home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
ranlib
/
ranlib.fdoc
< prev
next >
Wrap
Text File
|
1996-09-28
|
61KB
|
871 lines
RANLIB
Library of Fortran Routines for Random Number Generation
Full Documentation of Each Routine
Compiled and Written by:
Barry W. Brown
James Lovato
Department of Biomathematics, Box 237
The University of Texas, M.D. Anderson Cancer Center
1515 Holcombe Boulevard
Houston, TX 77030
This work was supported by grant CA-16672 from the National Cancer Institute.
C**********************************************************************
C
C SUBROUTINE ADVNST(K)
C ADV-a-N-ce ST-ate
C
C Advances the state of the current generator by 2^K values and
C resets the initial seed to that value.
C
C This is a transcription from Pascal to Fortran of routine
C Advance_State from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C K -> The generator is advanced by2^K values
C INTEGER K
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENBET( A, B )
C GeNerate BETa random deviate
C
C
C Function
C
C
C Returns a single random deviate from the beta distribution with
C parameters A and B. The density of the beta is
C x^(a-1) * (1-x)^(b-1) / B(a,b) for 0 < x < 1
C
C
C Arguments
C
C
C A --> First parameter of the beta distribution
C REAL A
C
C B --> Second parameter of the beta distribution
C REAL B
C
C
C Method
C
C
C R. C. H. Cheng
C Generating Beta Variables with Nonintegral Shape Parameters
C Communications of the ACM, 21:317-322 (1978)
C (Algorithms BB and BC)
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENCHI( DF )
C Generate random value of CHIsquare variable
C
C
C Function
C
C
C Generates random deviate from the distribution of a chisquare
C with DF degrees of freedom random variable.
C
C
C Arguments
C
C
C DF --> Degrees of freedom of the chisquare
C (Must be positive)
C REAL DF
C
C
C Method
C
C
C Uses relation between chisquare and gamma.
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENEXP( AV )
C
C GENerate EXPonential random deviate
C
C
C Function
C
C
C Generates a single random deviate from an exponential
C distribution with mean AV.
C
C
C Arguments
C
C
C AV --> The mean of the exponential distribution from which
C a random deviate is to be generated.
C REAL AV
C
C GENEXP <-- The random deviate.
C REAL GENEXP
C
C
C Method
C
C
C Renames SEXPO from TOMS as slightly modified by BWB to use RANF
C instead of SUNIF.
C
C For details see:
C
C Ahrens, J.H. and Dieter, U.
C Computer Methods for Sampling From the
C Exponential and Normal Distributions.
C Comm. ACM, 15,10 (Oct. 1972), 873 - 882.
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENF( DFN, DFD )
C GENerate random deviate from the F distribution
C
C
C Function
C
C
C Generates a random deviate from the F (variance ratio)
C distribution with DFN degrees of freedom in the numerator
C and DFD degrees of freedom in the denominator.
C
C
C Arguments
C
C
C DFN --> Numerator degrees of freedom
C (Must be positive)
C REAL DFN
C DFD --> Denominator degrees of freedom
C (Must be positive)
C REAL DFD
C
C
C Method
C
C
C Directly generates ratio of chisquare variates
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENGAM( A, R )
C GENerates random deviates from GAMma distribution
C
C
C Function
C
C
C Generates random deviates from the gamma distribution whose
C density is
C (A**R)/Gamma(R) * X**(R-1) * Exp(-A*X)
C
C
C Arguments
C
C
C A --> Location parameter of Gamma distribution
C REAL A
C
C R --> Shape parameter of Gamma distribution
C REAL R
C
C
C Method
C
C
C Renames SGAMMA from TOMS as slightly modified by BWB to use RANF
C instead of SUNIF.
C
C For details see:
C (Case R >= 1.0)
C Ahrens, J.H. and Dieter, U.
C Generating Gamma Variates by a
C Modified Rejection Technique.
C Comm. ACM, 25,1 (Jan. 1982), 47 - 54.
C Algorithm GD
C
C (Case 0.0 <= R <= 1.0)
C Ahrens, J.H. and Dieter, U.
C Computer Methods for Sampling from Gamma,
C Beta, Poisson and Binomial Distributions.
C Computing, 12 (1974), 223-246/
C Adapted algorithm GS.
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE GENMN(PARM,X,WORK)
C GENerate Multivariate Normal random deviate
C
C
C Arguments
C
C
C PARM --> Parameters needed to generate multivariate normal
C deviates (MEANV and Cholesky decomposition of
C COVM). Set by a previous call to SETGMN.
C
C 1 : 1 - size of deviate, P
C 2 : P + 1 - mean vector
C P+2 : P*(P+3)/2 + 1 - upper half of cholesky
C decomposition of cov matrix
C REAL PARM(*)
C
C X <-- Vector deviate generated.
C REAL X(P)
C
C WORK <--> Scratch array
C REAL WORK(P)
C
C
C Method
C
C
C 1) Generate P independent standard normal deviates - Ei ~ N(0,1)
C
C 2) SETGMN uses Cholesky decomposition find A s.t. trans(A)*A = COV
C
C 3) Generate trans(A)*E + MEANV ~ N(MEANV,COVM)
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENNCH( DF, XNONC )
C Generate random value of Noncentral CHIsquare variable
C
C
C Function
C
C
C Generates random deviate from the distribution of a noncentral
C chisquare with DF degrees of freedom and noncentrality parameter
C XNONC.
C
C
C Arguments
C
C
C DF --> Degrees of freedom of the chisquare
C (Must be > 1.0)
C REAL DF
C
C XNONC --> Noncentrality parameter of the chisquare
C (Must be >= 0.0)
C REAL XNONC
C
C
C Method
C
C
C Uses fact that noncentral chisquare is the sum of a chisquare
C deviate with DF-1 degrees of freedom plus the square of a normal
C deviate with mean XNONC and standard deviation 1.
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENNF( DFN, DFD, XNONC )
C GENerate random deviate from the Noncentral F distribution
C
C
C Function
C
C
C Generates a random deviate from the noncentral F (variance ratio)
C distribution with DFN degrees of freedom in the numerator, and DFD
C degrees of freedom in the denominator, and noncentrality parameter
C XNONC.
C
C
C Arguments
C
C
C DFN --> Numerator degrees of freedom
C (Must be >= 1.0)
C REAL DFN
C DFD --> Denominator degrees of freedom
C (Must be positive)
C REAL DFD
C
C XNONC --> Noncentrality parameter
C (Must be nonnegative)
C REAL XNONC
C
C
C Method
C
C
C Directly generates ratio of noncentral numerator chisquare variate
C to central denominator chisquare variate.
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENNOR( AV, SD )
C
C GENerate random deviate from a NORmal distribution
C
C
C Function
C
C
C Generates a single random deviate from a normal distribution
C with mean, AV, and standard deviation, SD.
C
C
C Arguments
C
C
C AV --> Mean of the normal distribution.
C REAL AV
C
C SD --> Standard deviation of the normal distribution.
C REAL SD
C
C GENNOR <-- Generated normal deviate.
C REAL GENNOR
C
C
C Method
C
C
C Renames SNORM from TOMS as slightly modified by BWB to use RANF
C instead of SUNIF.
C
C For details see:
C Ahrens, J.H. and Dieter, U.
C Extensions of Forsythe's Method for Random
C Sampling from the Normal Distribution.
C Math. Comput., 27,124 (Oct. 1973), 927 - 937.
C
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE GENPRM( IARRAY, LARRAY )
C GENerate random PeRMutation of iarray
C
C
C Arguments
C
C
C IARRAY <--> On output IARRAY is a random permutation of its
C value on input
C INTEGER IARRAY( LARRAY )
C
C LARRAY <--> Length of IARRAY
C INTEGER LARRAY
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENUNF( LOW, HIGH )
C
C GeNerate Uniform Real between LOW and HIGH
C
C
C Function
C
C
C Generates a real uniformly distributed between LOW and HIGH.
C
C
C Arguments
C
C
C LOW --> Low bound (exclusive) on real value to be generated
C REAL LOW
C
C HIGH --> High bound (exclusive) on real value to be generated
C REAL HIGH
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE GETCGN(G)
C Get GeNerator
C
C Returns in G the number of the current random number generator
C
C
C Arguments
C
C
C G <-- Number of the current random number generator (1..32)
C INTEGER G
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE GETSD(ISEED1,ISEED2)
C GET SeeD
C
C Returns the value of two integer seeds of the current generator
C
C This is a transcription from Pascal to Fortran of routine
C Get_State from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C
C ISEED1 <- First integer seed of generator G
C INTEGER ISEED1
C
C ISEED2 <- Second integer seed of generator G
C INTEGER ISEED1
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION IGNBIN( N, P )
C
C GENerate BINomial random deviate
C
C
C Function
C
C
C Generates a single random deviate from a binomial
C distribution whose number of trials is N and whose
C probability of an event in each trial is P.
C
C
C Arguments
C
C
C N --> The number of trials in the binomial distribution
C from which a random deviate is to be generated.
C INTEGER N
C
C P --> The probability of an event in each trial of the
C binomial distribution from which a random deviate
C is to be generated.
C REAL P
C
C IGNBIN <-- A random deviate yielding the number of events
C from N independent trials, each of which has
C a probability of event P.
C INTEGER IGNBIN
C
C
C Note
C
C
C Uses RANF so the value of the seeds, ISEED1 and ISEED2 must be set
C by a call similar to the following
C DUM = RANSET( ISEED1, ISEED2 )
C
C
C Method
C
C
C This is algorithm BTPE from:
C
C Kachitvichyanukul, V. and Schmeiser, B. W.
C
C Binomial Random Variate Generation.
C Communications of the ACM, 31, 2
C (February, 1988) 216.
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION IGNLGI()
C GeNerate LarGe Integer
C
C Returns a random integer following a uniform distribution over
C (1, 2147483562) using the current generator.
C
C This is a transcription from Pascal to Fortran of routine
C Random from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION IGNPOI( AV )
C
C GENerate POIsson random deviate
C
C
C Function
C
C
C Generates a single random deviate from a Poisson
C distribution with mean AV.
C
C
C Arguments
C
C
C AV --> The mean of the Poisson distribution from which
C a random deviate is to be generated.
C REAL AV
C
C GENEXP <-- The random deviate.
C REAL GENEXP
C
C
C Method
C
C
C Renames KPOIS from TOMS as slightly modified by BWB to use RANF
C instead of SUNIF.
C
C For details see:
C
C Ahrens, J.H. and Dieter, U.
C Computer Generation of Poisson Deviates
C From Modified Normal Distributions.
C ACM Trans. Math. Software, 8, 2
C (June 1982),163-179
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION IGNUIN( LOW, HIGH )
C
C GeNerate Uniform INteger
C
C
C Function
C
C
C Generates an integer uniformly distributed between LOW and HIGH.
C
C
C Arguments
C
C
C LOW --> Low bound (inclusive) on integer value to be generated
C INTEGER LOW
C
C HIGH --> High bound (inclusive) on integer value to be generated
C INTEGER HIGH
C
C
C Note
C
C
C If (HIGH-LOW) > 2,147,483,561 prints error message on * unit and
C stops the program.
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE INITGN(ISDTYP)
C INIT-ialize current G-e-N-erator
C
C Reinitializes the state of the current generator
C ISDTYP = -1 => sets the state to its initial seed
C ISDTYP = 0 => sets the state to its last (previous) seed
C ISDTYP = 1 => sets the state to a new seed 2^w values
C from its last seed
C
C This is a transcription from Pascal to Fortran of routine
C Init_Generator from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C ISDTYP -> The state to which the generator is to be set
C
C INTEGER ISDTYP
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE INRGCM()
C INitialize Random number Generator CoMmon
C
C
C Function
C
C
C Initializes common area for random number generator. This saves
C the nuisance of a BLOCK DATA routine and the difficulty of
C assuring that the routine is loaded with the other routines.
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION MLTMOD(A,S,M)
C
C Returns (A*S) MOD M
C
C This is a transcription from Pascal to Fortran of routine
C MULtMod_Decompos from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C A, S, M -->
C INTEGER A,S,M
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE PHRTSD( PHRASE, SEED1, SEED2 )
C PHRase To SeeDs
C
C
C Function
C
C
C Uses a phrase (character string) to generate two seeds for the RGN
C random number generator.
C
C
C Arguments
C
C
C PHRASE --> Phrase to be used for random number generation
C CHARACTER*(*) PHRASE
C
C SEED1 <-- First seed for RGN generator
C INTEGER SEED1
C
C SEED2 <-- Second seed for RGN generator
C INTEGER SEED2
C
C
C Note
C
C
C Trailing blanks are eliminated before the seeds are generated.
C
C Generated seed values will fall in the range 1..2^30
C (1..1,073,741,824)
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION RANF()
C RANDom number generator as a Function
C
C Returns a random floating point number from a uniform distribution
C over 0 - 1 (endpoints of this interval are not returned) using the
C current generator
C
C This is a transcription from Pascal to Fortran of routine
C Uniform_01 from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE SETALL(ISEED1,ISEED2)
C SET ALL random number generators
C
C Sets the initial seed of generator 1 to ISEED1 and ISEED2. The
C initial seeds of the other generators are set accordingly, and
C all generators states are set to these seeds.
C
C This is a transcription from Pascal to Fortran of routine
C Set_Initial_Seed from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C ISEED1 -> First of two integer seeds
C INTEGER ISEED1
C
C ISEED2 -> Second of two integer seeds
C INTEGER ISEED1
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE SETANT(QVALUE)
C SET ANTithetic
C
C Sets whether the current generator produces antithetic values. If
C X is the value normally returned from a uniform [0,1] random
C number generator then 1 - X is the antithetic value. If X is the
C value normally returned from a uniform [0,N] random number
C generator then N - 1 - X is the antithetic value.
C
C All generators are initialized to NOT generate antithetic values.
C
C This is a transcription from Pascal to Fortran of routine
C Set_Antithetic from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C QVALUE -> .TRUE. if generator G is to generating antithetic
C values, otherwise .FALSE.
C LOGICAL QVALUE
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE SETCGN( G )
C Set GeNerator
C
C Sets the current generator to G. All references to a generato
C are to the current generator.
C
C
C Arguments
C
C
C G --> Number of the current random number generator (1..32)
C INTEGER G
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE SETGMN( MEANV, COVM, P, PARM)
C SET Generate Multivariate Normal random deviate
C
C
C Function
C
C
C Places P, MEANV, and the Cholesky factoriztion of COVM
C in GENMN.
C
C
C Arguments
C
C
C MEANV --> Mean vector of multivariate normal distribution.
C REAL MEANV(P)
C
C COVM <--> (Input) Covariance matrix of the multivariate
C normal distribution
C (Output) Destroyed on output
C REAL COVM(P,P)
C
C P --> Dimension of the normal, or length of MEANV.
C INTEGER P
C
C PARM <-- Array of parameters needed to generate multivariate norma
C deviates (P, MEANV and Cholesky decomposition of
C COVM).
C 1 : 1 - P
C 2 : P + 1 - MEANV
C P+2 : P*(P+3)/2 + 1 - Cholesky decomposition of COVM
C REAL PARM(P*(P+3)/2 + 1)
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE SETSD(ISEED1,ISEED2)
C SET S-ee-D of current generator
C
C Resets the initial seed and state of generator g to ISEED1 and
C ISEED2. The seeds and states of the other generators remain
C unchanged.
C
C This is a transcription from Pascal to Fortran of routine
C Set_Seed from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C ISEED1 -> First integer seed
C INTEGER ISEED1
C
C ISEED2 -> Second integer seed
C INTEGER ISEED1
C
C**********************************************************************