home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
liboctave
/
ODE.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
11KB
|
599 lines
// ODE.cc -*- C++ -*-
/*
Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include <float.h>
#include <iostream.h>
#include "ODE.h"
#include "f77-uscore.h"
#include "lo-error.h"
extern "C"
{
int F77_FCN (lsode) (int (*)(int*, double*, double*, double*, int*),
int *, double *, double *, double *,
int *, double *, double *, int *, int *, int *,
double *, int *, int *, int *,
int (*)(int*, double*, double*, int*, int*,
double*, int*), int *);
}
static ODEFunc::ODERHSFunc user_fun;
static ODEFunc::ODEJacFunc user_jac;
static ColumnVector *tmp_x;
ODE::ODE (void)
{
n = 0;
t = 0.0;
stop_time_set = 0;
stop_time = 0.0;
integration_error = 0;
restart = 1;
istate = 1;
itol = 1;
itask = 1;
iopt = 0;
liw = 20 + n;
lrw = 22 + n * (9 + n);
iwork = new int [liw];
rwork = new double [lrw];
for (int i = 4; i < 9; i++)
{
iwork[i] = 0;
rwork[i] = 0.0;
}
fun = 0;
jac = 0;
}
ODE::ODE (int size)
{
n = size;
t = 0.0;
stop_time_set = 0;
stop_time = 0.0;
integration_error = 0;
restart = 1;
istate = 1;
itol = 1;
itask = 1;
iopt = 0;
liw = 20 + n;
lrw = 22 + n * (9 + n);
iwork = new int [liw];
rwork = new double [lrw];
for (int i = 4; i < 9; i++)
{
iwork[i] = 0;
rwork[i] = 0.0;
}
fun = 0;
jac = 0;
}
ODE::ODE (const ColumnVector& state, double time, const ODEFunc& f)
{
n = state.capacity ();
t = time;
x = state;
stop_time_set = 0;
stop_time = 0.0;
integration_error = 0;
restart = 1;
istate = 1;
itol = 1;
itask = 1;
iopt = 1;
liw = 20 + n;
lrw = 22 + n * (9 + n);
iwork = new int [liw];
rwork = new double [lrw];
for (int i = 4; i < 9; i++)
{
iwork[i] = 0;
rwork[i] = 0.0;
}
fun = f.function ();
jac = f.jacobian_function ();
}
ODE::~ODE (void)
{
delete [] rwork;
delete [] iwork;
}
int
lsode_f (int *neq, double *time, double *state, double *deriv, int *ierr)
{
int nn = *neq;
ColumnVector tmp_deriv (nn);
/*
* NOTE: this won't work if LSODE passes copies of the state vector.
* In that case we have to create a temporary vector object
* and copy.
*/
tmp_deriv = (*user_fun) (*tmp_x, *time);
if (tmp_deriv.length () == 0)
*ierr = -1;
else
{
for (int i = 0; i < nn; i++)
deriv [i] = tmp_deriv.elem (i);
}
return 0;
}
int
lsode_j (int *neq, double *time, double *state, int *ml, int *mu,
double *pd, int *nrowpd)
{
int nn = *neq;
Matrix tmp_jac (nn, nn);
/*
* NOTE: this won't work if LSODE passes copies of the state vector.
* In that case we have to create a temporary vector object
* and copy.
*/
tmp_jac = (*user_jac) (*tmp_x, *time);
for (int j = 0; j < nn; j++)
for (int i = 0; i < nn; i++)
pd [*nrowpd * j + i] = tmp_jac (i, j);
return 0;
}
ColumnVector
ODE::integrate (double tout)
{
if (jac)
method_flag = 21;
else
method_flag = 22;
integration_error = 0;
double *xp = x.fortran_vec ();
// NOTE: this won't work if LSODE passes copies of the state vector.
// In that case we have to create a temporary vector object
// and copy.
tmp_x = &x;
user_fun = fun;
user_jac = jac;
// Try 5000 steps before giving up.
iwork[5] = 5000;
int working_too_hard = 0;
if (stop_time_set)
{
itask = 4;
rwork [0] = stop_time;
}
else
{
itask = 1;
}
double abs_tol = absolute_tolerance ();
double rel_tol = relative_tolerance ();
rwork[4] = (initial_step_size () >= 0.0) ? initial_step_size () : 0.0;
rwork[5] = (maximum_step_size () >= 0.0) ? maximum_step_size () : 0.0;
rwork[6] = (minimum_step_size () >= 0.0) ? minimum_step_size () : 0.0;
if (restart)
{
restart = 0;
istate = 1;
}
again:
(void) F77_FCN (lsode) (lsode_f, &n, xp, &t, &tout, &itol,
&rel_tol, &abs_tol, &itask, &istate, &iopt,
rwork, &lrw, iwork, &liw, lsode_j,
&method_flag);
switch (istate)
{
case -13: // Return requested in user-supplied function.
case -6: // error weight became zero during problem. (solution
// component i vanished, and atol or atol(i) = 0.)
case -5: // repeated convergence failures (perhaps bad jacobian
// supplied or wrong choice of mf or tolerances).
case -4: // repeated error test failures (check all inputs).
case -3: // illegal input detected (see printed message).
case -2: // excess accuracy requested (tolerances too small).
integration_error = 1;
return ColumnVector ();
break;
case -1: // excess work done on this call (perhaps wrong mf).
working_too_hard++;
if (working_too_hard > 20)
{
(*current_liboctave_error_handler)
("giving up after more than %d steps attempted in lsode",
iwork[5] * 20);
integration_error = 1;
return ColumnVector ();
}
else
{
istate = 2;
goto again;
}
break;
case 2: // lsode was successful
break;
default:
// Error?
break;
}
t = tout;
return x;
}
void
ODE::integrate (int nsteps, double tstep, ostream& s)
{
int time_to_quit = 0;
double tout = t;
s << t << " " << x << "\n";
for (int i = 0; i < nsteps; i++)
{
tout += tstep;
if (stop_time_set && tout > stop_time)
{
tout = stop_time;
time_to_quit = 1;
}
x = integrate (tout);
s << t << " " << x << "\n";
if (time_to_quit)
return;
}
}
Matrix
ODE::integrate (const ColumnVector& tout)
{
Matrix retval;
int n_out = tout.capacity ();
if (n_out > 0 && n > 0)
{
retval.resize (n_out, n);
for (int i = 0; i < n; i++)
retval.elem (0, i) = x.elem (i);
for (int j = 1; j < n_out; j++)
{
ColumnVector x_next = integrate (tout.elem (j));
if (integration_error)
return retval;
for (i = 0; i < n; i++)
retval.elem (j, i) = x_next.elem (i);
}
}
return retval;
}
Matrix
ODE::integrate (const ColumnVector& tout, const ColumnVector& tcrit)
{
Matrix retval;
int n_out = tout.capacity ();
if (n_out > 0 && n > 0)
{
retval.resize (n_out, n);
for (int i = 0; i < n; i++)
retval.elem (0, i) = x.elem (i);
int n_crit = tcrit.capacity ();
if (n_crit > 0)
{
int i_crit = 0;
int i_out = 1;
double next_crit = tcrit.elem (0);
double next_out;
while (i_out < n_out)
{
int do_restart = 0;
next_out = tout.elem (i_out);
if (i_crit < n_crit)
next_crit = tcrit.elem (i_crit);
int save_output;
double t_out;
if (next_crit == next_out)
{
set_stop_time (next_crit);
t_out = next_out;
save_output = 1;
i_out++;
i_crit++;
do_restart = 1;
}
else if (next_crit < next_out)
{
if (i_crit < n_crit)
{
set_stop_time (next_crit);
t_out = next_crit;
save_output = 0;
i_crit++;
do_restart = 1;
}
else
{
clear_stop_time ();
t_out = next_out;
save_output = 1;
i_out++;
}
}
else
{
set_stop_time (next_crit);
t_out = next_out;
save_output = 1;
i_out++;
}
ColumnVector x_next = integrate (t_out);
if (integration_error)
return retval;
if (save_output)
{
for (i = 0; i < n; i++)
retval.elem (i_out-1, i) = x_next.elem (i);
}
if (do_restart)
force_restart ();
}
}
else
{
retval = integrate (tout);
if (integration_error)
return retval;
}
}
return retval;
}
int
ODE::size (void) const
{
return n;
}
ColumnVector
ODE::state (void) const
{
return x;
}
double ODE::time (void) const
{
return t;
}
void
ODE::force_restart (void)
{
restart = 1;
}
void
ODE::initialize (const ColumnVector& state, double time)
{
restart = 1;
x = state;
t = time;
}
void
ODE::set_stop_time (double time)
{
stop_time_set = 1;
stop_time = time;
}
void
ODE::clear_stop_time (void)
{
stop_time_set = 0;
}
ODE_options::ODE_options (void)
{
init ();
}
ODE_options::ODE_options (const ODE_options& opt)
{
copy (opt);
}
ODE_options&
ODE_options::operator = (const ODE_options& opt)
{
if (this != &opt)
copy (opt);
return *this;
}
ODE_options::~ODE_options (void)
{
}
void
ODE_options::init (void)
{
double sqrt_eps = sqrt (DBL_EPSILON);
x_absolute_tolerance = sqrt_eps;
x_initial_step_size = -1.0;
x_maximum_step_size = -1.0;
x_minimum_step_size = 0.0;
x_relative_tolerance = sqrt_eps;
}
void
ODE_options::copy (const ODE_options& opt)
{
x_absolute_tolerance = opt.x_absolute_tolerance;
x_initial_step_size = opt.x_initial_step_size;
x_maximum_step_size = opt.x_maximum_step_size;
x_minimum_step_size = opt.x_minimum_step_size;
x_relative_tolerance = opt.x_relative_tolerance;
}
void
ODE_options::set_default_options (void)
{
init ();
}
void
ODE_options::set_absolute_tolerance (double val)
{
x_absolute_tolerance = (val > 0.0) ? val : sqrt (DBL_EPSILON);
}
void
ODE_options::set_initial_step_size (double val)
{
x_initial_step_size = (val >= 0.0) ? val : -1.0;
}
void
ODE_options::set_maximum_step_size (double val)
{
x_maximum_step_size = (val >= 0.0) ? val : -1.0;
}
void
ODE_options::set_minimum_step_size (double val)
{
x_minimum_step_size = (val >= 0.0) ? val : 0.0;
}
void
ODE_options::set_relative_tolerance (double val)
{
x_relative_tolerance = (val > 0.0) ? val : sqrt (DBL_EPSILON);
}
double
ODE_options::absolute_tolerance (void)
{
return x_absolute_tolerance;
}
double
ODE_options::initial_step_size (void)
{
return x_initial_step_size;
}
double
ODE_options::maximum_step_size (void)
{
return x_maximum_step_size;
}
double
ODE_options::minimum_step_size (void)
{
return x_minimum_step_size;
}
double
ODE_options::relative_tolerance (void)
{
return x_relative_tolerance;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/