home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
src
/
f-expm.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
7KB
|
315 lines
// f-expm.cc -*- C++ -*-
/*
Copyright (C) 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// Written by A. S. Hodel <scotte@eng.auburn.edu>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "dMatrix.h"
#include "CMatrix.h"
#include "CColVector.h"
#include "dbleAEPBAL.h"
#include "CmplxAEPBAL.h"
#include "f77-uscore.h"
#include "tree-const.h"
#include "user-prefs.h"
#include "gripes.h"
#include "error.h"
#include "utils.h"
#include "help.h"
#include "defun-dld.h"
extern "C"
{
double F77_FCN (dlange) (const char*, const int*, const int*,
const double*, const int*, double*);
double F77_FCN (zlange) (const char*, const int*, const int*,
const Complex*, const int*, double*);
}
DEFUN_DLD_BUILTIN ("expm", Fexpm, Sexpm, 2, 1,
"expm (X): matrix exponential, e^A")
{
Octave_object retval;
int nargin = args.length ();
if (nargin != 1)
{
print_usage ("expm");
return retval;
}
tree_constant arg = args(0);
// Constants for matrix exponential calculation.
static double padec [] =
{
5.0000000000000000e-1,
1.1666666666666667e-1,
1.6666666666666667e-2,
1.6025641025641026e-3,
1.0683760683760684e-4,
4.8562548562548563e-6,
1.3875013875013875e-7,
1.9270852604185938e-9,
};
int nr = arg.rows ();
int nc = arg.columns ();
int arg_is_empty = empty_arg ("expm", nr, nc);
if (arg_is_empty < 0)
return retval;
if (arg_is_empty > 0)
return Matrix ();
if (nr != nc)
{
gripe_square_matrix_required ("expm");
return retval;
}
int i, j;
char* balance_job = "B"; // variables for balancing
int sqpow; // power for scaling and squaring
double inf_norm; // norm of preconditioned matrix
int minus_one_j; // used in computing pade approx
if (arg.is_real_type ())
{
// Compute the exponential.
Matrix m = arg.matrix_value ();
if (error_state)
return retval;
double trshift = 0; // trace shift value
// Preconditioning step 1: trace normalization.
for (i = 0; i < nc; i++)
trshift += m.elem (i, i);
trshift /= nc;
for (i = 0; i < nc; i++)
m.elem (i, i) -= trshift;
// Preconditioning step 2: balancing.
AEPBALANCE mbal (m, balance_job);
m = mbal.balanced_matrix ();
Matrix d = mbal.balancing_matrix ();
// Preconditioning step 3: scaling.
ColumnVector work(nc);
inf_norm = F77_FCN (dlange) ("I", &nc, &nc,
m.fortran_vec (), &nc,
work.fortran_vec ());
sqpow = (int) (1.0 + log (inf_norm) / log (2.0));
// Check whether we need to square at all.
if (sqpow < 0)
sqpow = 0;
else
{
for (inf_norm = 1.0, i = 0; i < sqpow; i++)
inf_norm *= 2.0;
m = m / inf_norm;
}
// npp, dpp: pade' approx polynomial matrices.
Matrix npp (nc, nc, 0.0);
Matrix dpp = npp;
// now powers a^8 ... a^1.
minus_one_j = -1;
for (j = 7; j >= 0; j--)
{
npp = m * npp + m * padec[j];
dpp = m * dpp + m * (minus_one_j * padec[j]);
minus_one_j *= -1;
}
// Zero power.
dpp = -dpp;
for(j = 0; j < nc; j++)
{
npp.elem (j, j) += 1.0;
dpp.elem (j, j) += 1.0;
}
// Compute pade approximation = inverse (dpp) * npp.
Matrix result = dpp.solve (npp);
// Reverse preconditioning step 3: repeated squaring.
while (sqpow)
{
result = result * result;
sqpow--;
}
// Reverse preconditioning step 2: inverse balancing.
result = result.transpose();
d = d.transpose ();
result = result * d;
result = d.solve (result);
result = result.transpose ();
// Reverse preconditioning step 1: fix trace normalization.
result = result * exp (trshift);
retval = result;
}
else if (arg.is_complex_type ())
{
ComplexMatrix m = arg.complex_matrix_value ();
if (error_state)
return retval;
Complex trshift = 0.0; // trace shift value
// Preconditioning step 1: trace normalization.
for (i = 0; i < nc; i++)
trshift += m.elem (i, i);
trshift /= nc;
for (i = 0; i < nc; i++)
m.elem (i, i) -= trshift;
// Preconditioning step 2: eigenvalue balancing.
ComplexAEPBALANCE mbal (m, balance_job);
m = mbal.balanced_matrix ();
ComplexMatrix d = mbal.balancing_matrix ();
// Preconditioning step 3: scaling.
ColumnVector work (nc);
inf_norm = F77_FCN (zlange) ("I", &nc, &nc, m.
fortran_vec (), &nc,
work.fortran_vec ());
sqpow = (int) (1.0 + log (inf_norm) / log (2.0));
// Check whether we need to square at all.
if (sqpow < 0)
sqpow = 0;
else
{
for (inf_norm = 1.0, i = 0; i < sqpow; i++)
inf_norm *= 2.0;
m = m / inf_norm;
}
// npp, dpp: pade' approx polynomial matrices.
ComplexMatrix npp (nc, nc, 0.0);
ComplexMatrix dpp = npp;
// Now powers a^8 ... a^1.
minus_one_j = -1;
for (j = 7; j >= 0; j--)
{
npp = m * npp + m * padec[j];
dpp = m * dpp + m * (minus_one_j * padec[j]);
minus_one_j *= -1;
}
// Zero power.
dpp = -dpp;
for (j = 0; j < nc; j++)
{
npp.elem (j, j) += 1.0;
dpp.elem (j, j) += 1.0;
}
// Compute pade approximation = inverse (dpp) * npp.
ComplexMatrix result = dpp.solve (npp);
// Reverse preconditioning step 3: repeated squaring.
while (sqpow)
{
result = result * result;
sqpow--;
}
// reverse preconditioning step 2: inverse balancing XXX FIXME XXX:
// should probably do this with lapack calls instead of a complete
// matrix inversion.
result = result.transpose ();
d = d.transpose ();
result = result * d;
result = d.solve (result);
result = result.transpose ();
// Reverse preconditioning step 1: fix trace normalization.
result = result * exp (trshift);
retval = result;
}
else
{
gripe_wrong_type_arg ("expm", arg);
}
return retval;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/