), XGK(4), ... ABSCISSAE OF THE 7-POINT
C GAUSS RULE
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
C ADDED TO THE 7-POINT GAUSS RULE
C
C WGK - WEIGHTS OF THE 15-POINT KRONROD RULE
C
C WG - WEIGHTS OF THE 7-POINT GAUSS RULE, CORRESPONDING
C TO THE ABSCISSAE XGK(2), XGK(4), ...
C WG(1), WG(3), ... ARE SET TO ZERO.
C
DATA WG(1) / 0.0D0 /
DATA WG(2) / 0.1294849661 6886969327 0611432679 082D0 /
DATA WG(3) / 0.0D0 /
DATA WG(4) / 0.2797053914 8927666790 1467771423 780D0 /
DATA WG(5) / 0.0D0 /
DATA WG(6) / 0.3818300505 0511894495 0369775488 975D0 /
DATA WG(7) / 0.0D0 /
DATA WG(8) / 0.4179591836 7346938775 5102040816 327D0 /
C
DATA XGK(1) / 0.9914553711 2081263920 6854697526 329D0 /
DATA XGK(2) / 0.9491079123 4275852452 6189684047 851D0 /
DATA XGK(3) / 0.8648644233 5976907278 9712788640 926D0 /
DATA XGK(4) / 0.7415311855 9939443986 3864773280 788D0 /
DATA XGK(5) / 0.5860872354 6769113029 4144838258 730D0 /
DATA XGK(6) / 0.4058451513 7739716690 6606412076 961D0 /
DATA XGK(7) / 0.2077849550 0789846760 0689403773 245D0 /
DATA XGK(8) / 0.0000000000 0000000000 0000000000 000D0 /
C
DATA WGK(1) / 0.0229353220 1052922496 3732008058 970D0 /
DATA WGK(2) / 0.0630920926 2997855329 0700663189 204D0 /
DATA WGK(3) / 0.1047900103 2225018383 9876322541 518D0 /
DATA WGK(4) / 0.1406532597 1552591874 5189590510 238D0 /
DATA WGK(5) / 0.1690047266 3926790282 6583426598 550D0 /
DATA WGK(6) / 0.1903505780 6478540991 3256402421 014D0 /
DATA WGK(7) / 0.2044329400 7529889241 4161999234 649D0 /
DATA WGK(8) / 0.2094821410 8472782801 2999174891 714D0 /
C
C
C LIST OF MAJOR VARIABLES
C -----------------------
C
C CENTR - MID POINT OF THE INTERVAL
C HLGTH - HALF-LENGTH OF THE INTERVAL
C ABSC* - ABSCISSA
C TABSC* - TRANSFORMED ABSCISSA
C FVAL* - FUNCTION VALUE
C RESG - RESULT OF THE 7-POINT GAUSS FORMULA
C RESK - RESULT OF THE 15-POINT KRONROD FORMULA
C RESKH - APPROXIMATION TO THE MEAN VALUE OF THE TRANSFORMED
C INTEGRAND OVER (A,B), I.E. TO I/(B-A)
C
C MACHINE DEPENDENT CONSTANTS
C ---------------------------
C
C EPMACH IS THE LARGEST RELATIVE SPACING.
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
C
C***FIRST EXECUTABLE STATEMENT DQK15I
EPMACH = D1MACH(4)
UFLOW = D1MACH(1)
DINF = MIN0(1,INF)
C
CENTR = 0.5D+00*(A+B)
HLGTH = 0.5D+00*(B-A)
TABSC1 = BOUN+DINF*(0.1D+01-CENTR)/CENTR
IERR = 0
FVAL1 = F(TABSC1,IERR)
IF (IERR .LT. 0) RETURN
IF(INF.EQ.2) THEN
FVALT = F(-TABSC1,IERR)
IF (IERR .LT. 0) RETURN
FVAL1 = FVAL1+FVALT
ENDIF
FC = (FVAL1/CENTR)/CENTR
C
C COMPUTE THE 15-POINT KRONROD APPROXIMATION TO
C THE INTEGRAL, AND ESTIMATE THE ERROR.
C
RESG = WG(8)*FC
RESK = WGK(8)*FC
RESABS = DABS(RESK)
DO 10 J=1,7
ABSC = HLGTH*XGK(J)
ABSC1 = CENTR-ABSC
ABSC2 = CENTR+ABSC
TABSC1 = BOUN+DINF*(0.1D+01-ABSC1)/ABSC1
TABSC2 = BOUN+DINF*(0.1D+01-ABSC2)/ABSC2
FVAL1 = F(TABSC1,IERR)
IF (IERR .LT. 0) RETURN
FVAL2 = F(TABSC2,IERR)
IF (IERR .LT. 0) RETURN
IF(INF.EQ.2) THEN
FVALT = F(-TABSC1,IERR)
IF (IERR .LT. 0) RETURN
FVAL1 = FVAL1+FVALT
ENDIF
IF(INF.EQ.2) THEN
FVALT = F(-TABSC2,IERR)
IF (IERR .LT. 0) RETURN
FVAL2 = FVAL2+FVALT
ENDIF
FVAL1 = (FVAL1/ABSC1)/ABSC1
FVAL2 = (FVAL2/ABSC2)/ABSC2
FV1(J) = FVAL1
FV2(J) = FVAL2
FSUM = FVAL1+FVAL2
RESG = RESG+WG(J)*FSUM
RESK = RESK+WGK(J)*FSUM
RESABS = RESABS+WGK(J)*(DABS(FVAL1)+DABS(FVAL2))
10 CONTINUE
RESKH = RESK*0.5D+00
RESASC = WGK(8)*DABS(FC-RESKH)
DO 20 J=1,7
RESASC = RESASC+WGK(J)*(DABS(FV1(J)-RESKH)+DABS(FV2(J)-RESKH))
20 CONTINUE
RESULT = RESK*HLGTH
RESASC = RESASC*HLGTH
RESABS = RESABS*HLGTH
ABSERR = DABS((RESK-RESG)*HLGTH)
IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.D0) ABSERR = RESASC*
* DMIN1(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00)
IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = DMAX1
* ((EPMACH*0.5D+02)*RESABS,ABSERR)
RETURN
END