home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
liboctave
/
CMatrix.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
69KB
|
3,391 lines
// Matrix manipulations. -*- C++ -*-
/*
Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <sys/types.h>
#include <iostream.h>
#include <float.h>
#include <Complex.h>
#include "mx-base.h"
#include "CmplxDET.h"
#include "CmplxSVD.h"
#include "mx-inlines.cc"
#include "lo-error.h"
#include "f77-uscore.h"
// Fortran functions we call.
extern "C"
{
int F77_FCN (zgemm) (const char*, const char*, const int*,
const int*, const int*, const Complex*,
const Complex*, const int*, const Complex*,
const int*, const Complex*, Complex*, const int*,
long, long);
int F77_FCN (zgeco) (Complex*, const int*, const int*, int*,
double*, Complex*);
int F77_FCN (zgedi) (Complex*, const int*, const int*, int*,
Complex*, Complex*, const int*);
int F77_FCN (zgesl) (Complex*, const int*, const int*, int*,
Complex*, const int*);
int F77_FCN (zgelss) (const int*, const int*, const int*, Complex*,
const int*, Complex*, const int*, double*,
const double*, int*, Complex*, const int*,
double*, int*);
// Note that the original complex fft routines were not written for
// double complex arguments. They have been modified by adding an
// implicit double precision (a-h,o-z) statement at the beginning of
// each subroutine.
int F77_FCN (cffti) (const int*, Complex*);
int F77_FCN (cfftf) (const int*, Complex*, Complex*);
int F77_FCN (cfftb) (const int*, Complex*, Complex*);
}
#define KLUDGE_MATRICES
#define TYPE Complex
#define KL_MAT_TYPE ComplexMatrix
#include "mx-kludge.cc"
#undef KLUDGE_MATRICES
#undef TYPE
#undef KL_MAT_TYPE
/*
* Complex Matrix class
*/
ComplexMatrix::ComplexMatrix (const Matrix& a)
: Array2<Complex> (a.rows (), a.cols ())
{
for (int j = 0; j < cols (); j++)
for (int i = 0; i < rows (); i++)
elem (i, j) = a.elem (i, j);
}
ComplexMatrix::ComplexMatrix (const DiagMatrix& a)
: Array2<Complex> (a.rows (), a.cols (), 0.0)
{
for (int i = 0; i < a.length (); i++)
elem (i, i) = a.elem (i, i);
}
ComplexMatrix::ComplexMatrix (const ComplexDiagMatrix& a)
: Array2<Complex> (a.rows (), a.cols (), 0.0)
{
for (int i = 0; i < a.length (); i++)
elem (i, i) = a.elem (i, i);
}
int
ComplexMatrix::operator == (const ComplexMatrix& a) const
{
if (rows () != a.rows () || cols () != a.cols ())
return 0;
return equal (data (), a.data (), length ());
}
int
ComplexMatrix::operator != (const ComplexMatrix& a) const
{
return !(*this == a);
}
// destructive insert/delete/reorder operations
ComplexMatrix&
ComplexMatrix::insert (const Matrix& a, int r, int c)
{
int a_nr = a.rows ();
int a_nc = a.cols ();
if (r < 0 || r + a_nr - 1 > rows () || c < 0 || c + a_nc - 1 > cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int j = 0; j < a_nc; j++)
for (int i = 0; i < a_nr; i++)
elem (r+i, c+j) = a.elem (i, j);
return *this;
}
ComplexMatrix&
ComplexMatrix::insert (const RowVector& a, int r, int c)
{
int a_len = a.length ();
if (r < 0 || r >= rows () || c < 0 || c + a_len - 1 > cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a_len; i++)
elem (r, c+i) = a.elem (i);
return *this;
}
ComplexMatrix&
ComplexMatrix::insert (const ColumnVector& a, int r, int c)
{
int a_len = a.length ();
if (r < 0 || r + a_len - 1 > rows () || c < 0 || c >= cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a_len; i++)
elem (r+i, c) = a.elem (i);
return *this;
}
ComplexMatrix&
ComplexMatrix::insert (const DiagMatrix& a, int r, int c)
{
if (r < 0 || r + a.rows () - 1 > rows ()
|| c < 0 || c + a.cols () - 1 > cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a.length (); i++)
elem (r+i, c+i) = a.elem (i, i);
return *this;
}
ComplexMatrix&
ComplexMatrix::insert (const ComplexMatrix& a, int r, int c)
{
int a_nr = a.rows ();
int a_nc = a.cols ();
if (r < 0 || r + a_nr - 1 > rows () || c < 0 || c + a_nc - 1 > cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int j = 0; j < a_nc; j++)
for (int i = 0; i < a_nr; i++)
elem (r+i, c+j) = a.elem (i, j);
return *this;
}
ComplexMatrix&
ComplexMatrix::insert (const ComplexRowVector& a, int r, int c)
{
int a_len = a.length ();
if (r < 0 || r >= rows () || c < 0 || c + a_len - 1 > cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a_len; i++)
elem (r, c+i) = a.elem (i);
return *this;
}
ComplexMatrix&
ComplexMatrix::insert (const ComplexColumnVector& a, int r, int c)
{
int a_len = a.length ();
if (r < 0 || r + a_len - 1 > rows () || c < 0 || c >= cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a_len; i++)
elem (r+i, c) = a.elem (i);
return *this;
}
ComplexMatrix&
ComplexMatrix::insert (const ComplexDiagMatrix& a, int r, int c)
{
if (r < 0 || r + a.rows () - 1 > rows ()
|| c < 0 || c + a.cols () - 1 > cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a.length (); i++)
elem (r+i, c+i) = a.elem (i, i);
return *this;
}
ComplexMatrix&
ComplexMatrix::fill (double val)
{
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
elem (i, j) = val;
return *this;
}
ComplexMatrix&
ComplexMatrix::fill (const Complex& val)
{
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
elem (i, j) = val;
return *this;
}
ComplexMatrix&
ComplexMatrix::fill (double val, int r1, int c1, int r2, int c2)
{
int nr = rows ();
int nc = cols ();
if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0
|| r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc)
{
(*current_liboctave_error_handler) ("range error for fill");
return *this;
}
if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; }
if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }
for (int j = c1; j <= c2; j++)
for (int i = r1; i <= r2; i++)
elem (i, j) = val;
return *this;
}
ComplexMatrix&
ComplexMatrix::fill (const Complex& val, int r1, int c1, int r2, int c2)
{
int nr = rows ();
int nc = cols ();
if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0
|| r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc)
{
(*current_liboctave_error_handler) ("range error for fill");
return *this;
}
if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; }
if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }
for (int j = c1; j <= c2; j++)
for (int i = r1; i <= r2; i++)
elem (i, j) = val;
return *this;
}
ComplexMatrix
ComplexMatrix::append (const Matrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows ())
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return *this;
}
int nc_insert = nc;
ComplexMatrix retval (nr, nc + a.cols ());
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
ComplexMatrix
ComplexMatrix::append (const RowVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != 1)
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return *this;
}
int nc_insert = nc;
ComplexMatrix retval (nr, nc + a.length ());
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
ComplexMatrix
ComplexMatrix::append (const ColumnVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != a.length ())
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return *this;
}
int nc_insert = nc;
ComplexMatrix retval (nr, nc + 1);
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
ComplexMatrix
ComplexMatrix::append (const DiagMatrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows ())
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return *this;
}
int nc_insert = nc;
ComplexMatrix retval (nr, nc + a.cols ());
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
ComplexMatrix
ComplexMatrix::append (const ComplexMatrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows ())
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return *this;
}
int nc_insert = nc;
ComplexMatrix retval (nr, nc + a.cols ());
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
ComplexMatrix
ComplexMatrix::append (const ComplexRowVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != 1)
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return *this;
}
int nc_insert = nc;
ComplexMatrix retval (nr, nc + a.length ());
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
ComplexMatrix
ComplexMatrix::append (const ComplexColumnVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != a.length ())
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return *this;
}
int nc_insert = nc;
ComplexMatrix retval (nr, nc + 1);
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
ComplexMatrix
ComplexMatrix::append (const ComplexDiagMatrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows ())
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return *this;
}
int nc_insert = nc;
ComplexMatrix retval (nr, nc + a.cols ());
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
ComplexMatrix
ComplexMatrix::stack (const Matrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != a.cols ())
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return *this;
}
int nr_insert = nr;
ComplexMatrix retval (nr + a.rows (), nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
ComplexMatrix
ComplexMatrix::stack (const RowVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != a.length ())
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return *this;
}
int nr_insert = nr;
ComplexMatrix retval (nr + 1, nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
ComplexMatrix
ComplexMatrix::stack (const ColumnVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != 1)
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return *this;
}
int nr_insert = nr;
ComplexMatrix retval (nr + a.length (), nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
ComplexMatrix
ComplexMatrix::stack (const DiagMatrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != a.cols ())
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return *this;
}
int nr_insert = nr;
ComplexMatrix retval (nr + a.rows (), nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
ComplexMatrix
ComplexMatrix::stack (const ComplexMatrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != a.cols ())
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return *this;
}
int nr_insert = nr;
ComplexMatrix retval (nr + a.rows (), nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
ComplexMatrix
ComplexMatrix::stack (const ComplexRowVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != a.length ())
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return *this;
}
int nr_insert = nr;
ComplexMatrix retval (nr + 1, nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
ComplexMatrix
ComplexMatrix::stack (const ComplexColumnVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != 1)
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return *this;
}
int nr_insert = nr;
ComplexMatrix retval (nr + a.length (), nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
ComplexMatrix
ComplexMatrix::stack (const ComplexDiagMatrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != a.cols ())
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return *this;
}
int nr_insert = nr;
ComplexMatrix retval (nr + a.rows (), nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
ComplexMatrix
ComplexMatrix::hermitian (void) const
{
int nr = rows ();
int nc = cols ();
ComplexMatrix result;
if (length () > 0)
{
result.resize (nc, nr);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (j, i) = conj (elem (i, j));
}
return result;
}
ComplexMatrix
ComplexMatrix::transpose (void) const
{
int nr = rows ();
int nc = cols ();
ComplexMatrix result (nc, nr);
if (length () > 0)
{
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (j, i) = elem (i, j);
}
return result;
}
ComplexMatrix
conj (const ComplexMatrix& a)
{
int a_len = a.length ();
ComplexMatrix retval;
if (a_len > 0)
retval = ComplexMatrix (conj_dup (a.data (), a_len), a.rows (),
a.cols ());
return retval;
}
// resize is the destructive equivalent for this one
ComplexMatrix
ComplexMatrix::extract (int r1, int c1, int r2, int c2) const
{
if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; }
if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }
int new_r = r2 - r1 + 1;
int new_c = c2 - c1 + 1;
ComplexMatrix result (new_r, new_c);
for (int j = 0; j < new_c; j++)
for (int i = 0; i < new_r; i++)
result.elem (i, j) = elem (r1+i, c1+j);
return result;
}
// extract row or column i.
ComplexRowVector
ComplexMatrix::row (int i) const
{
int nc = cols ();
if (i < 0 || i >= rows ())
{
(*current_liboctave_error_handler) ("invalid row selection");
return ComplexRowVector ();
}
ComplexRowVector retval (nc);
for (int j = 0; j < cols (); j++)
retval.elem (j) = elem (i, j);
return retval;
}
ComplexRowVector
ComplexMatrix::row (char *s) const
{
if (! s)
{
(*current_liboctave_error_handler) ("invalid row selection");
return ComplexRowVector ();
}
char c = *s;
if (c == 'f' || c == 'F')
return row (0);
else if (c == 'l' || c == 'L')
return row (rows () - 1);
else
{
(*current_liboctave_error_handler) ("invalid row selection");
return ComplexRowVector ();
}
}
ComplexColumnVector
ComplexMatrix::column (int i) const
{
int nr = rows ();
if (i < 0 || i >= cols ())
{
(*current_liboctave_error_handler) ("invalid column selection");
return ComplexColumnVector ();
}
ComplexColumnVector retval (nr);
for (int j = 0; j < nr; j++)
retval.elem (j) = elem (j, i);
return retval;
}
ComplexColumnVector
ComplexMatrix::column (char *s) const
{
if (! s)
{
(*current_liboctave_error_handler) ("invalid column selection");
return ComplexColumnVector ();
}
char c = *s;
if (c == 'f' || c == 'F')
return column (0);
else if (c == 'l' || c == 'L')
return column (cols () - 1);
else
{
(*current_liboctave_error_handler) ("invalid column selection");
return ComplexColumnVector ();
}
}
ComplexMatrix
ComplexMatrix::inverse (void) const
{
int info;
double rcond;
return inverse (info, rcond);
}
ComplexMatrix
ComplexMatrix::inverse (int& info) const
{
double rcond;
return inverse (info, rcond);
}
ComplexMatrix
ComplexMatrix::inverse (int& info, double& rcond) const
{
int nr = rows ();
int nc = cols ();
int len = length ();
if (nr != nc)
{
(*current_liboctave_error_handler) ("inverse requires square matrix");
return ComplexMatrix ();
}
info = 0;
int *ipvt = new int [nr];
Complex *z = new Complex [nr];
Complex *tmp_data = dup (data (), len);
F77_FCN (zgeco) (tmp_data, &nr, &nc, ipvt, &rcond, z);
volatile double tmp_rcond = rcond;
if (tmp_rcond + 1.0 == 1.0)
{
info = -1;
copy (tmp_data, data (), len); // Restore contents.
}
else
{
int job = 1;
Complex dummy;
F77_FCN (zgedi) (tmp_data, &nr, &nc, ipvt, &dummy, z, &job);
}
delete [] ipvt;
delete [] z;
return ComplexMatrix (tmp_data, nr, nc);
}
ComplexMatrix
ComplexMatrix::pseudo_inverse (double tol)
{
ComplexSVD result (*this);
DiagMatrix S = result.singular_values ();
ComplexMatrix U = result.left_singular_matrix ();
ComplexMatrix V = result.right_singular_matrix ();
ColumnVector sigma = S.diag ();
int r = sigma.length () - 1;
int nr = rows ();
int nc = cols ();
if (tol <= 0.0)
{
if (nr > nc)
tol = nr * sigma.elem (0) * DBL_EPSILON;
else
tol = nc * sigma.elem (0) * DBL_EPSILON;
}
while (r >= 0 && sigma.elem (r) < tol)
r--;
if (r < 0)
return ComplexMatrix (nc, nr, 0.0);
else
{
ComplexMatrix Ur = U.extract (0, 0, nr-1, r);
DiagMatrix D = DiagMatrix (sigma.extract (0, r)) . inverse ();
ComplexMatrix Vr = V.extract (0, 0, nc-1, r);
return Vr * D * Ur.hermitian ();
}
}
ComplexMatrix
ComplexMatrix::fourier (void) const
{
int nr = rows ();
int nc = cols ();
int npts, nsamples;
if (nr == 1 || nc == 1)
{
npts = nr > nc ? nr : nc;
nsamples = 1;
}
else
{
npts = nr;
nsamples = nc;
}
int nn = 4*npts+15;
Complex *wsave = new Complex [nn];
Complex *tmp_data = dup (data (), length ());
F77_FCN (cffti) (&npts, wsave);
for (int j = 0; j < nsamples; j++)
F77_FCN (cfftf) (&npts, &tmp_data[npts*j], wsave);
delete [] wsave;
return ComplexMatrix (tmp_data, nr, nc);
}
ComplexMatrix
ComplexMatrix::ifourier (void) const
{
int nr = rows ();
int nc = cols ();
int npts, nsamples;
if (nr == 1 || nc == 1)
{
npts = nr > nc ? nr : nc;
nsamples = 1;
}
else
{
npts = nr;
nsamples = nc;
}
int nn = 4*npts+15;
Complex *wsave = new Complex [nn];
Complex *tmp_data = dup (data (), length ());
F77_FCN (cffti) (&npts, wsave);
for (int j = 0; j < nsamples; j++)
F77_FCN (cfftb) (&npts, &tmp_data[npts*j], wsave);
for (j = 0; j < npts*nsamples; j++)
tmp_data[j] = tmp_data[j] / (double) npts;
delete [] wsave;
return ComplexMatrix (tmp_data, nr, nc);
}
ComplexMatrix
ComplexMatrix::fourier2d (void) const
{
int nr = rows ();
int nc = cols ();
int npts, nsamples;
if (nr == 1 || nc == 1)
{
npts = nr > nc ? nr : nc;
nsamples = 1;
}
else
{
npts = nr;
nsamples = nc;
}
int nn = 4*npts+15;
Complex *wsave = new Complex [nn];
Complex *tmp_data = dup (data (), length ());
F77_FCN (cffti) (&npts, wsave);
for (int j = 0; j < nsamples; j++)
F77_FCN (cfftf) (&npts, &tmp_data[npts*j], wsave);
delete [] wsave;
npts = nc;
nsamples = nr;
nn = 4*npts+15;
wsave = new Complex [nn];
Complex *row = new Complex[npts];
F77_FCN (cffti) (&npts, wsave);
for (j = 0; j < nsamples; j++)
{
for (int i = 0; i < npts; i++)
row[i] = tmp_data[i*nr + j];
F77_FCN (cfftf) (&npts, row, wsave);
for (i = 0; i < npts; i++)
tmp_data[i*nr + j] = row[i];
}
delete [] wsave;
delete [] row;
return ComplexMatrix (tmp_data, nr, nc);
}
ComplexMatrix
ComplexMatrix::ifourier2d (void) const
{
int nr = rows ();
int nc = cols ();
int npts, nsamples;
if (nr == 1 || nc == 1)
{
npts = nr > nc ? nr : nc;
nsamples = 1;
}
else
{
npts = nr;
nsamples = nc;
}
int nn = 4*npts+15;
Complex *wsave = new Complex [nn];
Complex *tmp_data = dup (data (), length ());
F77_FCN (cffti) (&npts, wsave);
for (int j = 0; j < nsamples; j++)
F77_FCN (cfftb) (&npts, &tmp_data[npts*j], wsave);
delete [] wsave;
for (j = 0; j < npts*nsamples; j++)
tmp_data[j] = tmp_data[j] / (double) npts;
npts = nc;
nsamples = nr;
nn = 4*npts+15;
wsave = new Complex [nn];
Complex *row = new Complex[npts];
F77_FCN (cffti) (&npts, wsave);
for (j = 0; j < nsamples; j++)
{
for (int i = 0; i < npts; i++)
row[i] = tmp_data[i*nr + j];
F77_FCN (cfftb) (&npts, row, wsave);
for (i = 0; i < npts; i++)
tmp_data[i*nr + j] = row[i] / (double) npts;
}
delete [] wsave;
delete [] row;
return ComplexMatrix (tmp_data, nr, nc);
}
ComplexDET
ComplexMatrix::determinant (void) const
{
int info;
double rcond;
return determinant (info, rcond);
}
ComplexDET
ComplexMatrix::determinant (int& info) const
{
double rcond;
return determinant (info, rcond);
}
ComplexDET
ComplexMatrix::determinant (int& info, double& rcond) const
{
ComplexDET retval;
int nr = rows ();
int nc = cols ();
if (nr == 0 || nc == 0)
{
Complex d[2];
d[0] = 1.0;
d[1] = 0.0;
retval = ComplexDET (d);
}
else
{
info = 0;
int *ipvt = new int [nr];
Complex *z = new Complex [nr];
Complex *tmp_data = dup (data (), length ());
F77_FCN (zgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z);
volatile double tmp_rcond = rcond;
if (tmp_rcond + 1.0 == 1.0)
{
info = -1;
retval = ComplexDET ();
}
else
{
int job = 10;
Complex d[2];
F77_FCN (zgedi) (tmp_data, &nr, &nr, ipvt, d, z, &job);
retval = ComplexDET (d);
}
delete [] tmp_data;
delete [] ipvt;
delete [] z;
}
return retval;
}
ComplexMatrix
ComplexMatrix::solve (const Matrix& b) const
{
int info;
double rcond;
return solve (b, info, rcond);
}
ComplexMatrix
ComplexMatrix::solve (const Matrix& b, int& info) const
{
double rcond;
return solve (b, info, rcond);
}
ComplexMatrix
ComplexMatrix::solve (const Matrix& b, int& info, double& rcond) const
{
ComplexMatrix tmp (b);
return solve (tmp, info, rcond);
}
ComplexMatrix
ComplexMatrix::solve (const ComplexMatrix& b) const
{
int info;
double rcond;
return solve (b, info, rcond);
}
ComplexMatrix
ComplexMatrix::solve (const ComplexMatrix& b, int& info) const
{
double rcond;
return solve (b, info, rcond);
}
ComplexMatrix
ComplexMatrix::solve (const ComplexMatrix& b, int& info, double& rcond) const
{
ComplexMatrix retval;
int nr = rows ();
int nc = cols ();
int b_nr = b.rows ();
int b_nc = b.cols ();
if (nr == 0 || nc == 0 || nr != nc || nr != b_nr)
{
(*current_liboctave_error_handler)
("matrix dimension mismatch in solution of linear equations");
return ComplexMatrix ();
}
info = 0;
int *ipvt = new int [nr];
Complex *z = new Complex [nr];
Complex *tmp_data = dup (data (), length ());
F77_FCN (zgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z);
volatile double tmp_rcond = rcond;
if (tmp_rcond + 1.0 == 1.0)
{
info = -2;
}
else
{
int job = 0;
Complex *result = dup (b.data (), b.length ());
for (int j = 0; j < b_nc; j++)
F77_FCN (zgesl) (tmp_data, &nr, &nr, ipvt, &result[nr*j], &job);
retval = ComplexMatrix (result, b_nr, b_nc);
}
delete [] tmp_data;
delete [] ipvt;
delete [] z;
return retval;
}
ComplexColumnVector
ComplexMatrix::solve (const ComplexColumnVector& b) const
{
int info;
double rcond;
return solve (b, info, rcond);
}
ComplexColumnVector
ComplexMatrix::solve (const ComplexColumnVector& b, int& info) const
{
double rcond;
return solve (b, info, rcond);
}
ComplexColumnVector
ComplexMatrix::solve (const ComplexColumnVector& b, int& info,
double& rcond) const
{
ComplexColumnVector retval;
int nr = rows ();
int nc = cols ();
int b_len = b.length ();
if (nr == 0 || nc == 0 || nr != nc || nr != b_len)
{
(*current_liboctave_error_handler)
("matrix dimension mismatch in solution of linear equations");
return ComplexColumnVector ();
}
info = 0;
int *ipvt = new int [nr];
Complex *z = new Complex [nr];
Complex *tmp_data = dup (data (), length ());
F77_FCN (zgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z);
volatile double tmp_rcond = rcond;
if (tmp_rcond + 1.0 == 1.0)
{
info = -2;
}
else
{
int job = 0;
Complex *result = dup (b.data (), b_len);
F77_FCN (zgesl) (tmp_data, &nr, &nr, ipvt, result, &job);
retval = ComplexColumnVector (result, b_len);
}
delete [] tmp_data;
delete [] ipvt;
delete [] z;
return retval;
}
ComplexMatrix
ComplexMatrix::lssolve (const ComplexMatrix& b) const
{
int info;
int rank;
return lssolve (b, info, rank);
}
ComplexMatrix
ComplexMatrix::lssolve (const ComplexMatrix& b, int& info) const
{
int rank;
return lssolve (b, info, rank);
}
ComplexMatrix
ComplexMatrix::lssolve (const ComplexMatrix& b, int& info, int& rank) const
{
int nrhs = b.cols ();
int m = rows ();
int n = cols ();
if (m == 0 || n == 0 || m != b.rows ())
{
(*current_liboctave_error_handler)
("matrix dimension mismatch solution of linear equations");
return Matrix ();
}
Complex *tmp_data = dup (data (), length ());
int nrr = m > n ? m : n;
ComplexMatrix result (nrr, nrhs);
int i, j;
for (j = 0; j < nrhs; j++)
for (i = 0; i < m; i++)
result.elem (i, j) = b.elem (i, j);
Complex *presult = result.fortran_vec ();
int len_s = m < n ? m : n;
double *s = new double [len_s];
double rcond = -1.0;
int lwork;
if (m < n)
lwork = 2*m + (nrhs > n ? nrhs : n);
else
lwork = 2*n + (nrhs > m ? nrhs : m);
Complex *work = new Complex [lwork];
int lrwork = (5 * (m < n ? m : n)) - 4;
lrwork = lrwork > 1 ? lrwork : 1;
double *rwork = new double [lrwork];
F77_FCN (zgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s,
&rcond, &rank, work, &lwork, rwork, &info);
ComplexMatrix retval (n, nrhs);
for (j = 0; j < nrhs; j++)
for (i = 0; i < n; i++)
retval.elem (i, j) = result.elem (i, j);
delete [] tmp_data;
delete [] s;
delete [] work;
delete [] rwork;
return retval;
}
ComplexColumnVector
ComplexMatrix::lssolve (const ComplexColumnVector& b) const
{
int info;
int rank;
return lssolve (b, info, rank);
}
ComplexColumnVector
ComplexMatrix::lssolve (const ComplexColumnVector& b, int& info) const
{
int rank;
return lssolve (b, info, rank);
}
ComplexColumnVector
ComplexMatrix::lssolve (const ComplexColumnVector& b, int& info,
int& rank) const
{
int nrhs = 1;
int m = rows ();
int n = cols ();
if (m == 0 || n == 0 || m != b.length ())
{
(*current_liboctave_error_handler)
("matrix dimension mismatch solution of least squares problem");
return ComplexColumnVector ();
}
Complex *tmp_data = dup (data (), length ());
int nrr = m > n ? m : n;
ComplexColumnVector result (nrr);
int i;
for (i = 0; i < m; i++)
result.elem (i) = b.elem (i);
Complex *presult = result.fortran_vec ();
int len_s = m < n ? m : n;
double *s = new double [len_s];
double rcond = -1.0;
int lwork;
if (m < n)
lwork = 2*m + (nrhs > n ? nrhs : n);
else
lwork = 2*n + (nrhs > m ? nrhs : m);
Complex *work = new Complex [lwork];
int lrwork = (5 * (m < n ? m : n)) - 4;
lrwork = lrwork > 1 ? lrwork : 1;
double *rwork = new double [lrwork];
F77_FCN (zgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s,
&rcond, &rank, work, &lwork, rwork, &info);
ComplexColumnVector retval (n);
for (i = 0; i < n; i++)
retval.elem (i) = result.elem (i);
delete [] tmp_data;
delete [] s;
delete [] work;
delete [] rwork;
return retval;
}
// column vector by row vector -> matrix operations
ComplexMatrix
operator * (const ColumnVector& v, const ComplexRowVector& a)
{
ComplexColumnVector tmp (v);
return tmp * a;
}
ComplexMatrix
operator * (const ComplexColumnVector& a, const RowVector& b)
{
ComplexRowVector tmp (b);
return a * tmp;
}
ComplexMatrix
operator * (const ComplexColumnVector& v, const ComplexRowVector& a)
{
int len = v.length ();
int a_len = a.length ();
if (len != a_len)
{
(*current_liboctave_error_handler)
("nonconformant vector multiplication attempted");
return ComplexMatrix ();
}
if (len == 0)
return ComplexMatrix (len, len, 0.0);
char transa = 'N';
char transb = 'N';
Complex alpha (1.0);
Complex beta (0.0);
int anr = 1;
Complex *c = new Complex [len * a_len];
F77_FCN (zgemm) (&transa, &transb, &len, &a_len, &anr, &alpha,
v.data (), &len, a.data (), &anr, &beta, c, &len,
1L, 1L);
return ComplexMatrix (c, len, a_len);
}
// diagonal matrix by scalar -> matrix operations
ComplexMatrix
operator + (const DiagMatrix& a, const Complex& s)
{
ComplexMatrix tmp (a.rows (), a.cols (), s);
return a + tmp;
}
ComplexMatrix
operator - (const DiagMatrix& a, const Complex& s)
{
ComplexMatrix tmp (a.rows (), a.cols (), -s);
return a + tmp;
}
ComplexMatrix
operator + (const ComplexDiagMatrix& a, double s)
{
ComplexMatrix tmp (a.rows (), a.cols (), s);
return a + tmp;
}
ComplexMatrix
operator - (const ComplexDiagMatrix& a, double s)
{
ComplexMatrix tmp (a.rows (), a.cols (), -s);
return a + tmp;
}
ComplexMatrix
operator + (const ComplexDiagMatrix& a, const Complex& s)
{
ComplexMatrix tmp (a.rows (), a.cols (), s);
return a + tmp;
}
ComplexMatrix
operator - (const ComplexDiagMatrix& a, const Complex& s)
{
ComplexMatrix tmp (a.rows (), a.cols (), -s);
return a + tmp;
}
// scalar by diagonal matrix -> matrix operations
ComplexMatrix
operator + (const Complex& s, const DiagMatrix& a)
{
ComplexMatrix tmp (a.rows (), a.cols (), s);
return tmp + a;
}
ComplexMatrix
operator - (const Complex& s, const DiagMatrix& a)
{
ComplexMatrix tmp (a.rows (), a.cols (), s);
return tmp - a;
}
ComplexMatrix
operator + (double s, const ComplexDiagMatrix& a)
{
ComplexMatrix tmp (a.rows (), a.cols (), s);
return tmp + a;
}
ComplexMatrix
operator - (double s, const ComplexDiagMatrix& a)
{
ComplexMatrix tmp (a.rows (), a.cols (), s);
return tmp - a;
}
ComplexMatrix
operator + (const Complex& s, const ComplexDiagMatrix& a)
{
ComplexMatrix tmp (a.rows (), a.cols (), s);
return tmp + a;
}
ComplexMatrix
operator - (const Complex& s, const ComplexDiagMatrix& a)
{
ComplexMatrix tmp (a.rows (), a.cols (), s);
return tmp - a;
}
// matrix by diagonal matrix -> matrix operations
ComplexMatrix&
ComplexMatrix::operator += (const DiagMatrix& a)
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix += operation attempted");
return *this;
}
for (int i = 0; i < a.length (); i++)
elem (i, i) += a.elem (i, i);
return *this;
}
ComplexMatrix&
ComplexMatrix::operator -= (const DiagMatrix& a)
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix -= operation attempted");
return *this;
}
for (int i = 0; i < a.length (); i++)
elem (i, i) -= a.elem (i, i);
return *this;
}
ComplexMatrix&
ComplexMatrix::operator += (const ComplexDiagMatrix& a)
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix += operation attempted");
return *this;
}
for (int i = 0; i < a.length (); i++)
elem (i, i) += a.elem (i, i);
return *this;
}
ComplexMatrix&
ComplexMatrix::operator -= (const ComplexDiagMatrix& a)
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix -= operation attempted");
return *this;
}
for (int i = 0; i < a.length (); i++)
elem (i, i) -= a.elem (i, i);
return *this;
}
ComplexMatrix
operator + (const Matrix& m, const ComplexDiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix addition attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (m);
for (int i = 0; i < a.length (); i++)
result.elem (i, i) += a.elem (i, i);
return result;
}
ComplexMatrix
operator - (const Matrix& m, const ComplexDiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix subtraction attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (m);
for (int i = 0; i < a.length (); i++)
result.elem (i, i) -= a.elem (i, i);
return result;
}
ComplexMatrix
operator * (const Matrix& m, const ComplexDiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
int a_nr = a.rows ();
int a_nc = a.cols ();
if (nc != a_nr)
{
(*current_liboctave_error_handler)
("nonconformant matrix multiplication attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0 || a_nc == 0)
return ComplexMatrix (nr, a_nc, 0.0);
Complex *c = new Complex [nr*a_nc];
Complex *ctmp = 0;
for (int j = 0; j < a.length (); j++)
{
int idx = j * nr;
ctmp = c + idx;
if (a.elem (j, j) == 1.0)
{
for (int i = 0; i < nr; i++)
ctmp[i] = m.elem (i, j);
}
else if (a.elem (j, j) == 0.0)
{
for (int i = 0; i < nr; i++)
ctmp[i] = 0.0;
}
else
{
for (int i = 0; i < nr; i++)
ctmp[i] = a.elem (j, j) * m.elem (i, j);
}
}
if (a_nr < a_nc)
{
for (int i = nr * nc; i < nr * a_nc; i++)
ctmp[i] = 0.0;
}
return ComplexMatrix (c, nr, a_nc);
}
// diagonal matrix by matrix -> matrix operations
ComplexMatrix
operator + (const DiagMatrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix addition attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (a);
for (int i = 0; i < m.length (); i++)
result.elem (i, i) += m.elem (i, i);
return result;
}
ComplexMatrix
operator - (const DiagMatrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix subtraction attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (-a);
for (int i = 0; i < m.length (); i++)
result.elem (i, i) += m.elem (i, i);
return result;
}
ComplexMatrix
operator * (const DiagMatrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
int a_nr = a.rows ();
int a_nc = a.cols ();
if (nc != a_nr)
{
(*current_liboctave_error_handler)
("nonconformant matrix multiplication attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0 || a_nc == 0)
return ComplexMatrix (nr, nc, 0.0);
ComplexMatrix c (nr, a_nc);
for (int i = 0; i < m.length (); i++)
{
if (m.elem (i, i) == 1.0)
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = a.elem (i, j);
}
else if (m.elem (i, i) == 0.0)
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = 0.0;
}
else
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = m.elem (i, i) * a.elem (i, j);
}
}
if (nr > nc)
{
for (int j = 0; j < a_nc; j++)
for (int i = a_nr; i < nr; i++)
c.elem (i, j) = 0.0;
}
return c;
}
ComplexMatrix
operator + (const ComplexDiagMatrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix addition attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (a);
for (int i = 0; i < m.length (); i++)
result.elem (i, i) += m.elem (i, i);
return result;
}
ComplexMatrix
operator - (const ComplexDiagMatrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix subtraction attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (-a);
for (int i = 0; i < m.length (); i++)
result.elem (i, i) += m.elem (i, i);
return result;
}
ComplexMatrix
operator * (const ComplexDiagMatrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
int a_nr = a.rows ();
int a_nc = a.cols ();
if (nc != a_nr)
{
(*current_liboctave_error_handler)
("nonconformant matrix multiplication attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0 || a_nc == 0)
return ComplexMatrix (nr, a_nc, 0.0);
ComplexMatrix c (nr, a_nc);
for (int i = 0; i < m.length (); i++)
{
if (m.elem (i, i) == 1.0)
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = a.elem (i, j);
}
else if (m.elem (i, i) == 0.0)
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = 0.0;
}
else
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = m.elem (i, i) * a.elem (i, j);
}
}
if (nr > nc)
{
for (int j = 0; j < a_nc; j++)
for (int i = a_nr; i < nr; i++)
c.elem (i, j) = 0.0;
}
return c;
}
ComplexMatrix
operator + (const ComplexDiagMatrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix addition attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (a);
for (int i = 0; i < m.length (); i++)
result.elem (i, i) += m.elem (i, i);
return result;
}
ComplexMatrix
operator - (const ComplexDiagMatrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix subtraction attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (-a);
for (int i = 0; i < m.length (); i++)
result.elem (i, i) += m.elem (i, i);
return result;
}
ComplexMatrix
operator * (const ComplexDiagMatrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
int a_nr = a.rows ();
int a_nc = a.cols ();
if (nc != a_nr)
{
(*current_liboctave_error_handler)
("nonconformant matrix multiplication attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0 || a_nc == 0)
return ComplexMatrix (nr, a_nc, 0.0);
ComplexMatrix c (nr, a_nc);
for (int i = 0; i < m.length (); i++)
{
if (m.elem (i, i) == 1.0)
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = a.elem (i, j);
}
else if (m.elem (i, i) == 0.0)
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = 0.0;
}
else
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = m.elem (i, i) * a.elem (i, j);
}
}
if (nr > nc)
{
for (int j = 0; j < a_nc; j++)
for (int i = a_nr; i < nr; i++)
c.elem (i, j) = 0.0;
}
return c;
}
// matrix by matrix -> matrix operations
ComplexMatrix&
ComplexMatrix::operator += (const Matrix& a)
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix += operation attempted");
return *this;
}
if (nr == 0 || nc == 0)
return *this;
Complex *d = fortran_vec (); // Ensures only one reference to my privates!
add2 (d, a.data (), length ());
return *this;
}
ComplexMatrix&
ComplexMatrix::operator -= (const Matrix& a)
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix -= operation attempted");
return *this;
}
if (nr == 0 || nc == 0)
return *this;
Complex *d = fortran_vec (); // Ensures only one reference to my privates!
subtract2 (d, a.data (), length ());
return *this;
}
ComplexMatrix&
ComplexMatrix::operator += (const ComplexMatrix& a)
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix += operation attempted");
return *this;
}
if (nr == 0 || nc == 0)
return *this;
Complex *d = fortran_vec (); // Ensures only one reference to my privates!
add2 (d, a.data (), length ());
return *this;
}
ComplexMatrix&
ComplexMatrix::operator -= (const ComplexMatrix& a)
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix -= operation attempted");
return *this;
}
if (nr == 0 || nc == 0)
return *this;
Complex *d = fortran_vec (); // Ensures only one reference to my privates!
subtract2 (d, a.data (), length ());
return *this;
}
// unary operations
Matrix
ComplexMatrix::operator ! (void) const
{
return Matrix (not (data (), length ()), rows (), cols ());
}
// matrix by scalar -> matrix operations
ComplexMatrix
operator + (const Matrix& a, const Complex& s)
{
return ComplexMatrix (add (a.data (), a.length (), s),
a.rows (), a.cols ());
}
ComplexMatrix
operator - (const Matrix& a, const Complex& s)
{
return ComplexMatrix (subtract (a.data (), a.length (), s),
a.rows (), a.cols ());
}
ComplexMatrix
operator * (const Matrix& a, const Complex& s)
{
return ComplexMatrix (multiply (a.data (), a.length (), s),
a.rows (), a.cols ());
}
ComplexMatrix
operator / (const Matrix& a, const Complex& s)
{
return ComplexMatrix (divide (a.data (), a.length (), s),
a.rows (), a.cols ());
}
ComplexMatrix
operator + (const ComplexMatrix& a, double s)
{
return ComplexMatrix (add (a.data (), a.length (), s),
a.rows (), a.cols ());
}
ComplexMatrix
operator - (const ComplexMatrix& a, double s)
{
return ComplexMatrix (subtract (a.data (), a.length (), s),
a.rows (), a.cols ());
}
ComplexMatrix
operator * (const ComplexMatrix& a, double s)
{
return ComplexMatrix (multiply (a.data (), a.length (), s),
a.rows (), a.cols ());
}
ComplexMatrix
operator / (const ComplexMatrix& a, double s)
{
return ComplexMatrix (divide (a.data (), a.length (), s),
a.rows (), a.cols ());
}
// scalar by matrix -> matrix operations
ComplexMatrix
operator + (double s, const ComplexMatrix& a)
{
return ComplexMatrix (add (a.data (), a.length (), s), a.rows (),
a.cols ());
}
ComplexMatrix
operator - (double s, const ComplexMatrix& a)
{
return ComplexMatrix (subtract (s, a.data (), a.length ()),
a.rows (), a.cols ());
}
ComplexMatrix
operator * (double s, const ComplexMatrix& a)
{
return ComplexMatrix (multiply (a.data (), a.length (), s),
a.rows (), a.cols ());
}
ComplexMatrix
operator / (double s, const ComplexMatrix& a)
{
return ComplexMatrix (divide (s, a.data (), a.length ()),
a.rows (), a.cols ());
}
ComplexMatrix
operator + (const Complex& s, const Matrix& a)
{
return ComplexMatrix (add (s, a.data (), a.length ()),
a.rows (), a.cols ());
}
ComplexMatrix
operator - (const Complex& s, const Matrix& a)
{
return ComplexMatrix (subtract (s, a.data (), a.length ()),
a.rows (), a.cols ());
}
ComplexMatrix
operator * (const Complex& s, const Matrix& a)
{
return ComplexMatrix (multiply (a.data (), a.length (), s),
a.rows (), a.cols ());
}
ComplexMatrix
operator / (const Complex& s, const Matrix& a)
{
return ComplexMatrix (divide (s, a.data (), a.length ()),
a.rows (), a.cols ());
}
// matrix by diagonal matrix -> matrix operations
ComplexMatrix
operator + (const ComplexMatrix& m, const DiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix addition attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (m);
for (int i = 0; i < a.length (); i++)
result.elem (i, i) += a.elem (i, i);
return result;
}
ComplexMatrix
operator - (const ComplexMatrix& m, const DiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix subtraction attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (m);
for (int i = 0; i < a.length (); i++)
result.elem (i, i) -= a.elem (i, i);
return result;
}
ComplexMatrix
operator * (const ComplexMatrix& m, const DiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
int a_nc = a.cols ();
if (nc != a.rows ())
{
(*current_liboctave_error_handler)
("nonconformant matrix multiplication attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0 || a_nc == 0)
return ComplexMatrix (nr, nc, 0.0);
Complex *c = new Complex [nr*a_nc];
Complex *ctmp = 0;
for (int j = 0; j < a.length (); j++)
{
int idx = j * nr;
ctmp = c + idx;
if (a.elem (j, j) == 1.0)
{
for (int i = 0; i < nr; i++)
ctmp[i] = m.elem (i, j);
}
else if (a.elem (j, j) == 0.0)
{
for (int i = 0; i < nr; i++)
ctmp[i] = 0.0;
}
else
{
for (int i = 0; i < nr; i++)
ctmp[i] = a.elem (j, j) * m.elem (i, j);
}
}
if (a.rows () < a_nc)
{
for (int i = nr * nc; i < nr * a_nc; i++)
ctmp[i] = 0.0;
}
return ComplexMatrix (c, nr, a_nc);
}
ComplexMatrix
operator + (const ComplexMatrix& m, const ComplexDiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix addition attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (m);
for (int i = 0; i < a.length (); i++)
result.elem (i, i) += a.elem (i, i);
return result;
}
ComplexMatrix
operator - (const ComplexMatrix& m, const ComplexDiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix subtraction attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
ComplexMatrix result (m);
for (int i = 0; i < a.length (); i++)
result.elem (i, i) -= a.elem (i, i);
return result;
}
ComplexMatrix
operator * (const ComplexMatrix& m, const ComplexDiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
int a_nc = a.cols ();
if (nc != a.rows ())
{
(*current_liboctave_error_handler)
("nonconformant matrix multiplication attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0 || a_nc == 0)
return ComplexMatrix (nr, nc, 0.0);
Complex *c = new Complex [nr*a_nc];
Complex *ctmp = 0;
for (int j = 0; j < a.length (); j++)
{
int idx = j * nr;
ctmp = c + idx;
if (a.elem (j, j) == 1.0)
{
for (int i = 0; i < nr; i++)
ctmp[i] = m.elem (i, j);
}
else if (a.elem (j, j) == 0.0)
{
for (int i = 0; i < nr; i++)
ctmp[i] = 0.0;
}
else
{
for (int i = 0; i < nr; i++)
ctmp[i] = a.elem (j, j) * m.elem (i, j);
}
}
if (a.rows () < a_nc)
{
for (int i = nr * nc; i < nr * a_nc; i++)
ctmp[i] = 0.0;
}
return ComplexMatrix (c, nr, a_nc);
}
// matrix by matrix -> matrix operations
ComplexMatrix
operator + (const ComplexMatrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix addition attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
return ComplexMatrix (add (m.data (), a.data (), m.length ()), nr, nc);
}
ComplexMatrix
operator - (const ComplexMatrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix subtraction attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
return ComplexMatrix (subtract (m.data (), a.data (), m.length ()), nr, nc);
}
ComplexMatrix
operator + (const Matrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix addition attempted");
return ComplexMatrix ();
}
return ComplexMatrix (add (m.data (), a.data (), m.length ()), nr, nc);
}
ComplexMatrix
operator - (const Matrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix subtraction attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
return ComplexMatrix (subtract (m.data (), a.data (), m.length ()), nr, nc);
}
ComplexMatrix
operator * (const ComplexMatrix& m, const Matrix& a)
{
ComplexMatrix tmp (a);
return m * tmp;
}
ComplexMatrix
operator * (const Matrix& m, const ComplexMatrix& a)
{
ComplexMatrix tmp (m);
return tmp * a;
}
ComplexMatrix
operator * (const ComplexMatrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
int a_nc = a.cols ();
if (nc != a.rows ())
{
(*current_liboctave_error_handler)
("nonconformant matrix multiplication attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0 || a_nc == 0)
return ComplexMatrix (nr, nc, 0.0);
char trans = 'N';
char transa = 'N';
int ld = nr;
int lda = a.rows ();
Complex alpha (1.0);
Complex beta (0.0);
Complex *c = new Complex [nr*a_nc];
F77_FCN (zgemm) (&trans, &transa, &nr, &a_nc, &nc, &alpha, m.data (),
&ld, a.data (), &lda, &beta, c, &nr, 1L, 1L);
return ComplexMatrix (c, nr, a_nc);
}
ComplexMatrix
product (const ComplexMatrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix product attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
return ComplexMatrix (multiply (m.data (), a.data (), m.length ()), nr, nc);
}
ComplexMatrix
quotient (const ComplexMatrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix quotient attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
return ComplexMatrix (divide (m.data (), a.data (), m.length ()), nr, nc);
}
ComplexMatrix
product (const Matrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix product attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
return ComplexMatrix (multiply (m.data (), a.data (), m.length ()), nr, nc);
}
ComplexMatrix
quotient (const Matrix& m, const ComplexMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix quotient attempted");
return ComplexMatrix ();
}
if (nr == 0 || nc == 0)
return ComplexMatrix (nr, nc);
return ComplexMatrix (divide (m.data (), a.data (), m.length ()), nr, nc);
}
// other operations
ComplexMatrix
map (c_c_Mapper f, const ComplexMatrix& a)
{
ComplexMatrix b (a);
b.map (f);
return b;
}
void
ComplexMatrix::map (c_c_Mapper f)
{
for (int j = 0; j < cols (); j++)
for (int i = 0; i < rows (); i++)
elem (i, j) = f (elem (i, j));
}
Matrix
ComplexMatrix::all (void) const
{
int nr = rows ();
int nc = cols ();
Matrix retval;
if (nr > 0 && nc > 0)
{
if (nr == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 1.0;
for (int j = 0; j < nc; j++)
{
if (elem (0, j) == 0.0)
{
retval.elem (0, 0) = 0.0;
break;
}
}
}
else if (nc == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 1.0;
for (int i = 0; i < nr; i++)
{
if (elem (i, 0) == 0.0)
{
retval.elem (0, 0) = 0.0;
break;
}
}
}
else
{
retval.resize (1, nc);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = 1.0;
for (int i = 0; i < nr; i++)
{
if (elem (i, j) == 0.0)
{
retval.elem (0, j) = 0.0;
break;
}
}
}
}
}
return retval;
}
Matrix
ComplexMatrix::any (void) const
{
int nr = rows ();
int nc = cols ();
Matrix retval;
if (nr > 0 && nc > 0)
{
if (nr == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int j = 0; j < nc; j++)
{
if (elem (0, j) != 0.0)
{
retval.elem (0, 0) = 1.0;
break;
}
}
}
else if (nc == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int i = 0; i < nr; i++)
{
if (elem (i, 0) != 0.0)
{
retval.elem (0, 0) = 1.0;
break;
}
}
}
else
{
retval.resize (1, nc);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = 0.0;
for (int i = 0; i < nr; i++)
{
if (elem (i, j) != 0.0)
{
retval.elem (0, j) = 1.0;
break;
}
}
}
}
}
return retval;
}
ComplexMatrix
ComplexMatrix::cumprod (void) const
{
int nr = rows ();
int nc = cols ();
ComplexMatrix retval;
if (nr > 0 && nc > 0)
{
if (nr == 1)
{
retval.resize (1, nc);
Complex prod = elem (0, 0);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = prod;
if (j < nc - 1)
prod *= elem (0, j+1);
}
}
else if (nc == 1)
{
retval.resize (nr, 1);
Complex prod = elem (0, 0);
for (int i = 0; i < nr; i++)
{
retval.elem (i, 0) = prod;
if (i < nr - 1)
prod *= elem (i+1, 0);
}
}
else
{
retval.resize (nr, nc);
for (int j = 0; j < nc; j++)
{
Complex prod = elem (0, j);
for (int i = 0; i < nr; i++)
{
retval.elem (i, j) = prod;
if (i < nr - 1)
prod *= elem (i+1, j);
}
}
}
}
return retval;
}
ComplexMatrix
ComplexMatrix::cumsum (void) const
{
int nr = rows ();
int nc = cols ();
ComplexMatrix retval;
if (nr > 0 && nc > 0)
{
if (nr == 1)
{
retval.resize (1, nc);
Complex sum = elem (0, 0);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = sum;
if (j < nc - 1)
sum += elem (0, j+1);
}
}
else if (nc == 1)
{
retval.resize (nr, 1);
Complex sum = elem (0, 0);
for (int i = 0; i < nr; i++)
{
retval.elem (i, 0) = sum;
if (i < nr - 1)
sum += elem (i+1, 0);
}
}
else
{
retval.resize (nr, nc);
for (int j = 0; j < nc; j++)
{
Complex sum = elem (0, j);
for (int i = 0; i < nr; i++)
{
retval.elem (i, j) = sum;
if (i < nr - 1)
sum += elem (i+1, j);
}
}
}
}
return retval;
}
ComplexMatrix
ComplexMatrix::prod (void) const
{
int nr = rows ();
int nc = cols ();
ComplexMatrix retval;
if (nr > 0 && nc > 0)
{
if (nr == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 1.0;
for (int j = 0; j < nc; j++)
retval.elem (0, 0) *= elem (0, j);
}
else if (nc == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 1.0;
for (int i = 0; i < nr; i++)
retval.elem (0, 0) *= elem (i, 0);
}
else
{
retval.resize (1, nc);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = 1.0;
for (int i = 0; i < nr; i++)
retval.elem (0, j) *= elem (i, j);
}
}
}
return retval;
}
ComplexMatrix
ComplexMatrix::sum (void) const
{
int nr = rows ();
int nc = cols ();
ComplexMatrix retval;
if (nr > 0 && nc > 0)
{
if (nr == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int j = 0; j < nc; j++)
retval.elem (0, 0) += elem (0, j);
}
else if (nc == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int i = 0; i < nr; i++)
retval.elem (0, 0) += elem (i, 0);
}
else
{
retval.resize (1, nc);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = 0.0;
for (int i = 0; i < nr; i++)
retval.elem (0, j) += elem (i, j);
}
}
}
return retval;
}
ComplexMatrix
ComplexMatrix::sumsq (void) const
{
int nr = rows ();
int nc = cols ();
ComplexMatrix retval;
if (nr > 0 && nc > 0)
{
if (nr == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int j = 0; j < nc; j++)
{
Complex d = elem (0, j);
retval.elem (0, 0) += d * d;
}
}
else if (nc == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int i = 0; i < nr; i++)
{
Complex d = elem (i, 0);
retval.elem (0, 0) += d * d;
}
}
else
{
retval.resize (1, nc);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = 0.0;
for (int i = 0; i < nr; i++)
{
Complex d = elem (i, j);
retval.elem (0, j) += d * d;
}
}
}
}
return retval;
}
ComplexColumnVector
ComplexMatrix::diag (void) const
{
return diag (0);
}
ComplexColumnVector
ComplexMatrix::diag (int k) const
{
int nnr = rows ();
int nnc = cols ();
if (k > 0)
nnc -= k;
else if (k < 0)
nnr += k;
ComplexColumnVector d;
if (nnr > 0 && nnc > 0)
{
int ndiag = (nnr < nnc) ? nnr : nnc;
d.resize (ndiag);
if (k > 0)
{
for (int i = 0; i < ndiag; i++)
d.elem (i) = elem (i, i+k);
}
else if ( k < 0)
{
for (int i = 0; i < ndiag; i++)
d.elem (i) = elem (i-k, i);
}
else
{
for (int i = 0; i < ndiag; i++)
d.elem (i) = elem (i, i);
}
}
else
cerr << "diag: requested diagonal out of range\n";
return d;
}
// XXX FIXME XXX -- it would be nice to share some code among all the
// min/max functions below. It would also be nice to combine the
// min/max and min_loc/max_loc functions.
ComplexColumnVector
ComplexMatrix::row_min (void) const
{
ComplexColumnVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nr);
for (int i = 0; i < nr; i++)
{
int row_is_real_only = 1;
for (int j = 0; j < nc; j++)
if (imag (elem (i, j)) != 0.0)
{
row_is_real_only = 0;
break;
}
if (row_is_real_only)
{
double res = real (elem (i, 0));
for (int j = 1; j < nc; j++)
{
double tmp = real (elem (i, j));
if (tmp < res)
res = tmp;
}
result.elem (i) = res;
}
else
{
Complex res = elem (i, 0);
double absres = abs (res);
for (int j = 1; j < nc; j++)
if (abs (elem (i, j)) < absres)
{
res = elem (i, j);
absres = abs (res);
}
result.elem (i) = res;
}
}
}
return result;
}
ComplexColumnVector
ComplexMatrix::row_min_loc (void) const
{
ComplexColumnVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nr);
for (int i = 0; i < nr; i++)
{
int column_is_real_only = 1;
for (int j = 0; j < nc; j++)
if (imag (elem (i, j)) != 0.0)
{
column_is_real_only = 0;
break;
}
if (column_is_real_only)
{
double res = 0;
double tmp = real (elem (i, 0));
for (int j = 1; j < nc; j++)
if (real (elem (i, j)) < tmp)
res = j;
result.elem (i) = res + 1;
}
else
{
Complex res = 0;
double absres = abs (elem (i, 0));
for (int j = 1; j < nc; j++)
if (abs (elem (i, j)) < absres)
{
res = j;
absres = abs (elem (i, j));
}
result.elem (i) = res + 1;
}
}
}
return result;
}
ComplexColumnVector
ComplexMatrix::row_max (void) const
{
ComplexColumnVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nr);
for (int i = 0; i < nr; i++)
{
int row_is_real_only = 1;
for (int j = 0; j < nc; j++)
if (imag (elem (i, j)) != 0.0)
{
row_is_real_only = 0;
break;
}
if (row_is_real_only)
{
double res = real (elem (i, 0));
for (int j = 1; j < nc; j++)
{
double tmp = real (elem (i, j));
if (tmp > res)
res = tmp;
}
result.elem (i) = res;
}
else
{
Complex res = elem (i, 0);
double absres = abs (res);
for (int j = 1; j < nc; j++)
if (abs (elem (i, j)) > absres)
{
res = elem (i, j);
absres = abs (res);
}
result.elem (i) = res;
}
}
}
return result;
}
ComplexColumnVector
ComplexMatrix::row_max_loc (void) const
{
ComplexColumnVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nr);
for (int i = 0; i < nr; i++)
{
int column_is_real_only = 1;
for (int j = 0; j < nc; j++)
if (imag (elem (i, j)) != 0.0)
{
column_is_real_only = 0;
break;
}
if (column_is_real_only)
{
double res = 0;
double tmp = real (elem (i, 0));
for (int j = 1; j < nc; j++)
if (real (elem (i, j)) > tmp)
res = j;
result.elem (i) = res + 1;
}
else
{
Complex res = 0;
double absres = abs (elem (i, 0));
for (int j = 1; j < nc; j++)
if (abs (elem (i, j)) > absres)
{
res = j;
absres = abs (elem (i, j));
}
result.elem (i) = res + 1;
}
}
}
return result;
}
ComplexRowVector
ComplexMatrix::column_min (void) const
{
ComplexRowVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nc);
for (int j = 0; j < nc; j++)
{
int column_is_real_only = 1;
for (int i = 0; i < nr; i++)
if (imag (elem (i, j)) != 0.0)
{
column_is_real_only = 0;
break;
}
if (column_is_real_only)
{
double res = real (elem (0, j));
for (int i = 1; i < nr; i++)
{
double tmp = real (elem (i, j));
if (tmp < res)
res = tmp;
}
result.elem (j) = res;
}
else
{
Complex res = elem (0, j);
double absres = abs (res);
for (int i = 1; i < nr; i++)
if (abs (elem (i, j)) < absres)
{
res = elem (i, j);
absres = abs (res);
}
result.elem (j) = res;
}
}
}
return result;
}
ComplexRowVector
ComplexMatrix::column_min_loc (void) const
{
ComplexRowVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nc);
for (int j = 0; j < nc; j++)
{
int column_is_real_only = 1;
for (int i = 0; i < nr; i++)
if (imag (elem (i, j)) != 0.0)
{
column_is_real_only = 0;
break;
}
if (column_is_real_only)
{
double res = 0;
double tmp = real (elem (0, j));
for (int i = 1; i < nr; i++)
if (real (elem (i, j)) < tmp)
res = i;
result.elem (j) = res + 1;
}
else
{
Complex res = 0;
double absres = abs (elem (0, j));
for (int i = 1; i < nr; i++)
if (abs (elem (i, j)) < absres)
{
res = i;
absres = abs (elem (i, j));
}
result.elem (j) = res + 1;
}
}
}
return result;
}
ComplexRowVector
ComplexMatrix::column_max (void) const
{
ComplexRowVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nc);
for (int j = 0; j < nc; j++)
{
int column_is_real_only = 1;
for (int i = 0; i < nr; i++)
if (imag (elem (i, j)) != 0.0)
{
column_is_real_only = 0;
break;
}
if (column_is_real_only)
{
double res = real (elem (0, j));
for (int i = 1; i < nr; i++)
{
double tmp = real (elem (i, j));
if (tmp > res)
res = tmp;
}
result.elem (j) = res;
}
else
{
Complex res = elem (0, j);
double absres = abs (res);
for (int i = 1; i < nr; i++)
if (abs (elem (i, j)) > absres)
{
res = elem (i, j);
absres = abs (res);
}
result.elem (j) = res;
}
}
}
return result;
}
ComplexRowVector
ComplexMatrix::column_max_loc (void) const
{
ComplexRowVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nc);
for (int j = 0; j < nc; j++)
{
int column_is_real_only = 1;
for (int i = 0; i < nr; i++)
if (imag (elem (i, j)) != 0.0)
{
column_is_real_only = 0;
break;
}
if (column_is_real_only)
{
double res = 0;
double tmp = real (elem (0, j));
for (int i = 1; i < nr; i++)
if (real (elem (i, j)) > tmp)
res = i;
result.elem (j) = res + 1;
}
else
{
Complex res = 0;
double absres = abs (elem (0, j));
for (int i = 1; i < nr; i++)
if (abs (elem (i, j)) > absres)
{
res = i;
absres = abs (elem (i, j));
}
result.elem (j) = res + 1;
}
}
}
return result;
}
// i/o
ostream&
operator << (ostream& os, const ComplexMatrix& a)
{
// int field_width = os.precision () + 7;
for (int i = 0; i < a.rows (); i++)
{
for (int j = 0; j < a.cols (); j++)
os << " " /* setw (field_width) */ << a.elem (i, j);
os << "\n";
}
return os;
}
istream&
operator >> (istream& is, ComplexMatrix& a)
{
int nr = a.rows ();
int nc = a.cols ();
if (nr < 1 || nc < 1)
is.clear (ios::badbit);
else
{
Complex tmp;
for (int i = 0; i < nr; i++)
for (int j = 0; j < nc; j++)
{
is >> tmp;
if (is)
a.elem (i, j) = tmp;
else
break;
}
}
return is;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/