home *** CD-ROM | disk | FTP | other *** search
/ Geek Gadgets 1 / ADE-1.bin / ade-dist / octave-1.1.1p1-src.tgz / tar.out / fsf / octave / scripts / polynomial / deconv.m < prev    next >
Text File  |  1996-09-28  |  2KB  |  70 lines

  1. # Copyright (C) 1995 John W. Eaton
  2. # This file is part of Octave.
  3. # Octave is free software; you can redistribute it and/or modify it
  4. # under the terms of the GNU General Public License as published by the
  5. # Free Software Foundation; either version 2, or (at your option) any
  6. # later version.
  7. # Octave is distributed in the hope that it will be useful, but WITHOUT
  8. # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. # FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  10. # for more details.
  11. # You should have received a copy of the GNU General Public License
  12. # along with Octave; see the file COPYING.  If not, write to the Free
  13. # Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  14.  
  15. function [b, r] = deconv (y, a)
  16.  
  17. # usage: deconv (y, a)
  18. #
  19. # Deconvolve two vectors.
  20. #
  21. # [b, r] = deconv (y, a) solves for b and r such that 
  22. #    y = conv(a,b) + r
  23. #
  24. # If y and a are polynomial coefficient vectors, b will contain the
  25. # coefficients of the polynomial quotient and r will be a remander
  26. # polynomial of lowest order.
  27. #
  28. # SEE ALSO: conv, poly, roots, residue, polyval, polyderiv,
  29. # polyinteg 
  30.  
  31. # Written by Tony Richardson (amr@mpl.ucsd.edu) June 1994.
  32.  
  33.   if (nargin != 2)
  34.     usage ("deconv (y, a)");
  35.   endif
  36.  
  37.   if (is_matrix (y) || is_matrix (a))
  38.     error("conv: both arguments must be vectors");
  39.   endif
  40.  
  41.   la = length (a);
  42.   ly = length (y);
  43.  
  44.   lb = ly - la + 1;
  45.  
  46.   if (ly > la)
  47.     b = filter (y, a, [1 zeros (1, ly - la)]);
  48.   elseif (ly == la)
  49.     b = filter (y, a, 1);
  50.   else
  51.     b = 0;
  52.   endif
  53.  
  54.   b = polyreduce (b);
  55.  
  56.   lc = la + length (b) - 1;
  57.   if (ly == lc)
  58.     r = y - conv (a, b);
  59.   else
  60.     r = [ zeros(1, lc - ly) y] - conv (a, b);
  61.   endif
  62.  
  63.   r = polyreduce (r);
  64.  
  65. endfunction
  66.