home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
src
/
f-givens.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
4KB
|
189 lines
// f-givens.cc -*- C++ -*-
/*
Copyright (C) 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// Written by A. S. Hodel <scotte@eng.auburn.edu>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "dMatrix.h"
#include "CMatrix.h"
#include "f77-uscore.h"
#include "tree-const.h"
#include "user-prefs.h"
#include "error.h"
#include "gripes.h"
#include "help.h"
#include "defun-dld.h"
extern "C"
{
int F77_FCN (dlartg) (const double*, const double*, double*, double*,
double*);
int F77_FCN (zlartg) (const Complex*, const Complex*, double*,
Complex*, Complex*);
}
DEFUN_DLD_BUILTIN ("givens", Fgivens, Sgivens, 3, 2,
"G = givens (X, Y)\n\
\n\
compute orthogonal matrix G = [c s; -conj (s) c]\n\
such that G [x; y] = [*; 0] (x, y scalars)\n\
\n\
[c, s] = givens (x, y) returns the (c, s) values themselves.")
{
Octave_object retval;
int nargin = args.length ();
if (nargin != 2 || nargout > 2)
{
print_usage ("givens");
return retval;
}
tree_constant arg_a = args(0);
tree_constant arg_b = args(1);
if (! arg_a.is_scalar_type () && arg_b.is_scalar_type ())
{
error("givens: requires two scalar arguments");
return retval;
}
Complex cx, cy;
double x, y;
if (arg_a.is_complex_type ())
{
cx = arg_a.complex_value ();
if (error_state)
return retval;
}
else
{
x = arg_a.double_value ();
if (error_state)
return retval;
cx = x; // copy to complex just in case
}
if (arg_b.is_complex_type ())
{
cy = arg_b.complex_value ();
if (error_state)
return retval;
}
else
{
y = arg_b.double_value ();
if (error_state)
return retval;
cy = y; // copy to complex just in case
}
// Now compute the rotation.
double cc;
if (arg_a.is_complex_type () || arg_b.is_complex_type ())
{
Complex cs, temp_r;
F77_FCN (zlartg) (&cx, &cy, &cc, &cs, &temp_r);
switch (nargout)
{
case 0: // output a matrix
case 1:
{
ComplexMatrix g (2, 2);
g.elem (0, 0) = cc;
g.elem (1, 1) = cc;
g.elem (0, 1) = cs;
g.elem (1, 0) = -conj (cs);
retval(0) = g;
}
break;
case 2: // output scalar values
retval(0) = cc;
retval(1) = cs;
break;
default:
error ("givens: invalid number of output arguments");
break;
}
}
else
{
double s, temp_r;
F77_FCN (dlartg) (&x, &y, &cc, &s, &temp_r);
switch (nargout)
{
case 0: // output a matrix
case 1:
{
Matrix g (2, 2);
g.elem (0, 0) = cc;
g.elem (1, 1) = cc;
g.elem (0, 1) = s;
g.elem (1, 0) = -s;
retval(0) = g;
}
break;
case 2: // output scalar values
retval(0) = cc;
retval(1) = s;
break;
default:
error ("givens: invalid number of output arguments");
break;
}
}
return retval;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/