home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
scripts
/
signal
/
freqz.m
< prev
next >
Wrap
Text File
|
1996-09-28
|
2KB
|
67 lines
function [h, w] = freqz(b,...)
# Compute the frequency response of a filter.
#
# [h,w] = resp(b)
# returns the complex frequency response h of the FIR filter with
# coefficients b. The response is evaluated at 512 angular frequencies
# between 0 and pi. w is a vector containing the 512 frequencies.
#
# [h,w] = resp(b,a)
# returns the complex frequency response of the rational IIR filter
# whose numerator has coefficients b and denominator coefficients a.
#
# [h,w] = resp(b,a,n)
# returns the response evaluated at n angular frequencies. For fastest
# computation n should factor into a small number of small primes.
#
# [h,w] = freqz(b,a,n,"whole")
# evaluates the response at n frequencies between 0 and 2*pi.
if (nargin == 1)
# Response of an FIR filter.
a = 1;
n = 512;
region = "half";
elseif (nargin == 2)
# Response of an IIR filter
a = va_arg();
n = 512;
region = "half";
elseif (nargin == 3)
a = va_arg();
n = va_arg();
region = "half";
elseif (nargin == 4)
a = va_arg();
n = va_arg();
region = va_arg();
endif
la = length(a);
a = reshape(a,1,la);
lb = length(b);
b = reshape(b,1,lb);
k = max([la lb]);
if( n >= k)
if (strcmp(region,"whole"))
h = fft(postpad(b,n)) ./ fft(postpad(a,n));
w = 2*pi*[0:(n-1)]/n;
else
h = fft(postpad(b,2*n)) ./ fft(postpad(a,2*n));
h = h(1:n);
w = pi*[0:(n-1)]/n;
endif
else
if (strcmp(region,"whole"))
w = 2*pi*[0:(n-1)]/n;
else
w = pi*[0:(n-1)]/n;
endif
h = polyval(postpad(b,k),exp(j*w)) ./ polyval(postpad(a,k),exp(j*w));
endif
endfunction