home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
liboctave
/
CRowVector.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
16KB
|
752 lines
// RowVector manipulations. -*- C++ -*-
/*
Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream.h>
#include <Complex.h>
#include "mx-base.h"
#include "mx-inlines.cc"
#include "lo-error.h"
#include "f77-uscore.h"
// Fortran functions we call.
extern "C"
{
int F77_FCN (zgemv) (const char*, const int*, const int*,
const Complex*, const Complex*, const int*,
const Complex*, const int*, const Complex*,
Complex*, const int*, long);
}
/*
* Complex Row Vector class
*/
#define KLUDGE_VECTORS
#define TYPE Complex
#define KL_VEC_TYPE ComplexRowVector
#include "mx-kludge.cc"
#undef KLUDGE_VECTORS
#undef TYPE
#undef KL_VEC_TYPE
ComplexRowVector::ComplexRowVector (const RowVector& a)
: Array<Complex> (a.length ())
{
for (int i = 0; i < length (); i++)
elem (i) = a.elem (i);
}
int
ComplexRowVector::operator == (const ComplexRowVector& a) const
{
int len = length ();
if (len != a.length ())
return 0;
return equal (data (), a.data (), len);
}
int
ComplexRowVector::operator != (const ComplexRowVector& a) const
{
return !(*this == a);
}
// destructive insert/delete/reorder operations
ComplexRowVector&
ComplexRowVector::insert (const RowVector& a, int c)
{
int a_len = a.length ();
if (c < 0 || c + a_len - 1 > length ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a_len; i++)
elem (c+i) = a.elem (i);
return *this;
}
ComplexRowVector&
ComplexRowVector::insert (const ComplexRowVector& a, int c)
{
int a_len = a.length ();
if (c < 0 || c + a_len - 1 > length ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a_len; i++)
elem (c+i) = a.elem (i);
return *this;
}
ComplexRowVector&
ComplexRowVector::fill (double val)
{
int len = length ();
if (len > 0)
for (int i = 0; i < len; i++)
elem (i) = val;
return *this;
}
ComplexRowVector&
ComplexRowVector::fill (const Complex& val)
{
int len = length ();
if (len > 0)
for (int i = 0; i < len; i++)
elem (i) = val;
return *this;
}
ComplexRowVector&
ComplexRowVector::fill (double val, int c1, int c2)
{
int len = length ();
if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
{
(*current_liboctave_error_handler) ("range error for fill");
return *this;
}
if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }
for (int i = c1; i <= c2; i++)
elem (i) = val;
return *this;
}
ComplexRowVector&
ComplexRowVector::fill (const Complex& val, int c1, int c2)
{
int len = length ();
if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
{
(*current_liboctave_error_handler) ("range error for fill");
return *this;
}
if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }
for (int i = c1; i <= c2; i++)
elem (i) = val;
return *this;
}
ComplexRowVector
ComplexRowVector::append (const RowVector& a) const
{
int len = length ();
int nc_insert = len;
ComplexRowVector retval (len + a.length ());
retval.insert (*this, 0);
retval.insert (a, nc_insert);
return retval;
}
ComplexRowVector
ComplexRowVector::append (const ComplexRowVector& a) const
{
int len = length ();
int nc_insert = len;
ComplexRowVector retval (len + a.length ());
retval.insert (*this, 0);
retval.insert (a, nc_insert);
return retval;
}
ComplexColumnVector
ComplexRowVector::hermitian (void) const
{
int len = length ();
return ComplexColumnVector (conj_dup (data (), len), len);
}
ComplexColumnVector
ComplexRowVector::transpose (void) const
{
int len = length ();
return ComplexColumnVector (dup (data (), len), len);
}
ComplexRowVector
conj (const ComplexRowVector& a)
{
int a_len = a.length ();
ComplexRowVector retval;
if (a_len > 0)
retval = ComplexRowVector (conj_dup (a.data (), a_len), a_len);
return retval;
}
// resize is the destructive equivalent for this one
ComplexRowVector
ComplexRowVector::extract (int c1, int c2) const
{
if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }
int new_c = c2 - c1 + 1;
ComplexRowVector result (new_c);
for (int i = 0; i < new_c; i++)
result.elem (i) = elem (c1+i);
return result;
}
// row vector by row vector -> row vector operations
ComplexRowVector&
ComplexRowVector::operator += (const RowVector& a)
{
int len = length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector += operation attempted");
return *this;
}
if (len == 0)
return *this;
Complex *d = fortran_vec (); // Ensures only one reference to my privates!
add2 (d, a.data (), len);
return *this;
}
ComplexRowVector&
ComplexRowVector::operator -= (const RowVector& a)
{
int len = length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector -= operation attempted");
return *this;
}
if (len == 0)
return *this;
Complex *d = fortran_vec (); // Ensures only one reference to my privates!
subtract2 (d, a.data (), len);
return *this;
}
ComplexRowVector&
ComplexRowVector::operator += (const ComplexRowVector& a)
{
int len = length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector += operation attempted");
return *this;
}
if (len == 0)
return *this;
Complex *d = fortran_vec (); // Ensures only one reference to my privates!
add2 (d, a.data (), len);
return *this;
}
ComplexRowVector&
ComplexRowVector::operator -= (const ComplexRowVector& a)
{
int len = length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector -= operation attempted");
return *this;
}
if (len == 0)
return *this;
Complex *d = fortran_vec (); // Ensures only one reference to my privates!
subtract2 (d, a.data (), len);
return *this;
}
// row vector by scalar -> row vector operations
ComplexRowVector
operator + (const ComplexRowVector& v, double s)
{
int len = v.length ();
return ComplexRowVector (add (v.data (), len, s), len);
}
ComplexRowVector
operator - (const ComplexRowVector& v, double s)
{
int len = v.length ();
return ComplexRowVector (subtract (v.data (), len, s), len);
}
ComplexRowVector
operator * (const ComplexRowVector& v, double s)
{
int len = v.length ();
return ComplexRowVector (multiply (v.data (), len, s), len);
}
ComplexRowVector
operator / (const ComplexRowVector& v, double s)
{
int len = v.length ();
return ComplexRowVector (divide (v.data (), len, s), len);
}
ComplexRowVector
operator + (const RowVector& v, const Complex& s)
{
int len = v.length ();
return ComplexRowVector (add (v.data (), len, s), len);
}
ComplexRowVector
operator - (const RowVector& v, const Complex& s)
{
int len = v.length ();
return ComplexRowVector (subtract (v.data (), len, s), len);
}
ComplexRowVector
operator * (const RowVector& v, const Complex& s)
{
int len = v.length ();
return ComplexRowVector (multiply (v.data (), len, s), len);
}
ComplexRowVector
operator / (const RowVector& v, const Complex& s)
{
int len = v.length ();
return ComplexRowVector (divide (v.data (), len, s), len);
}
// scalar by row vector -> row vector operations
ComplexRowVector
operator + (double s, const ComplexRowVector& a)
{
int a_len = a.length ();
return ComplexRowVector (add (a.data (), a_len, s), a_len);
}
ComplexRowVector
operator - (double s, const ComplexRowVector& a)
{
int a_len = a.length ();
return ComplexRowVector (subtract (s, a.data (), a_len), a_len);
}
ComplexRowVector
operator * (double s, const ComplexRowVector& a)
{
int a_len = a.length ();
return ComplexRowVector (multiply (a.data (), a_len, s), a_len);
}
ComplexRowVector
operator / (double s, const ComplexRowVector& a)
{
int a_len = a.length ();
return ComplexRowVector (divide (s, a.data (), a_len), a_len);
}
ComplexRowVector
operator + (const Complex& s, const RowVector& a)
{
return ComplexRowVector ();
}
ComplexRowVector
operator - (const Complex& s, const RowVector& a)
{
return ComplexRowVector ();
}
ComplexRowVector
operator * (const Complex& s, const RowVector& a)
{
return ComplexRowVector ();
}
ComplexRowVector
operator / (const Complex& s, const RowVector& a)
{
return ComplexRowVector ();
}
// row vector by matrix -> row vector
ComplexRowVector
operator * (const ComplexRowVector& v, const ComplexMatrix& a)
{
int len = v.length ();
if (a.rows () != len)
{
(*current_liboctave_error_handler)
("nonconformant vector multiplication attempted");
return ComplexRowVector ();
}
if (len == 0 || a.cols () == 0)
return ComplexRowVector (0);
// Transpose A to form A'*x == (x'*A)'
int a_nr = a.rows ();
int a_nc = a.cols ();
char trans = 'T';
int ld = a_nr;
Complex alpha (1.0);
Complex beta (0.0);
int i_one = 1;
Complex *y = new Complex [len];
F77_FCN (zgemv) (&trans, &a_nc, &a_nr, &alpha, a.data (), &ld,
v.data (), &i_one, &beta, y, &i_one, 1L);
return ComplexRowVector (y, len);
}
ComplexRowVector
operator * (const RowVector& v, const ComplexMatrix& a)
{
ComplexRowVector tmp (v);
return tmp * a;
}
// row vector by row vector -> row vector operations
ComplexRowVector
operator + (const ComplexRowVector& v, const RowVector& a)
{
int len = v.length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector addition attempted");
return ComplexRowVector ();
}
if (len == 0)
return ComplexRowVector (0);
return ComplexRowVector (add (v.data (), a.data (), len), len);
}
ComplexRowVector
operator - (const ComplexRowVector& v, const RowVector& a)
{
int len = v.length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector subtraction attempted");
return ComplexRowVector ();
}
if (len == 0)
return ComplexRowVector (0);
return ComplexRowVector (subtract (v.data (), a.data (), len), len);
}
ComplexRowVector
operator + (const RowVector& v, const ComplexRowVector& a)
{
int len = v.length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector addition attempted");
return ComplexRowVector ();
}
if (len == 0)
return ComplexRowVector (0);
return ComplexRowVector (add (v.data (), a.data (), len), len);
}
ComplexRowVector
operator - (const RowVector& v, const ComplexRowVector& a)
{
int len = v.length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector subtraction attempted");
return ComplexRowVector ();
}
if (len == 0)
return ComplexRowVector (0);
return ComplexRowVector (subtract (v.data (), a.data (), len), len);
}
ComplexRowVector
product (const ComplexRowVector& v, const RowVector& a)
{
int len = v.length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector product attempted");
return ComplexRowVector ();
}
if (len == 0)
return ComplexRowVector (0);
return ComplexRowVector (multiply (v.data (), a.data (), len), len);
}
ComplexRowVector
quotient (const ComplexRowVector& v, const RowVector& a)
{
int len = v.length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector quotient attempted");
return ComplexRowVector ();
}
if (len == 0)
return ComplexRowVector (0);
return ComplexRowVector (divide (v.data (), a.data (), len), len);
}
ComplexRowVector
product (const RowVector& v, const ComplexRowVector& a)
{
int len = v.length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector product attempted");
return ComplexRowVector ();
}
if (len == 0)
return ComplexRowVector (0);
return ComplexRowVector (multiply (v.data (), a.data (), len), len);
}
ComplexRowVector
quotient (const RowVector& v, const ComplexRowVector& a)
{
int len = v.length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector quotient attempted");
return ComplexRowVector ();
}
if (len == 0)
return ComplexRowVector (0);
return ComplexRowVector (divide (v.data (), a.data (), len), len);
}
// other operations
ComplexRowVector
map (c_c_Mapper f, const ComplexRowVector& a)
{
ComplexRowVector b (a);
b.map (f);
return b;
}
void
ComplexRowVector::map (c_c_Mapper f)
{
for (int i = 0; i < length (); i++)
elem (i) = f (elem (i));
}
Complex
ComplexRowVector::min (void) const
{
int len = length ();
if (len == 0)
return Complex (0.0);
Complex res = elem (0);
double absres = abs (res);
for (int i = 1; i < len; i++)
if (abs (elem (i)) < absres)
{
res = elem (i);
absres = abs (res);
}
return res;
}
Complex
ComplexRowVector::max (void) const
{
int len = length ();
if (len == 0)
return Complex (0.0);
Complex res = elem (0);
double absres = abs (res);
for (int i = 1; i < len; i++)
if (abs (elem (i)) > absres)
{
res = elem (i);
absres = abs (res);
}
return res;
}
// i/o
ostream&
operator << (ostream& os, const ComplexRowVector& a)
{
// int field_width = os.precision () + 7;
for (int i = 0; i < a.length (); i++)
os << " " /* setw (field_width) */ << a.elem (i);
return os;
}
istream&
operator >> (istream& is, ComplexRowVector& a)
{
int len = a.length();
if (len < 1)
is.clear (ios::badbit);
else
{
Complex tmp;
for (int i = 0; i < len; i++)
{
is >> tmp;
if (is)
a.elem (i) = tmp;
else
break;
}
}
return is;
}
// row vector by column vector -> scalar
Complex
operator * (const ComplexRowVector& v, const ColumnVector& a)
{
ComplexColumnVector tmp (a);
return v * tmp;
}
Complex
operator * (const ComplexRowVector& v, const ComplexColumnVector& a)
{
int len = v.length ();
if (len != a.length ())
{
(*current_liboctave_error_handler)
("nonconformant vector multiplication attempted");
return 0.0;
}
Complex retval (0.0, 0.0);
for (int i = 0; i < len; i++)
retval += v.elem (i) * a.elem (i);
return retval;
}
// other operations
ComplexRowVector
linspace (const Complex& x1, const Complex& x2, int n)
{
ComplexRowVector retval;
if (n > 0)
{
retval.resize (n);
Complex delta = (x2 - x1) / (n - 1);
retval.elem (0) = x1;
for (int i = 1; i < n-1; i++)
retval.elem (i) = x1 + i * delta;
retval.elem (n-1) = x2;
}
return retval;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/