home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
liboctave
/
dMatrix.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
45KB
|
2,380 lines
// Matrix manipulations. -*- C++ -*-
/*
Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <sys/types.h>
#include <iostream.h>
#include <stdio.h>
#include <float.h>
#include <Complex.h>
#include "mx-base.h"
#include "dbleDET.h"
#include "dbleSVD.h"
#include "mx-inlines.cc"
#include "lo-error.h"
#include "f77-uscore.h"
// Fortran functions we call.
extern "C"
{
int F77_FCN (dgemm) (const char*, const char*, const int*,
const int*, const int*, const double*,
const double*, const int*, const double*,
const int*, const double*, double*, const int*,
long, long);
int F77_FCN (dgeco) (double*, const int*, const int*, int*, double*,
double*);
int F77_FCN (dgesl) (const double*, const int*, const int*,
const int*, double*, const int*);
int F77_FCN (dgedi) (double*, const int*, const int*, const int*,
double*, double*, const int*);
int F77_FCN (dgelss) (const int*, const int*, const int*, double*,
const int*, double*, const int*, double*,
const double*, int*, double*, const int*,
int*);
// Note that the original complex fft routines were not written for
// double complex arguments. They have been modified by adding an
// implicit double precision (a-h,o-z) statement at the beginning of
// each subroutine.
int F77_FCN (cffti) (const int*, Complex*);
int F77_FCN (cfftf) (const int*, Complex*, Complex*);
int F77_FCN (cfftb) (const int*, Complex*, Complex*);
}
#define KLUDGE_MATRICES
#define TYPE double
#define KL_MAT_TYPE Matrix
#include "mx-kludge.cc"
#undef KLUDGE_MATRICES
#undef TYPE
#undef KL_MAT_TYPE
/*
* Matrix class.
*/
Matrix::Matrix (const DiagMatrix& a)
: Array2<double> (a.rows (), a.cols (), 0.0)
{
for (int i = 0; i < a.length (); i++)
elem (i, i) = a.elem (i, i);
}
int
Matrix::operator == (const Matrix& a) const
{
if (rows () != a.rows () || cols () != a.cols ())
return 0;
return equal (data (), a.data (), length ());
}
int
Matrix::operator != (const Matrix& a) const
{
return !(*this == a);
}
Matrix&
Matrix::insert (const Matrix& a, int r, int c)
{
int a_rows = a.rows ();
int a_cols = a.cols ();
if (r < 0 || r + a_rows - 1 > rows ()
|| c < 0 || c + a_cols - 1 > cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int j = 0; j < a_cols; j++)
for (int i = 0; i < a_rows; i++)
elem (r+i, c+j) = a.elem (i, j);
return *this;
}
Matrix&
Matrix::insert (const RowVector& a, int r, int c)
{
int a_len = a.length ();
if (r < 0 || r >= rows () || c < 0 || c + a_len - 1 > cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a_len; i++)
elem (r, c+i) = a.elem (i);
return *this;
}
Matrix&
Matrix::insert (const ColumnVector& a, int r, int c)
{
int a_len = a.length ();
if (r < 0 || r + a_len - 1 > rows () || c < 0 || c >= cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a_len; i++)
elem (r+i, c) = a.elem (i);
return *this;
}
Matrix&
Matrix::insert (const DiagMatrix& a, int r, int c)
{
if (r < 0 || r + a.rows () - 1 > rows ()
|| c < 0 || c + a.cols () - 1 > cols ())
{
(*current_liboctave_error_handler) ("range error for insert");
return *this;
}
for (int i = 0; i < a.length (); i++)
elem (r+i, c+i) = a.elem (i, i);
return *this;
}
Matrix&
Matrix::fill (double val)
{
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
elem (i, j) = val;
return *this;
}
Matrix&
Matrix::fill (double val, int r1, int c1, int r2, int c2)
{
int nr = rows ();
int nc = cols ();
if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0
|| r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc)
{
(*current_liboctave_error_handler) ("range error for fill");
return *this;
}
if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; }
if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }
for (int j = c1; j <= c2; j++)
for (int i = r1; i <= r2; i++)
elem (i, j) = val;
return *this;
}
Matrix
Matrix::append (const Matrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows ())
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return Matrix ();
}
int nc_insert = nc;
Matrix retval (nr, nc + a.cols ());
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
Matrix
Matrix::append (const RowVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != 1)
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return Matrix ();
}
int nc_insert = nc;
Matrix retval (nr, nc + a.length ());
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
Matrix
Matrix::append (const ColumnVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != a.length ())
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return Matrix ();
}
int nc_insert = nc;
Matrix retval (nr, nc + 1);
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
Matrix
Matrix::append (const DiagMatrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows ())
{
(*current_liboctave_error_handler) ("row dimension mismatch for append");
return *this;
}
int nc_insert = nc;
Matrix retval (nr, nc + a.cols ());
retval.insert (*this, 0, 0);
retval.insert (a, 0, nc_insert);
return retval;
}
Matrix
Matrix::stack (const Matrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != a.cols ())
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return Matrix ();
}
int nr_insert = nr;
Matrix retval (nr + a.rows (), nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
Matrix
Matrix::stack (const RowVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != a.length ())
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return Matrix ();
}
int nr_insert = nr;
Matrix retval (nr + 1, nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
Matrix
Matrix::stack (const ColumnVector& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != 1)
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return Matrix ();
}
int nr_insert = nr;
Matrix retval (nr + a.length (), nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
Matrix
Matrix::stack (const DiagMatrix& a) const
{
int nr = rows ();
int nc = cols ();
if (nc != a.cols ())
{
(*current_liboctave_error_handler)
("column dimension mismatch for stack");
return Matrix ();
}
int nr_insert = nr;
Matrix retval (nr + a.rows (), nc);
retval.insert (*this, 0, 0);
retval.insert (a, nr_insert, 0);
return retval;
}
Matrix
Matrix::transpose (void) const
{
int nr = rows ();
int nc = cols ();
Matrix result (nc, nr);
if (length () > 0)
{
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (j, i) = elem (i, j);
}
return result;
}
Matrix
real (const ComplexMatrix& a)
{
int a_len = a.length ();
Matrix retval;
if (a_len > 0)
retval = Matrix (real_dup (a.data (), a_len), a.rows (), a.cols ());
return retval;
}
Matrix
imag (const ComplexMatrix& a)
{
int a_len = a.length ();
Matrix retval;
if (a_len > 0)
retval = Matrix (imag_dup (a.data (), a_len), a.rows (), a.cols ());
return retval;
}
Matrix
Matrix::extract (int r1, int c1, int r2, int c2) const
{
if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; }
if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }
int new_r = r2 - r1 + 1;
int new_c = c2 - c1 + 1;
Matrix result (new_r, new_c);
for (int j = 0; j < new_c; j++)
for (int i = 0; i < new_r; i++)
result.elem (i, j) = elem (r1+i, c1+j);
return result;
}
// extract row or column i.
RowVector
Matrix::row (int i) const
{
int nc = cols ();
if (i < 0 || i >= rows ())
{
(*current_liboctave_error_handler) ("invalid row selection");
return RowVector ();
}
RowVector retval (nc);
for (int j = 0; j < nc; j++)
retval.elem (j) = elem (i, j);
return retval;
}
RowVector
Matrix::row (char *s) const
{
if (! s)
{
(*current_liboctave_error_handler) ("invalid row selection");
return RowVector ();
}
char c = *s;
if (c == 'f' || c == 'F')
return row (0);
else if (c == 'l' || c == 'L')
return row (rows () - 1);
else
{
(*current_liboctave_error_handler) ("invalid row selection");
return RowVector ();
}
}
ColumnVector
Matrix::column (int i) const
{
int nr = rows ();
if (i < 0 || i >= cols ())
{
(*current_liboctave_error_handler) ("invalid column selection");
return ColumnVector ();
}
ColumnVector retval (nr);
for (int j = 0; j < nr; j++)
retval.elem (j) = elem (j, i);
return retval;
}
ColumnVector
Matrix::column (char *s) const
{
if (! s)
{
(*current_liboctave_error_handler) ("invalid column selection");
return ColumnVector ();
}
char c = *s;
if (c == 'f' || c == 'F')
return column (0);
else if (c == 'l' || c == 'L')
return column (cols () - 1);
else
{
(*current_liboctave_error_handler) ("invalid column selection");
return ColumnVector ();
}
}
Matrix
Matrix::inverse (void) const
{
int info;
double rcond;
return inverse (info, rcond);
}
Matrix
Matrix::inverse (int& info) const
{
double rcond;
return inverse (info, rcond);
}
Matrix
Matrix::inverse (int& info, double& rcond) const
{
int nr = rows ();
int nc = cols ();
int len = length ();
if (nr != nc || nr == 0 || nc == 0)
{
(*current_liboctave_error_handler) ("inverse requires square matrix");
return Matrix ();
}
info = 0;
int *ipvt = new int [nr];
double *z = new double [nr];
double *tmp_data = dup (data (), len);
F77_FCN (dgeco) (tmp_data, &nr, &nc, ipvt, &rcond, z);
volatile double tmp_rcond = rcond;
if (tmp_rcond + 1.0 == 1.0)
{
info = -1;
copy (tmp_data, data (), len); // Restore matrix contents.
}
else
{
int job = 1;
double dummy;
F77_FCN (dgedi) (tmp_data, &nr, &nc, ipvt, &dummy, z, &job);
}
delete [] ipvt;
delete [] z;
return Matrix (tmp_data, nr, nc);
}
Matrix
Matrix::pseudo_inverse (double tol)
{
SVD result (*this);
DiagMatrix S = result.singular_values ();
Matrix U = result.left_singular_matrix ();
Matrix V = result.right_singular_matrix ();
ColumnVector sigma = S.diag ();
int r = sigma.length () - 1;
int nr = rows ();
int nc = cols ();
if (tol <= 0.0)
{
if (nr > nc)
tol = nr * sigma.elem (0) * DBL_EPSILON;
else
tol = nc * sigma.elem (0) * DBL_EPSILON;
}
while (r >= 0 && sigma.elem (r) < tol)
r--;
if (r < 0)
return Matrix (nc, nr, 0.0);
else
{
Matrix Ur = U.extract (0, 0, nr-1, r);
DiagMatrix D = DiagMatrix (sigma.extract (0, r)) . inverse ();
Matrix Vr = V.extract (0, 0, nc-1, r);
return Vr * D * Ur.transpose ();
}
}
ComplexMatrix
Matrix::fourier (void) const
{
int nr = rows ();
int nc = cols ();
int npts, nsamples;
if (nr == 1 || nc == 1)
{
npts = nr > nc ? nr : nc;
nsamples = 1;
}
else
{
npts = nr;
nsamples = nc;
}
int nn = 4*npts+15;
Complex *wsave = new Complex [nn];
Complex *tmp_data = make_complex (data (), length ());
F77_FCN (cffti) (&npts, wsave);
for (int j = 0; j < nsamples; j++)
F77_FCN (cfftf) (&npts, &tmp_data[npts*j], wsave);
delete [] wsave;
return ComplexMatrix (tmp_data, nr, nc);
}
ComplexMatrix
Matrix::ifourier (void) const
{
int nr = rows ();
int nc = cols ();
int npts, nsamples;
if (nr == 1 || nc == 1)
{
npts = nr > nc ? nr : nc;
nsamples = 1;
}
else
{
npts = nr;
nsamples = nc;
}
int nn = 4*npts+15;
Complex *wsave = new Complex [nn];
Complex *tmp_data = make_complex (data (), length ());
F77_FCN (cffti) (&npts, wsave);
for (int j = 0; j < nsamples; j++)
F77_FCN (cfftb) (&npts, &tmp_data[npts*j], wsave);
for (j = 0; j < npts*nsamples; j++)
tmp_data[j] = tmp_data[j] / (double) npts;
delete [] wsave;
return ComplexMatrix (tmp_data, nr, nc);
}
ComplexMatrix
Matrix::fourier2d (void) const
{
int nr = rows ();
int nc = cols ();
int npts, nsamples;
if (nr == 1 || nc == 1)
{
npts = nr > nc ? nr : nc;
nsamples = 1;
}
else
{
npts = nr;
nsamples = nc;
}
int nn = 4*npts+15;
Complex *wsave = new Complex [nn];
Complex *tmp_data = make_complex (data (), length ());
F77_FCN (cffti) (&npts, wsave);
for (int j = 0; j < nsamples; j++)
F77_FCN (cfftf) (&npts, &tmp_data[npts*j], wsave);
delete [] wsave;
npts = nc;
nsamples = nr;
nn = 4*npts+15;
wsave = new Complex [nn];
Complex *row = new Complex[npts];
F77_FCN (cffti) (&npts, wsave);
for (j = 0; j < nsamples; j++)
{
for (int i = 0; i < npts; i++)
row[i] = tmp_data[i*nr + j];
F77_FCN (cfftf) (&npts, row, wsave);
for (i = 0; i < npts; i++)
tmp_data[i*nr + j] = row[i];
}
delete [] wsave;
delete [] row;
return ComplexMatrix (tmp_data, nr, nc);
}
ComplexMatrix
Matrix::ifourier2d (void) const
{
int nr = rows ();
int nc = cols ();
int npts, nsamples;
if (nr == 1 || nc == 1)
{
npts = nr > nc ? nr : nc;
nsamples = 1;
}
else
{
npts = nr;
nsamples = nc;
}
int nn = 4*npts+15;
Complex *wsave = new Complex [nn];
Complex *tmp_data = make_complex (data (), length ());
F77_FCN (cffti) (&npts, wsave);
for (int j = 0; j < nsamples; j++)
F77_FCN (cfftb) (&npts, &tmp_data[npts*j], wsave);
delete [] wsave;
for (j = 0; j < npts*nsamples; j++)
tmp_data[j] = tmp_data[j] / (double) npts;
npts = nc;
nsamples = nr;
nn = 4*npts+15;
wsave = new Complex [nn];
Complex *row = new Complex[npts];
F77_FCN (cffti) (&npts, wsave);
for (j = 0; j < nsamples; j++)
{
for (int i = 0; i < npts; i++)
row[i] = tmp_data[i*nr + j];
F77_FCN (cfftb) (&npts, row, wsave);
for (i = 0; i < npts; i++)
tmp_data[i*nr + j] = row[i] / (double) npts;
}
delete [] wsave;
delete [] row;
return ComplexMatrix (tmp_data, nr, nc);
}
DET
Matrix::determinant (void) const
{
int info;
double rcond;
return determinant (info, rcond);
}
DET
Matrix::determinant (int& info) const
{
double rcond;
return determinant (info, rcond);
}
DET
Matrix::determinant (int& info, double& rcond) const
{
DET retval;
int nr = rows ();
int nc = cols ();
if (nr == 0 || nc == 0)
{
double d[2];
d[0] = 1.0;
d[1] = 0.0;
retval = DET (d);
}
else
{
info = 0;
int *ipvt = new int [nr];
double *z = new double [nr];
double *tmp_data = dup (data (), length ());
F77_FCN (dgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z);
volatile double tmp_rcond = rcond;
if (tmp_rcond + 1.0 == 1.0)
{
info = -1;
retval = DET ();
}
else
{
int job = 10;
double d[2];
F77_FCN (dgedi) (tmp_data, &nr, &nr, ipvt, d, z, &job);
retval = DET (d);
}
delete [] tmp_data;
delete [] ipvt;
delete [] z;
}
return retval;
}
Matrix
Matrix::solve (const Matrix& b) const
{
int info;
double rcond;
return solve (b, info, rcond);
}
Matrix
Matrix::solve (const Matrix& b, int& info) const
{
double rcond;
return solve (b, info, rcond);
}
Matrix
Matrix::solve (const Matrix& b, int& info, double& rcond) const
{
Matrix retval;
int nr = rows ();
int nc = cols ();
if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ())
{
(*current_liboctave_error_handler)
("matrix dimension mismatch solution of linear equations");
return Matrix ();
}
info = 0;
int *ipvt = new int [nr];
double *z = new double [nr];
double *tmp_data = dup (data (), length ());
F77_FCN (dgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z);
volatile double tmp_rcond = rcond;
if (tmp_rcond + 1.0 == 1.0)
{
info = -2;
}
else
{
int job = 0;
double *result = dup (b.data (), b.length ());
int b_nc = b.cols ();
for (int j = 0; j < b_nc; j++)
F77_FCN (dgesl) (tmp_data, &nr, &nr, ipvt, &result[nr*j], &job);
retval = Matrix (result, b.rows (), b_nc);
}
delete [] tmp_data;
delete [] ipvt;
delete [] z;
return retval;
}
ComplexMatrix
Matrix::solve (const ComplexMatrix& b) const
{
ComplexMatrix tmp (*this);
return tmp.solve (b);
}
ComplexMatrix
Matrix::solve (const ComplexMatrix& b, int& info) const
{
ComplexMatrix tmp (*this);
return tmp.solve (b, info);
}
ComplexMatrix
Matrix::solve (const ComplexMatrix& b, int& info, double& rcond) const
{
ComplexMatrix tmp (*this);
return tmp.solve (b, info, rcond);
}
ColumnVector
Matrix::solve (const ColumnVector& b) const
{
int info; double rcond;
return solve (b, info, rcond);
}
ColumnVector
Matrix::solve (const ColumnVector& b, int& info) const
{
double rcond;
return solve (b, info, rcond);
}
ColumnVector
Matrix::solve (const ColumnVector& b, int& info, double& rcond) const
{
ColumnVector retval;
int nr = rows ();
int nc = cols ();
if (nr == 0 || nc == 0 || nr != nc || nr != b.length ())
{
(*current_liboctave_error_handler)
("matrix dimension mismatch solution of linear equations");
return ColumnVector ();
}
info = 0;
int *ipvt = new int [nr];
double *z = new double [nr];
double *tmp_data = dup (data (), length ());
F77_FCN (dgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z);
volatile double tmp_rcond = rcond;
if (tmp_rcond + 1.0 == 1.0)
{
info = -2;
}
else
{
int job = 0;
int b_len = b.length ();
double *result = dup (b.data (), b_len);
F77_FCN (dgesl) (tmp_data, &nr, &nr, ipvt, result, &job);
retval = ColumnVector (result, b_len);
}
delete [] tmp_data;
delete [] ipvt;
delete [] z;
return retval;
}
ComplexColumnVector
Matrix::solve (const ComplexColumnVector& b) const
{
ComplexMatrix tmp (*this);
return tmp.solve (b);
}
ComplexColumnVector
Matrix::solve (const ComplexColumnVector& b, int& info) const
{
ComplexMatrix tmp (*this);
return tmp.solve (b, info);
}
ComplexColumnVector
Matrix::solve (const ComplexColumnVector& b, int& info, double& rcond) const
{
ComplexMatrix tmp (*this);
return tmp.solve (b, info, rcond);
}
Matrix
Matrix::lssolve (const Matrix& b) const
{
int info;
int rank;
return lssolve (b, info, rank);
}
Matrix
Matrix::lssolve (const Matrix& b, int& info) const
{
int rank;
return lssolve (b, info, rank);
}
Matrix
Matrix::lssolve (const Matrix& b, int& info, int& rank) const
{
int nrhs = b.cols ();
int m = rows ();
int n = cols ();
if (m == 0 || n == 0 || m != b.rows ())
{
(*current_liboctave_error_handler)
("matrix dimension mismatch in solution of least squares problem");
return Matrix ();
}
double *tmp_data = dup (data (), length ());
int nrr = m > n ? m : n;
Matrix result (nrr, nrhs);
int i, j;
for (j = 0; j < nrhs; j++)
for (i = 0; i < m; i++)
result.elem (i, j) = b.elem (i, j);
double *presult = result.fortran_vec ();
int len_s = m < n ? m : n;
double *s = new double [len_s];
double rcond = -1.0;
int lwork;
if (m < n)
lwork = 3*m + (2*m > nrhs ? (2*m > n ? 2*m : n) : (nrhs > n ? nrhs : n));
else
lwork = 3*n + (2*n > nrhs ? (2*n > m ? 2*n : m) : (nrhs > m ? nrhs : m));
double *work = new double [lwork];
F77_FCN (dgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s,
&rcond, &rank, work, &lwork, &info);
Matrix retval (n, nrhs);
for (j = 0; j < nrhs; j++)
for (i = 0; i < n; i++)
retval.elem (i, j) = result.elem (i, j);
delete [] tmp_data;
delete [] s;
delete [] work;
return retval;
}
ComplexMatrix
Matrix::lssolve (const ComplexMatrix& b) const
{
ComplexMatrix tmp (*this);
return tmp.lssolve (b);
}
ComplexMatrix
Matrix::lssolve (const ComplexMatrix& b, int& info) const
{
ComplexMatrix tmp (*this);
return tmp.lssolve (b);
}
ComplexMatrix
Matrix::lssolve (const ComplexMatrix& b, int& info, int& rank) const
{
ComplexMatrix tmp (*this);
return tmp.lssolve (b);
}
ColumnVector
Matrix::lssolve (const ColumnVector& b) const
{
int info;
int rank; return lssolve (b, info, rank);
}
ColumnVector
Matrix::lssolve (const ColumnVector& b, int& info) const
{
int rank;
return lssolve (b, info, rank);
}
ColumnVector
Matrix::lssolve (const ColumnVector& b, int& info, int& rank) const
{
int nrhs = 1;
int m = rows ();
int n = cols ();
if (m == 0 || n == 0 || m != b.length ())
{
(*current_liboctave_error_handler)
("matrix dimension mismatch in solution of least squares problem");
return ColumnVector ();
}
double *tmp_data = dup (data (), length ());
int nrr = m > n ? m : n;
ColumnVector result (nrr);
int i;
for (i = 0; i < m; i++)
result.elem (i) = b.elem (i);
double *presult = result.fortran_vec ();
int len_s = m < n ? m : n;
double *s = new double [len_s];
double rcond = -1.0;
int lwork;
if (m < n)
lwork = 3*m + (2*m > nrhs ? (2*m > n ? 2*m : n) : (nrhs > n ? nrhs : n));
else
lwork = 3*n + (2*n > nrhs ? (2*n > m ? 2*n : m) : (nrhs > m ? nrhs : m));
double *work = new double [lwork];
F77_FCN (dgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s,
&rcond, &rank, work, &lwork, &info);
ColumnVector retval (n);
for (i = 0; i < n; i++)
retval.elem (i) = result.elem (i);
delete [] tmp_data;
delete [] s;
delete [] work;
return retval;
}
ComplexColumnVector
Matrix::lssolve (const ComplexColumnVector& b) const
{
ComplexMatrix tmp (*this);
return tmp.lssolve (b);
}
ComplexColumnVector
Matrix::lssolve (const ComplexColumnVector& b, int& info) const
{
ComplexMatrix tmp (*this);
return tmp.lssolve (b, info);
}
ComplexColumnVector
Matrix::lssolve (const ComplexColumnVector& b, int& info, int& rank) const
{
ComplexMatrix tmp (*this);
return tmp.lssolve (b, info, rank);
}
Matrix&
Matrix::operator += (const Matrix& a)
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix += operation attempted");
return *this;
}
if (nr == 0 || nc == 0)
return *this;
double *d = fortran_vec (); // Ensures only one reference to my privates!
add2 (d, a.data (), length ());
return *this;
}
Matrix&
Matrix::operator -= (const Matrix& a)
{
int nr = rows ();
int nc = cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix -= operation attempted");
return *this;
}
if (nr == 0 || nc == 0)
return *this;
double *d = fortran_vec (); // Ensures only one reference to my privates!
subtract2 (d, a.data (), length ());
return *this;
}
Matrix&
Matrix::operator += (const DiagMatrix& a)
{
if (rows () != a.rows () || cols () != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix += operation attempted");
return *this;
}
for (int i = 0; i < a.length (); i++)
elem (i, i) += a.elem (i, i);
return *this;
}
Matrix&
Matrix::operator -= (const DiagMatrix& a)
{
if (rows () != a.rows () || cols () != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix += operation attempted");
return *this;
}
for (int i = 0; i < a.length (); i++)
elem (i, i) -= a.elem (i, i);
return *this;
}
// unary operations
Matrix
Matrix::operator ! (void) const
{
int nr = rows ();
int nc = cols ();
Matrix b (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
b.elem (i, j) = ! elem (i, j);
return b;
}
// column vector by row vector -> matrix operations
Matrix
operator * (const ColumnVector& v, const RowVector& a)
{
int len = v.length ();
int a_len = a.length ();
if (len != a_len)
{
(*current_liboctave_error_handler)
("nonconformant vector multiplication attempted");
return Matrix ();
}
if (len == 0)
return Matrix (len, len, 0.0);
char transa = 'N';
char transb = 'N';
double alpha = 1.0;
double beta = 0.0;
int anr = 1;
double *c = new double [len * a_len];
F77_FCN (dgemm) (&transa, &transb, &len, &a_len, &anr, &alpha,
v.data (), &len, a.data (), &anr, &beta, c, &len,
1L, 1L);
return Matrix (c, len, a_len);
}
// diagonal matrix by scalar -> matrix operations
Matrix
operator + (const DiagMatrix& a, double s)
{
Matrix tmp (a.rows (), a.cols (), s);
return a + tmp;
}
Matrix
operator - (const DiagMatrix& a, double s)
{
Matrix tmp (a.rows (), a.cols (), -s);
return a + tmp;
}
// scalar by diagonal matrix -> matrix operations
Matrix
operator + (double s, const DiagMatrix& a)
{
Matrix tmp (a.rows (), a.cols (), s);
return tmp + a;
}
Matrix
operator - (double s, const DiagMatrix& a)
{
Matrix tmp (a.rows (), a.cols (), s);
return tmp - a;
}
// matrix by diagonal matrix -> matrix operations
Matrix
operator + (const Matrix& m, const DiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix addition attempted");
return Matrix ();
}
if (nr == 0 || nc == 0)
return Matrix (nr, nc);
Matrix result (m);
int a_len = a.length ();
for (int i = 0; i < a_len; i++)
result.elem (i, i) += a.elem (i, i);
return result;
}
Matrix
operator - (const Matrix& m, const DiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix subtraction attempted");
return Matrix ();
}
if (nr == 0 || nc == 0)
return Matrix (nr, nc);
Matrix result (m);
int a_len = a.length ();
for (int i = 0; i < a_len; i++)
result.elem (i, i) -= a.elem (i, i);
return result;
}
Matrix
operator * (const Matrix& m, const DiagMatrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
int a_nr = a.rows ();
int a_nc = a.cols ();
if (nc != a_nr)
{
(*current_liboctave_error_handler)
("nonconformant matrix multiplication attempted");
return Matrix ();
}
if (nr == 0 || nc == 0 || a_nc == 0)
return Matrix (nr, a_nc, 0.0);
double *c = new double [nr*a_nc];
double *ctmp = 0;
int a_len = a.length ();
for (int j = 0; j < a_len; j++)
{
int idx = j * nr;
ctmp = c + idx;
if (a.elem (j, j) == 1.0)
{
for (int i = 0; i < nr; i++)
ctmp[i] = m.elem (i, j);
}
else if (a.elem (j, j) == 0.0)
{
for (int i = 0; i < nr; i++)
ctmp[i] = 0.0;
}
else
{
for (int i = 0; i < nr; i++)
ctmp[i] = a.elem (j, j) * m.elem (i, j);
}
}
if (a_nr < a_nc)
{
for (int i = nr * nc; i < nr * a_nc; i++)
ctmp[i] = 0.0;
}
return Matrix (c, nr, a_nc);
}
// diagonal matrix by matrix -> matrix operations
Matrix
operator + (const DiagMatrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix addition attempted");
return Matrix ();
}
if (nr == 0 || nc == 0)
return Matrix (nr, nc);
Matrix result (a);
for (int i = 0; i < m.length (); i++)
result.elem (i, i) += m.elem (i, i);
return result;
}
Matrix
operator - (const DiagMatrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
if (nr != a.rows () || nc != a.cols ())
{
(*current_liboctave_error_handler)
("nonconformant matrix subtraction attempted");
return Matrix ();
}
if (nr == 0 || nc == 0)
return Matrix (nr, nc);
Matrix result (-a);
for (int i = 0; i < m.length (); i++)
result.elem (i, i) += m.elem (i, i);
return result;
}
Matrix
operator * (const DiagMatrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
int a_nr = a.rows ();
int a_nc = a.cols ();
if (nc != a_nr)
{
(*current_liboctave_error_handler)
("nonconformant matrix multiplication attempted");
return Matrix ();
}
if (nr == 0 || nc == 0 || a_nc == 0)
return Matrix (nr, a_nc, 0.0);
Matrix c (nr, a_nc);
for (int i = 0; i < m.length (); i++)
{
if (m.elem (i, i) == 1.0)
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = a.elem (i, j);
}
else if (m.elem (i, i) == 0.0)
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = 0.0;
}
else
{
for (int j = 0; j < a_nc; j++)
c.elem (i, j) = m.elem (i, i) * a.elem (i, j);
}
}
if (nr > nc)
{
for (int j = 0; j < a_nc; j++)
for (int i = a_nr; i < nr; i++)
c.elem (i, j) = 0.0;
}
return c;
}
// matrix by matrix -> matrix operations
Matrix
operator * (const Matrix& m, const Matrix& a)
{
int nr = m.rows ();
int nc = m.cols ();
int a_nr = a.rows ();
int a_nc = a.cols ();
if (nc != a_nr)
{
(*current_liboctave_error_handler)
("nonconformant matrix multiplication attempted");
return Matrix ();
}
if (nr == 0 || nc == 0 || a_nc == 0)
return Matrix (nr, a_nc, 0.0);
char trans = 'N';
char transa = 'N';
int ld = nr;
int lda = a_nr;
double alpha = 1.0;
double beta = 0.0;
double *c = new double [nr*a_nc];
F77_FCN (dgemm) (&trans, &transa, &nr, &a_nc, &nc, &alpha, m.data (),
&ld, a.data (), &lda, &beta, c, &nr, 1L, 1L);
return Matrix (c, nr, a_nc);
}
// other operations.
Matrix
map (d_d_Mapper f, const Matrix& a)
{
Matrix b (a);
b.map (f);
return b;
}
Matrix
map (d_c_Mapper f, const ComplexMatrix& a)
{
int a_nc = a.cols ();
int a_nr = a.rows ();
Matrix b (a_nr, a_nc);
for (int j = 0; j < a_nc; j++)
for (int i = 0; i < a_nr; i++)
b.elem (i, j) = f (a.elem (i, j));
return b;
}
void
Matrix::map (d_d_Mapper f)
{
double *d = fortran_vec (); // Ensures only one reference to my privates!
for (int i = 0; i < length (); i++)
d[i] = f (d[i]);
}
// XXX FIXME XXX Do these really belong here? They should maybe be
// cleaned up a bit, no? What about corresponding functions for the
// Vectors?
Matrix
Matrix::all (void) const
{
int nr = rows ();
int nc = cols ();
Matrix retval;
if (nr > 0 && nc > 0)
{
if (nr == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 1.0;
for (int j = 0; j < nc; j++)
{
if (elem (0, j) == 0.0)
{
retval.elem (0, 0) = 0.0;
break;
}
}
}
else if (nc == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 1.0;
for (int i = 0; i < nr; i++)
{
if (elem (i, 0) == 0.0)
{
retval.elem (0, 0) = 0.0;
break;
}
}
}
else
{
retval.resize (1, nc);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = 1.0;
for (int i = 0; i < nr; i++)
{
if (elem (i, j) == 0.0)
{
retval.elem (0, j) = 0.0;
break;
}
}
}
}
}
return retval;
}
Matrix
Matrix::any (void) const
{
int nr = rows ();
int nc = cols ();
Matrix retval;
if (nr > 0 && nc > 0)
{
if (nr == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int j = 0; j < nc; j++)
{
if (elem (0, j) != 0.0)
{
retval.elem (0, 0) = 1.0;
break;
}
}
}
else if (nc == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int i = 0; i < nr; i++)
{
if (elem (i, 0) != 0.0)
{
retval.elem (0, 0) = 1.0;
break;
}
}
}
else
{
retval.resize (1, nc);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = 0.0;
for (int i = 0; i < nr; i++)
{
if (elem (i, j) != 0.0)
{
retval.elem (0, j) = 1.0;
break;
}
}
}
}
}
return retval;
}
Matrix
Matrix::cumprod (void) const
{
Matrix retval;
int nr = rows ();
int nc = cols ();
if (nr == 1)
{
retval.resize (1, nc);
if (nc > 0)
{
double prod = elem (0, 0);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = prod;
if (j < nc - 1)
prod *= elem (0, j+1);
}
}
}
else if (nc == 1)
{
retval.resize (nr, 1);
if (nr > 0)
{
double prod = elem (0, 0);
for (int i = 0; i < nr; i++)
{
retval.elem (i, 0) = prod;
if (i < nr - 1)
prod *= elem (i+1, 0);
}
}
}
else
{
retval.resize (nr, nc);
if (nr > 0 && nc > 0)
{
for (int j = 0; j < nc; j++)
{
double prod = elem (0, j);
for (int i = 0; i < nr; i++)
{
retval.elem (i, j) = prod;
if (i < nr - 1)
prod *= elem (i+1, j);
}
}
}
}
return retval;
}
Matrix
Matrix::cumsum (void) const
{
Matrix retval;
int nr = rows ();
int nc = cols ();
if (nr == 1)
{
retval.resize (1, nc);
if (nc > 0)
{
double sum = elem (0, 0);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = sum;
if (j < nc - 1)
sum += elem (0, j+1);
}
}
}
else if (nc == 1)
{
retval.resize (nr, 1);
if (nr > 0)
{
double sum = elem (0, 0);
for (int i = 0; i < nr; i++)
{
retval.elem (i, 0) = sum;
if (i < nr - 1)
sum += elem (i+1, 0);
}
}
}
else
{
retval.resize (nr, nc);
if (nr > 0 && nc > 0)
{
for (int j = 0; j < nc; j++)
{
double sum = elem (0, j);
for (int i = 0; i < nr; i++)
{
retval.elem (i, j) = sum;
if (i < nr - 1)
sum += elem (i+1, j);
}
}
}
}
return retval;
}
Matrix
Matrix::prod (void) const
{
Matrix retval;
int nr = rows ();
int nc = cols ();
if (nr == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 1.0;
for (int j = 0; j < nc; j++)
retval.elem (0, 0) *= elem (0, j);
}
else if (nc == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 1.0;
for (int i = 0; i < nr; i++)
retval.elem (0, 0) *= elem (i, 0);
}
else
{
if (nc == 0)
{
retval.resize (1, 1);
retval.elem (0, 0) = 1.0;
}
else
retval.resize (1, nc);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = 1.0;
for (int i = 0; i < nr; i++)
retval.elem (0, j) *= elem (i, j);
}
}
return retval;
}
Matrix
Matrix::sum (void) const
{
Matrix retval;
int nr = rows ();
int nc = cols ();
if (nr == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int j = 0; j < nc; j++)
retval.elem (0, 0) += elem (0, j);
}
else if (nc == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int i = 0; i < nr; i++)
retval.elem (0, 0) += elem (i, 0);
}
else
{
if (nc == 0)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
}
else
retval.resize (1, nc);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = 0.0;
for (int i = 0; i < nr; i++)
retval.elem (0, j) += elem (i, j);
}
}
return retval;
}
Matrix
Matrix::sumsq (void) const
{
Matrix retval;
int nr = rows ();
int nc = cols ();
if (nr == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int j = 0; j < nc; j++)
{
double d = elem (0, j);
retval.elem (0, 0) += d * d;
}
}
else if (nc == 1)
{
retval.resize (1, 1);
retval.elem (0, 0) = 0.0;
for (int i = 0; i < nr; i++)
{
double d = elem (i, 0);
retval.elem (0, 0) += d * d;
}
}
else
{
retval.resize (1, nc);
for (int j = 0; j < nc; j++)
{
retval.elem (0, j) = 0.0;
for (int i = 0; i < nr; i++)
{
double d = elem (i, j);
retval.elem (0, j) += d * d;
}
}
}
return retval;
}
ColumnVector
Matrix::diag (void) const
{
return diag (0);
}
ColumnVector
Matrix::diag (int k) const
{
int nnr = rows ();
int nnc = cols ();
if (k > 0)
nnc -= k;
else if (k < 0)
nnr += k;
ColumnVector d;
if (nnr > 0 && nnc > 0)
{
int ndiag = (nnr < nnc) ? nnr : nnc;
d.resize (ndiag);
if (k > 0)
{
for (int i = 0; i < ndiag; i++)
d.elem (i) = elem (i, i+k);
}
else if ( k < 0)
{
for (int i = 0; i < ndiag; i++)
d.elem (i) = elem (i-k, i);
}
else
{
for (int i = 0; i < ndiag; i++)
d.elem (i) = elem (i, i);
}
}
else
cerr << "diag: requested diagonal out of range\n";
return d;
}
ColumnVector
Matrix::row_min (void) const
{
ColumnVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nr);
for (int i = 0; i < nr; i++)
{
double res = elem (i, 0);
for (int j = 1; j < nc; j++)
if (elem (i, j) < res)
res = elem (i, j);
result.elem (i) = res;
}
}
return result;
}
ColumnVector
Matrix::row_min_loc (void) const
{
ColumnVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nr);
for (int i = 0; i < nr; i++)
{
int res = 0;
for (int j = 0; j < nc; j++)
if (elem (i, j) < elem (i, res))
res = j;
result.elem (i) = (double) (res + 1);
}
}
return result;
}
ColumnVector
Matrix::row_max (void) const
{
ColumnVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nr);
for (int i = 0; i < nr; i++)
{
double res = elem (i, 0);
for (int j = 1; j < nc; j++)
if (elem (i, j) > res)
res = elem (i, j);
result.elem (i) = res;
}
}
return result;
}
ColumnVector
Matrix::row_max_loc (void) const
{
ColumnVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nr);
for (int i = 0; i < nr; i++)
{
int res = 0;
for (int j = 0; j < nc; j++)
if (elem (i, j) > elem (i, res))
res = j;
result.elem (i) = (double) (res + 1);
}
}
return result;
}
RowVector
Matrix::column_min (void) const
{
RowVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nc);
for (int j = 0; j < nc; j++)
{
double res = elem (0, j);
for (int i = 1; i < nr; i++)
if (elem (i, j) < res)
res = elem (i, j);
result.elem (j) = res;
}
}
return result;
}
RowVector
Matrix::column_min_loc (void) const
{
RowVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nc);
for (int j = 0; j < nc; j++)
{
int res = 0;
for (int i = 0; i < nr; i++)
if (elem (i, j) < elem (res, j))
res = i;
result.elem (j) = (double) (res + 1);
}
}
return result;
}
RowVector
Matrix::column_max (void) const
{
RowVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nc);
for (int j = 0; j < nc; j++)
{
double res = elem (0, j);
for (int i = 1; i < nr; i++)
if (elem (i, j) > res)
res = elem (i, j);
result.elem (j) = res;
}
}
return result;
}
RowVector
Matrix::column_max_loc (void) const
{
RowVector result;
int nr = rows ();
int nc = cols ();
if (nr > 0 && nc > 0)
{
result.resize (nc);
for (int j = 0; j < nc; j++)
{
int res = 0;
for (int i = 0; i < nr; i++)
if (elem (i, j) > elem (res, j))
res = i;
result.elem (j) = (double) (res + 1);
}
}
return result;
}
ostream&
operator << (ostream& os, const Matrix& a)
{
// int field_width = os.precision () + 7;
for (int i = 0; i < a.rows (); i++)
{
for (int j = 0; j < a.cols (); j++)
os << " " /* setw (field_width) */ << a.elem (i, j);
os << "\n";
}
return os;
}
istream&
operator >> (istream& is, Matrix& a)
{
int nr = a.rows ();
int nc = a.cols ();
if (nr < 1 || nc < 1)
is.clear (ios::badbit);
else
{
double tmp;
for (int i = 0; i < nr; i++)
for (int j = 0; j < nc; j++)
{
is >> tmp;
if (is)
a.elem (i, j) = tmp;
else
break;
}
}
return is;
}
/*
* Read an array of data froma file in binary format.
*/
int
Matrix::read (FILE *fptr, char *type)
{
// Allocate buffer pointers.
union
{
void *vd;
char *ch;
u_char *uc;
short *sh;
u_short *us;
int *in;
u_int *ui;
long *ln;
u_long *ul;
float *fl;
double *db;
}
buf;
// Convert data to double.
if (! type)
{
(*current_liboctave_error_handler)
("fread: invalid NULL type parameter");
return 0;
}
int count;
int nitems = length ();
double *d = fortran_vec (); // Ensures only one reference to my privates!
#define DO_FREAD(TYPE,ELEM) \
do \
{ \
size_t size = sizeof (TYPE); \
buf.ch = new char [size * nitems]; \
count = fread (buf.ch, size, nitems, fptr); \
for (int k = 0; k < count; k++) \
d[k] = buf.ELEM[k]; \
delete [] buf.ch; \
} \
while (0)
if (strcasecmp (type, "double") == 0)
DO_FREAD (double, db);
else if (strcasecmp (type, "char") == 0)
DO_FREAD (char, ch);
else if (strcasecmp (type, "uchar") == 0)
DO_FREAD (u_char, uc);
else if (strcasecmp (type, "short") == 0)
DO_FREAD (short, sh);
else if (strcasecmp (type, "ushort") == 0)
DO_FREAD (u_short, us);
else if (strcasecmp (type, "int") == 0)
DO_FREAD (int, in);
else if (strcasecmp (type, "uint") == 0)
DO_FREAD (u_int, ui);
else if (strcasecmp (type, "long") == 0)
DO_FREAD (long, ul);
else if (strcasecmp (type, "float") == 0)
DO_FREAD (float, fl);
else
{
(*current_liboctave_error_handler)
("fread: invalid NULL type parameter");
return 0;
}
return count;
}
/*
* Write the data array to a file in binary format.
*/
int
Matrix::write (FILE *fptr, char *type)
{
// Allocate buffer pointers.
union
{
void *vd;
char *ch;
u_char *uc;
short *sh;
u_short *us;
int *in;
u_int *ui;
long *ln;
u_long *ul;
float *fl;
double *db;
}
buf;
int nitems = length ();
double *d = fortran_vec ();
// Convert from double to correct size.
if (! type)
{
(*current_liboctave_error_handler)
("fwrite: invalid NULL type parameter");
return 0;
}
size_t size;
int count;
#define DO_FWRITE(TYPE,ELEM) \
do \
{ \
size = sizeof (TYPE); \
buf.ELEM = new TYPE [nitems]; \
for (int k = 0; k < nitems; k++) \
buf.ELEM[k] = (TYPE) d[k]; \
count = fwrite (buf.ELEM, size, nitems, fptr); \
delete [] buf.ELEM; \
} \
while (0)
if (strcasecmp (type, "double") == 0)
DO_FWRITE (double, db);
else if (strcasecmp (type, "char") == 0)
DO_FWRITE (char, ch);
else if (strcasecmp (type, "uchar") == 0)
DO_FWRITE (u_char, uc);
else if (strcasecmp (type, "short") == 0)
DO_FWRITE (short, sh);
else if (strcasecmp (type, "ushort") == 0)
DO_FWRITE (u_short, us);
else if (strcasecmp (type, "int") == 0)
DO_FWRITE (int, in);
else if (strcasecmp (type, "uint") == 0)
DO_FWRITE (u_int, ui);
else if (strcasecmp (type, "long") == 0)
DO_FWRITE (long, ln);
else if (strcasecmp (type, "ulong") == 0)
DO_FWRITE (u_long, ul);
else if (strcasecmp (type, "float") == 0)
DO_FWRITE (float, fl);
else
{
(*current_liboctave_error_handler)
("fwrite: unrecognized type parameter %s", type);
return 0;
}
return count;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/