home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
src
/
arith-ops.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
59KB
|
2,832 lines
// arith-ops.cc -*- C++ -*-
/*
Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <ctype.h>
#include <math.h>
#include <Complex.h>
#include "error.h"
#include "gripes.h"
#include "utils.h"
#include "mappers.h"
#include "user-prefs.h"
#include "tree-const.h"
#include "arith-ops.h"
#include "unwind-prot.h"
#include "xpow.h"
#include "xdiv.h"
#if defined (HAVE_ISINF) || (defined (HAVE_FINITE) && defined (HAVE_ISNAN))
#define DIVIDE_BY_ZERO_ERROR \
do \
{ \
if (user_pref.warn_divide_by_zero) \
warning ("division by zero"); \
} \
while (0)
#else
#define DIVIDE_BY_ZERO_ERROR \
do \
{ \
error ("division by zero attempted"); \
return tree_constant (); \
} \
while (0)
#endif
// But first, some stupid functions that don\'t deserve to be in the
// Matrix class...
enum
Matrix_bool_op
{
Matrix_LT,
Matrix_LE,
Matrix_EQ,
Matrix_GE,
Matrix_GT,
Matrix_NE,
Matrix_AND,
Matrix_OR,
};
// Check row and column dimensions for binary matrix operations.
static inline int
m_add_conform (const Matrix& a, const Matrix& b, int warn)
{
int ar = a.rows ();
int ac = a.columns ();
int br = b.rows ();
int bc = b.columns ();
int ok = (ar == br && ac == bc);
if (! ok && warn)
gripe_nonconformant (ar, ac, br, bc);
return ok;
}
static inline int
m_add_conform (const Matrix& a, const ComplexMatrix& b, int warn)
{
int ar = a.rows ();
int ac = a.columns ();
int br = b.rows ();
int bc = b.columns ();
int ok = (ar == br && ac == bc);
if (! ok && warn)
gripe_nonconformant (ar, ac, br, bc);
return ok;
}
static inline int
m_add_conform (const ComplexMatrix& a, const Matrix& b, int warn)
{
int ar = a.rows ();
int ac = a.columns ();
int br = b.rows ();
int bc = b.columns ();
int ok = (ar == br && ac == bc);
if (! ok && warn)
gripe_nonconformant (ar, ac, br, bc);
return ok;
}
static inline int
m_add_conform (const ComplexMatrix& a, const ComplexMatrix& b, int warn)
{
int ar = a.rows ();
int ac = a.columns ();
int br = b.rows ();
int bc = b.columns ();
int ok = (ar == br && ac == bc);
if (! ok && warn)
gripe_nonconformant (ar, ac, br, bc);
return ok;
}
static inline int
m_mul_conform (const Matrix& a, const Matrix& b, int warn)
{
int ac = a.columns ();
int br = b.rows ();
int ok = (ac == br);
if (! ok && warn)
gripe_nonconformant (a.rows (), ac, br, b.columns ());
return ok;
}
static inline int
m_mul_conform (const Matrix& a, const ComplexMatrix& b, int warn)
{
int ac = a.columns ();
int br = b.rows ();
int ok = (ac == br);
if (! ok && warn)
gripe_nonconformant (a.rows (), ac, br, b.columns ());
return ok;
}
static inline int
m_mul_conform (const ComplexMatrix& a, const Matrix& b, int warn)
{
int ac = a.columns ();
int br = b.rows ();
int ok = (ac == br);
if (! ok && warn)
gripe_nonconformant (a.rows (), ac, br, b.columns ());
return ok;
}
static inline int
m_mul_conform (const ComplexMatrix& a, const ComplexMatrix& b, int warn)
{
int ac = a.columns ();
int br = b.rows ();
int ok = (a.columns () == br);
if (! ok && warn)
gripe_nonconformant (a.rows (), ac, br, b.columns ());
return ok;
}
// Stupid binary comparison operations like the ones Matlab provides.
// One for each type combination, in the order given here:
//
// op2 \ op1: s m cs cm
// +-- +---+---+----+----+
// scalar | | * | 3 | * | 9 |
// +---+---+----+----+
// matrix | 1 | 4 | 7 | 10 |
// +---+---+----+----+
// complex_scalar | * | 5 | * | 11 |
// +---+---+----+----+
// complex_matrix | 2 | 6 | 8 | 12 |
// +---+---+----+----+
// -*- 1 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, double s, const Matrix& a)
{
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 0.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 1.0);
}
Matrix t (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
t.elem (i,j) = s < a.elem (i,j);
break;
case Matrix_LE:
t.elem (i,j) = s <= a.elem (i,j);
break;
case Matrix_EQ:
t.elem (i,j) = s == a.elem (i,j);
break;
case Matrix_GE:
t.elem (i,j) = s >= a.elem (i,j);
break;
case Matrix_GT:
t.elem (i,j) = s > a.elem (i,j);
break;
case Matrix_NE:
t.elem (i,j) = s != a.elem (i,j);
break;
case Matrix_AND:
t.elem (i,j) = s && a.elem (i,j);
break;
case Matrix_OR:
t.elem (i,j) = s || a.elem (i,j);
break;
default:
panic_impossible ();
break;
}
}
return t;
}
// -*- 2 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, double s, const ComplexMatrix& a)
{
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 0.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 1.0);
}
Matrix t (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
t.elem (i,j) = s < real (a.elem (i,j));
break;
case Matrix_LE:
t.elem (i,j) = s <= real (a.elem (i,j));
break;
case Matrix_EQ:
t.elem (i,j) = s == a.elem (i,j);
break;
case Matrix_GE:
t.elem (i,j) = s >= real (a.elem (i,j));
break;
case Matrix_GT:
t.elem (i,j) = s > real (a.elem (i,j));
break;
case Matrix_NE:
t.elem (i,j) = s != a.elem (i,j);
break;
case Matrix_AND:
t.elem (i,j) = s && (a.elem (i,j) != 0.0);
break;
case Matrix_OR:
t.elem (i,j) = s || (a.elem (i,j) != 0.0);
break;
default:
panic_impossible ();
break;
}
}
return t;
}
// -*- 3 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, const Matrix& a, double s)
{
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 0.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 1.0);
}
Matrix t (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
t.elem (i,j) = a.elem (i,j) < s;
break;
case Matrix_LE:
t.elem (i,j) = a.elem (i,j) <= s;
break;
case Matrix_EQ:
t.elem (i,j) = a.elem (i,j) == s;
break;
case Matrix_GE:
t.elem (i,j) = a.elem (i,j) >= s;
break;
case Matrix_GT:
t.elem (i,j) = a.elem (i,j) > s;
break;
case Matrix_NE:
t.elem (i,j) = a.elem (i,j) != s;
break;
case Matrix_AND:
t.elem (i,j) = a.elem (i,j) && s;
break;
case Matrix_OR:
t.elem (i,j) = a.elem (i,j) || s;
break;
default:
panic_impossible ();
break;
}
}
return t;
}
// -*- 4 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, const Matrix& a, const Complex& s)
{
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 0.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 1.0);
}
Matrix t (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
t.elem (i,j) = a.elem (i,j) < real (s);
break;
case Matrix_LE:
t.elem (i,j) = a.elem (i,j) <= real (s);
break;
case Matrix_EQ:
t.elem (i,j) = a.elem (i,j) == s;
break;
case Matrix_GE:
t.elem (i,j) = a.elem (i,j) >= real (s);
break;
case Matrix_GT:
t.elem (i,j) = a.elem (i,j) > real (s);
break;
case Matrix_NE:
t.elem (i,j) = a.elem (i,j) != s;
break;
case Matrix_AND:
t.elem (i,j) = a.elem (i,j) && (s != 0.0);
break;
case Matrix_OR:
t.elem (i,j) = a.elem (i,j) || (s != 0.0);
break;
default:
panic_impossible ();
break;
}
}
return t;
}
// -*- 5 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, const Matrix& a, const Matrix& b)
{
if (! m_add_conform (a, b, 1))
return Matrix ();
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 1.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 0.0);
}
Matrix c (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
c.elem (i, j) = a.elem (i, j) < b.elem (i, j);
break;
case Matrix_LE:
c.elem (i, j) = a.elem (i, j) <= b.elem (i, j);
break;
case Matrix_EQ:
c.elem (i, j) = a.elem (i, j) == b.elem (i, j);
break;
case Matrix_GE:
c.elem (i, j) = a.elem (i, j) >= b.elem (i, j);
break;
case Matrix_GT:
c.elem (i, j) = a.elem (i, j) > b.elem (i, j);
break;
case Matrix_NE:
c.elem (i, j) = a.elem (i, j) != b.elem (i, j);
break;
case Matrix_AND:
c.elem (i, j) = a.elem (i, j) && b.elem (i, j);
break;
case Matrix_OR:
c.elem (i, j) = a.elem (i, j) || b.elem (i, j);
break;
default:
panic_impossible ();
break;
}
}
return c;
}
// -*- 6 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, const Matrix& a, const ComplexMatrix& b)
{
if (! m_add_conform (a, b, 1))
return Matrix ();
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 1.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 0.0);
}
Matrix c (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
c.elem (i, j) = a.elem (i, j) < real (b.elem (i, j));
break;
case Matrix_LE:
c.elem (i, j) = a.elem (i, j) <= real (b.elem (i, j));
break;
case Matrix_EQ:
c.elem (i, j) = a.elem (i, j) == b.elem (i, j);
break;
case Matrix_GE:
c.elem (i, j) = a.elem (i, j) >= real (b.elem (i, j));
break;
case Matrix_GT:
c.elem (i, j) = a.elem (i, j) > real (b.elem (i, j));
break;
case Matrix_NE:
c.elem (i, j) = a.elem (i, j) != b.elem (i, j);
break;
case Matrix_AND:
c.elem (i, j) = a.elem (i, j) && (b.elem (i, j) != 0.0);
break;
case Matrix_OR:
c.elem (i, j) = a.elem (i, j) || (b.elem (i, j) != 0.0);
break;
default:
panic_impossible ();
break;
}
}
return c;
}
// -*- 7 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, const Complex& s, const Matrix& a)
{
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 0.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 1.0);
}
Matrix t (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
t.elem (i,j) = real (s) < a.elem (i,j);
break;
case Matrix_LE:
t.elem (i,j) = real (s) <= a.elem (i,j);
break;
case Matrix_EQ:
t.elem (i,j) = s == a.elem (i,j);
break;
case Matrix_GE:
t.elem (i,j) = real (s) >= a.elem (i,j);
break;
case Matrix_GT:
t.elem (i,j) = real (s) > a.elem (i,j);
break;
case Matrix_NE:
t.elem (i,j) = s != a.elem (i,j);
break;
case Matrix_AND:
t.elem (i,j) = (s != 0.0) && a.elem (i,j);
break;
case Matrix_OR:
t.elem (i,j) = (s != 0.0) || a.elem (i,j);
break;
default:
panic_impossible ();
break;
}
}
return t;
}
// -*- 8 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, const Complex& s, const ComplexMatrix& a)
{
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 0.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 1.0);
}
Matrix t (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
t.elem (i,j) = real (s) < real (a.elem (i,j));
break;
case Matrix_LE:
t.elem (i,j) = real (s) <= real (a.elem (i,j));
break;
case Matrix_EQ:
t.elem (i,j) = s == a.elem (i,j);
break;
case Matrix_GE:
t.elem (i,j) = real (s) >= real (a.elem (i,j));
break;
case Matrix_GT:
t.elem (i,j) = real (s) > real (a.elem (i,j));
break;
case Matrix_NE:
t.elem (i,j) = s != a.elem (i,j);
break;
case Matrix_AND:
t.elem (i,j) = (s != 0.0) && (a.elem (i,j) != 0.0);
break;
case Matrix_OR:
t.elem (i,j) = (s != 0.0) || (a.elem (i,j) != 0.0);
break;
default:
panic_impossible ();
break;
}
}
return t;
}
// -*- 9 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, const ComplexMatrix& a, double s)
{
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 0.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 1.0);
}
Matrix t (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
t.elem (i,j) = real (a.elem (i,j)) < s;
break;
case Matrix_LE:
t.elem (i,j) = real (a.elem (i,j)) <= s;
break;
case Matrix_EQ:
t.elem (i,j) = a.elem (i,j) == s;
break;
case Matrix_GE:
t.elem (i,j) = real (a.elem (i,j)) >= s;
break;
case Matrix_GT:
t.elem (i,j) = real (a.elem (i,j)) > s;
break;
case Matrix_NE:
t.elem (i,j) = a.elem (i,j) != s;
break;
case Matrix_AND:
t.elem (i,j) = (a.elem (i,j) != 0.0) && s;
break;
case Matrix_OR:
t.elem (i,j) = (a.elem (i,j) != 0.0) || s;
break;
default:
panic_impossible ();
break;
}
}
return t;
}
// -*- 10 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, const ComplexMatrix& a, const Complex& s)
{
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 0.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 1.0);
}
Matrix t (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
t.elem (i,j) = real (a.elem (i,j)) < real (s);
break;
case Matrix_LE:
t.elem (i,j) = real (a.elem (i,j)) <= real (s);
break;
case Matrix_EQ:
t.elem (i,j) = a.elem (i,j) == s;
break;
case Matrix_GE:
t.elem (i,j) = real (a.elem (i,j)) >= real (s);
break;
case Matrix_GT:
t.elem (i,j) = real (a.elem (i,j)) > real (s);
break;
case Matrix_NE:
t.elem (i,j) = a.elem (i,j) != s;
break;
case Matrix_AND:
t.elem (i,j) = (a.elem (i,j) != 0.0) && (s != 0.0);
break;
case Matrix_OR:
t.elem (i,j) = (a.elem (i,j) != 0.0) || (s != 0.0);
break;
default:
panic_impossible ();
break;
}
}
return t;
}
// -*- 11 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, const ComplexMatrix& a, const Matrix& b)
{
if (! m_add_conform (a, b, 1))
return Matrix ();
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 1.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 0.0);
}
Matrix c (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
c.elem (i, j) = real (a.elem (i, j)) < b.elem (i, j);
break;
case Matrix_LE:
c.elem (i, j) = real (a.elem (i, j)) <= b.elem (i, j);
break;
case Matrix_EQ:
c.elem (i, j) = a.elem (i, j) == b.elem (i, j);
break;
case Matrix_GE:
c.elem (i, j) = real (a.elem (i, j)) >= b.elem (i, j);
break;
case Matrix_GT:
c.elem (i, j) = real (a.elem (i, j)) > b.elem (i, j);
break;
case Matrix_NE:
c.elem (i, j) = a.elem (i, j) != b.elem (i, j);
break;
case Matrix_AND:
c.elem (i, j) = (a.elem (i, j) != 0.0) && b.elem (i, j);
break;
case Matrix_OR:
c.elem (i, j) = (a.elem (i, j) != 0.0) || b.elem (i, j);
break;
default:
panic_impossible ();
break;
}
}
return c;
}
// -*- 12 -*-
static Matrix
mx_stupid_bool_op (Matrix_bool_op op, const ComplexMatrix& a,
const ComplexMatrix& b)
{
if (! m_add_conform (a, b, 1))
return Matrix ();
int ar = a.rows ();
int ac = a.columns ();
if (ar == 0 || ac == 0)
{
if (op == Matrix_EQ)
return Matrix (1, 1, 1.0);
else if (op == Matrix_NE)
return Matrix (1, 1, 0.0);
}
Matrix c (ar, ac);
for (int j = 0; j < ac; j++)
for (int i = 0; i < ar; i++)
{
switch (op)
{
case Matrix_LT:
c.elem (i, j) = real (a.elem (i, j)) < real (b.elem (i, j));
break;
case Matrix_LE:
c.elem (i, j) = real (a.elem (i, j)) <= real (b.elem (i, j));
break;
case Matrix_EQ:
c.elem (i, j) = a.elem (i, j) == b.elem (i, j);
break;
case Matrix_GE:
c.elem (i, j) = real (a.elem (i, j)) >= real (b.elem (i, j));
break;
case Matrix_GT:
c.elem (i, j) = real (a.elem (i, j)) > real (b.elem (i, j));
break;
case Matrix_NE:
c.elem (i, j) = a.elem (i, j) != b.elem (i, j);
break;
case Matrix_AND:
c.elem (i, j) = (a.elem (i, j) != 0.0) && (b.elem (i, j) != 0.0);
break;
case Matrix_OR:
c.elem (i, j) = (a.elem (i, j) != 0.0) || (b.elem (i, j) != 0.0);
break;
default:
panic_impossible ();
break;
}
}
return c;
}
// Unary operations. One for each numeric data type:
//
// scalar
// complex_scalar
// matrix
// complex_matrix
tree_constant
do_unary_op (double d, tree_expression::type t)
{
double result = 0.0;
switch (t)
{
case tree_expression::not:
result = (! d);
break;
case tree_expression::uminus:
result = -d;
break;
case tree_expression::hermitian:
case tree_expression::transpose:
result = d;
break;
default:
panic_impossible ();
break;
}
return tree_constant (result);
}
tree_constant
do_unary_op (const Matrix& a, tree_expression::type t)
{
Matrix result;
switch (t)
{
case tree_expression::not:
result = (! a);
break;
case tree_expression::uminus:
result = -a;
break;
case tree_expression::hermitian:
case tree_expression::transpose:
result = a.transpose ();
break;
default:
panic_impossible ();
break;
}
return tree_constant (result);
}
tree_constant
do_unary_op (const Complex& c, tree_expression::type t)
{
Complex result = 0.0;
switch (t)
{
case tree_expression::not:
result = (c == 0.0);
break;
case tree_expression::uminus:
result = -c;
break;
case tree_expression::hermitian:
result = conj (c);
break;
case tree_expression::transpose:
result = c;
break;
default:
panic_impossible ();
break;
}
return tree_constant (result);
}
tree_constant
do_unary_op (const ComplexMatrix& a, tree_expression::type t)
{
ComplexMatrix result;
switch (t)
{
case tree_expression::not:
result = (! a);
break;
case tree_expression::uminus:
result = -a;
break;
case tree_expression::hermitian:
result = a.hermitian ();
break;
case tree_expression::transpose:
result = a.transpose ();
break;
default:
panic_impossible ();
break;
}
return tree_constant (result);
}
// Binary operations. One for each type combination, in the order
// given here:
//
// op2 \ op1: s m cs cm
// +-- +---+---+----+----+
// scalar | | 1 | 5 | 9 | 13 |
// +---+---+----+----+
// matrix | 2 | 6 | 10 | 14 |
// +---+---+----+----+
// complex_scalar | 3 | 7 | 11 | 15 |
// +---+---+----+----+
// complex_matrix | 4 | 8 | 12 | 16 |
// +---+---+----+----+
// -*- 1 -*-
tree_constant
do_binary_op (double a, double b, tree_expression::type t)
{
double result = 0.0;
switch (t)
{
case tree_expression::add:
result = a + b;
break;
case tree_expression::subtract:
result = a - b;
break;
case tree_expression::multiply:
case tree_expression::el_mul:
result = a * b;
break;
case tree_expression::divide:
case tree_expression::el_div:
if (b == 0.0)
DIVIDE_BY_ZERO_ERROR;
result = a / b;
break;
case tree_expression::leftdiv:
case tree_expression::el_leftdiv:
if (a == 0.0)
DIVIDE_BY_ZERO_ERROR;
result = b / a;
break;
case tree_expression::power:
case tree_expression::elem_pow:
return xpow (a, b);
break;
case tree_expression::cmp_lt:
result = a < b;
break;
case tree_expression::cmp_le:
result = a <= b;
break;
case tree_expression::cmp_eq:
result = a == b;
break;
case tree_expression::cmp_ge:
result = a >= b;
break;
case tree_expression::cmp_gt:
result = a > b;
break;
case tree_expression::cmp_ne:
result = a != b;
break;
case tree_expression::and:
result = (a && b);
break;
case tree_expression::or:
result = (a || b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
return tree_constant (result);
}
// -*- 2 -*-
tree_constant
do_binary_op (double a, const Matrix& b, tree_expression::type t)
{
Matrix result;
switch (t)
{
case tree_expression::add:
result = a + b;
break;
case tree_expression::subtract:
result = a - b;
break;
case tree_expression::el_leftdiv:
case tree_expression::leftdiv:
if (a == 0.0)
DIVIDE_BY_ZERO_ERROR;
a = 1.0 / a;
// fall through...
case tree_expression::multiply:
case tree_expression::el_mul:
result = a * b;
break;
case tree_expression::el_div:
return x_el_div (a, b);
break;
case tree_expression::divide:
gripe_nonconformant (1, 1, b.rows (), b.columns ());
break;
case tree_expression::power:
return xpow (a, b);
break;
case tree_expression::elem_pow:
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
return tree_constant (result);
}
// -*- 3 -*-
tree_constant
do_binary_op (double a, const Complex& b, tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
double result = 0.0;
Complex complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
complex_result = a - b;
break;
case tree_expression::multiply:
case tree_expression::el_mul:
result_type = RT_complex;
complex_result = a * b;
break;
case tree_expression::divide:
case tree_expression::el_div:
result_type = RT_complex;
if (b == 0.0)
DIVIDE_BY_ZERO_ERROR;
complex_result = a / b;
break;
case tree_expression::leftdiv:
case tree_expression::el_leftdiv:
result_type = RT_complex;
if (a == 0.0)
DIVIDE_BY_ZERO_ERROR;
complex_result = b / a;
break;
case tree_expression::power:
case tree_expression::elem_pow:
return xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
result = a < real (b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
result = a <= real (b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
result = a == b;
break;
case tree_expression::cmp_ge:
result_type = RT_real;
result = a >= real (b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
result = a > real (b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
result = a != b;
break;
case tree_expression::and:
result_type = RT_real;
result = (a && (b != 0.0));
break;
case tree_expression::or:
result_type = RT_real;
result = (a || (b != 0.0));
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 4 -*-
tree_constant
do_binary_op (double a, const ComplexMatrix& b, tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
Matrix result;
ComplexMatrix complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
complex_result = a - b;
break;
case tree_expression::el_leftdiv:
case tree_expression::leftdiv:
if (a == 0.0)
DIVIDE_BY_ZERO_ERROR;
a = 1.0 / a;
// fall through...
case tree_expression::multiply:
case tree_expression::el_mul:
result_type = RT_complex;
complex_result = a * b;
break;
case tree_expression::el_div:
return x_el_div (a, b);
break;
case tree_expression::divide:
gripe_nonconformant (1, 1, b.rows (), b.columns ());
break;
case tree_expression::power:
return xpow (a, b);
break;
case tree_expression::elem_pow:
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 5 -*-
tree_constant
do_binary_op (const Matrix& a, double b, tree_expression::type t)
{
Matrix result;
switch (t)
{
case tree_expression::add:
result = a + b;
break;
case tree_expression::subtract:
result = a - b;
break;
case tree_expression::multiply:
case tree_expression::el_mul:
result = a * b;
break;
case tree_expression::divide:
case tree_expression::el_div:
result = a / b;
break;
case tree_expression::el_leftdiv:
return x_el_div (b, a);
break;
case tree_expression::leftdiv:
gripe_nonconformant (a.rows (), a.columns (), 1, 1);
break;
case tree_expression::power:
return xpow (a, b);
break;
case tree_expression::elem_pow:
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
return tree_constant (result);
}
// -*- 6 -*-
tree_constant
do_binary_op (const Matrix& a, const Matrix& b, tree_expression::type t)
{
Matrix result;
switch (t)
{
case tree_expression::add:
if (m_add_conform (a, b, 1))
result = a + b;
break;
case tree_expression::subtract:
if (m_add_conform (a, b, 1))
result = a - b;
break;
case tree_expression::el_mul:
if (m_add_conform (a, b, 1))
result = product (a, b);
break;
case tree_expression::multiply:
if (m_mul_conform (a, b, 1))
result = a * b;
break;
case tree_expression::el_div:
if (m_add_conform (a, b, 1))
result = quotient (a, b);
break;
case tree_expression::el_leftdiv:
if (m_add_conform (a, b, 1))
result = quotient (b, a);
break;
case tree_expression::leftdiv:
return xleftdiv (a, b);
break;
case tree_expression::divide:
return xdiv (a, b);
break;
case tree_expression::power:
error ("can't do A ^ B for A and B both matrices");
break;
case tree_expression::elem_pow:
if (m_add_conform (a, b, 1))
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
return tree_constant (result);
}
// -*- 7 -*-
tree_constant
do_binary_op (const Matrix& a, const Complex& b, tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
Matrix result;
ComplexMatrix complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
complex_result = a - b;
break;
case tree_expression::multiply:
case tree_expression::el_mul:
result_type = RT_complex;
complex_result = a * b;
break;
case tree_expression::divide:
case tree_expression::el_div:
result_type = RT_complex;
complex_result = a / b;
break;
case tree_expression::el_leftdiv:
return x_el_div (b, a);
break;
case tree_expression::leftdiv:
gripe_nonconformant (a.rows (), a.columns (), 1, 1);
break;
case tree_expression::power:
return xpow (a, b);
break;
case tree_expression::elem_pow:
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 8 -*-
tree_constant
do_binary_op (const Matrix& a, const ComplexMatrix& b, tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
Matrix result;
ComplexMatrix complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = a - b;
break;
case tree_expression::el_mul:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = product (a, b);
break;
case tree_expression::multiply:
result_type = RT_complex;
if (m_mul_conform (a, b, 1))
complex_result = a * b;
break;
case tree_expression::el_div:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = quotient (a, b);
break;
case tree_expression::el_leftdiv:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = quotient (b, a);
break;
case tree_expression::leftdiv:
return xleftdiv (a, b);
break;
case tree_expression::divide:
return xdiv (a, b);
break;
case tree_expression::power:
error ("can't do A ^ B for A and B both matrices");
break;
case tree_expression::elem_pow:
if (m_add_conform (a, b, 1))
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 9 -*-
tree_constant
do_binary_op (const Complex& a, double b, tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
double result = 0.0;
Complex complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
complex_result = a - b;
break;
case tree_expression::multiply:
case tree_expression::el_mul:
result_type = RT_complex;
complex_result = a * b;
break;
case tree_expression::divide:
case tree_expression::el_div:
result_type = RT_complex;
if (b == 0.0)
DIVIDE_BY_ZERO_ERROR;
complex_result = a / b;
break;
case tree_expression::leftdiv:
case tree_expression::el_leftdiv:
result_type = RT_complex;
if (a == 0.0)
DIVIDE_BY_ZERO_ERROR;
complex_result = b / a;
break;
case tree_expression::power:
case tree_expression::elem_pow:
return xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
result = real (a) < b;
break;
case tree_expression::cmp_le:
result_type = RT_real;
result = real (a) <= b;
break;
case tree_expression::cmp_eq:
result_type = RT_real;
result = a == b;
break;
case tree_expression::cmp_ge:
result_type = RT_real;
result = real (a) >= b;
break;
case tree_expression::cmp_gt:
result_type = RT_real;
result = real (a) > b;
break;
case tree_expression::cmp_ne:
result_type = RT_real;
result = a != b;
break;
case tree_expression::and:
result_type = RT_real;
result = ((a != 0.0) && b);
break;
case tree_expression::or:
result_type = RT_real;
result = ((a != 0.0) || b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 10 -*-
tree_constant
do_binary_op (const Complex& a, const Matrix& b, tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
Matrix result;
ComplexMatrix complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
complex_result = a - b;
break;
case tree_expression::el_leftdiv:
case tree_expression::leftdiv:
if (a == 0.0)
DIVIDE_BY_ZERO_ERROR;
result_type = RT_complex;
complex_result = b / a;
break;
case tree_expression::multiply:
case tree_expression::el_mul:
result_type = RT_complex;
complex_result = a * b;
break;
case tree_expression::el_div:
return x_el_div (a, b);
break;
case tree_expression::divide:
gripe_nonconformant (1, 1, b.rows (), b.columns ());
break;
case tree_expression::power:
return xpow (a, b);
break;
case tree_expression::elem_pow:
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 11 -*-
tree_constant
do_binary_op (const Complex& a, const Complex& b, tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
double result = 0.0;
Complex complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
complex_result = a - b;
break;
case tree_expression::multiply:
case tree_expression::el_mul:
result_type = RT_complex;
complex_result = a * b;
break;
case tree_expression::divide:
case tree_expression::el_div:
result_type = RT_complex;
if (b == 0.0)
DIVIDE_BY_ZERO_ERROR;
complex_result = a / b;
break;
case tree_expression::leftdiv:
case tree_expression::el_leftdiv:
result_type = RT_complex;
if (a == 0.0)
DIVIDE_BY_ZERO_ERROR;
complex_result = b / a;
break;
case tree_expression::power:
case tree_expression::elem_pow:
return xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
result = real (a) < real (b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
result = real (a) <= real (b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
result = a == b;
break;
case tree_expression::cmp_ge:
result_type = RT_real;
result = real (a) >= real (b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
result = real (a) > real (b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
result = a != b;
break;
case tree_expression::and:
result_type = RT_real;
result = ((a != 0.0) && (b != 0.0));
break;
case tree_expression::or:
result_type = RT_real;
result = ((a != 0.0) || (b != 0.0));
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 12 -*-
tree_constant
do_binary_op (const Complex& a, const ComplexMatrix& b,
tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
Matrix result;
ComplexMatrix complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
complex_result = a - b;
break;
case tree_expression::el_leftdiv:
case tree_expression::leftdiv:
if (a == 0.0)
DIVIDE_BY_ZERO_ERROR;
result_type = RT_complex;
complex_result = b / a;
break;
case tree_expression::multiply:
case tree_expression::el_mul:
result_type = RT_complex;
complex_result = a * b;
break;
case tree_expression::el_div:
return x_el_div (a, b);
break;
case tree_expression::divide:
gripe_nonconformant (1, 1, b.rows (), b.columns ());
break;
case tree_expression::power:
return xpow (a, b);
break;
case tree_expression::elem_pow:
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 13 -*-
tree_constant
do_binary_op (const ComplexMatrix& a, double b, tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
Matrix result;
ComplexMatrix complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
complex_result = a - b;
break;
case tree_expression::multiply:
case tree_expression::el_mul:
result_type = RT_complex;
complex_result = a * b;
break;
case tree_expression::divide:
case tree_expression::el_div:
result_type = RT_complex;
complex_result = a / b;
break;
case tree_expression::el_leftdiv:
return x_el_div (b, a);
break;
case tree_expression::leftdiv:
gripe_nonconformant (a.rows (), a.columns (), 1, 1);
break;
case tree_expression::power:
return xpow (a, b);
break;
case tree_expression::elem_pow:
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 14 -*-
tree_constant
do_binary_op (const ComplexMatrix& a, const Matrix& b, tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
Matrix result;
ComplexMatrix complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = a - b;
break;
case tree_expression::el_mul:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = product (a, b);
break;
case tree_expression::multiply:
result_type = RT_complex;
if (m_mul_conform (a, b, 1))
complex_result = a * b;
break;
case tree_expression::el_div:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = quotient (a, b);
break;
case tree_expression::el_leftdiv:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = quotient (b, a);
break;
case tree_expression::leftdiv:
return xleftdiv (a, b);
break;
case tree_expression::divide:
return xdiv (a, b);
break;
case tree_expression::power:
error ("can't do A ^ B for A and B both matrices");
break;
case tree_expression::elem_pow:
if (m_add_conform (a, b, 1))
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 15 -*-
tree_constant
do_binary_op (const ComplexMatrix& a, const Complex& b,
tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
Matrix result;
ComplexMatrix complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
complex_result = a - b;
break;
case tree_expression::multiply:
case tree_expression::el_mul:
result_type = RT_complex;
complex_result = a * b;
break;
case tree_expression::divide:
case tree_expression::el_div:
result_type = RT_complex;
complex_result = a / b;
break;
case tree_expression::el_leftdiv:
return x_el_div (b, a);
break;
case tree_expression::leftdiv:
gripe_nonconformant (a.rows (), a.columns (), 1, 1);
break;
case tree_expression::power:
return xpow (a, b);
break;
case tree_expression::elem_pow:
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result_type = RT_real;
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
// -*- 16 -*-
tree_constant
do_binary_op (const ComplexMatrix& a, const ComplexMatrix& b,
tree_expression::type t)
{
enum RT { RT_unknown, RT_real, RT_complex };
RT result_type = RT_unknown;
Matrix result;
ComplexMatrix complex_result;
switch (t)
{
case tree_expression::add:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = a + b;
break;
case tree_expression::subtract:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = a - b;
break;
case tree_expression::el_mul:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = product (a, b);
break;
case tree_expression::multiply:
result_type = RT_complex;
if (m_mul_conform (a, b, 1))
complex_result = a * b;
break;
case tree_expression::el_div:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = quotient (a, b);
break;
case tree_expression::el_leftdiv:
result_type = RT_complex;
if (m_add_conform (a, b, 1))
complex_result = quotient (b, a);
break;
case tree_expression::leftdiv:
return xleftdiv (a, b);
break;
case tree_expression::divide:
return xdiv (a, b);
break;
case tree_expression::power:
error ("can't do A ^ B for A and B both matrices");
break;
case tree_expression::elem_pow:
if (m_add_conform (a, b, 1))
return elem_xpow (a, b);
break;
case tree_expression::cmp_lt:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_LT, a, b);
break;
case tree_expression::cmp_le:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_LE, a, b);
break;
case tree_expression::cmp_eq:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_EQ, a, b);
break;
case tree_expression::cmp_ge:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_GE, a, b);
break;
case tree_expression::cmp_gt:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_GT, a, b);
break;
case tree_expression::cmp_ne:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_NE, a, b);
break;
case tree_expression::and:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_AND, a, b);
break;
case tree_expression::or:
result_type = RT_real;
if (m_add_conform (a, b, 1))
result = mx_stupid_bool_op (Matrix_OR, a, b);
break;
default:
panic_impossible ();
break;
}
if (error_state)
return tree_constant ();
assert (result_type != RT_unknown);
if (result_type == RT_real)
return tree_constant (result);
else
return tree_constant (complex_result);
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/