home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
src
/
f-log.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
6KB
|
270 lines
// f-log.cc -*- C++ -*-
/*
Copyright (C) 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "EIG.h"
#include "tree-const.h"
#include "user-prefs.h"
#include "error.h"
#include "gripes.h"
#include "utils.h"
#include "help.h"
#include "defun-dld.h"
// XXX FIXME XXX -- the next two functions should really be just one...
DEFUN_DLD_BUILTIN ("logm", Flogm, Slogm, 2, 1,
"logm (X): matrix logarithm")
{
Octave_object retval;
int nargin = args.length ();
if (nargin != 1)
{
print_usage ("logm");
return retval;
}
tree_constant arg = args(0);
int arg_is_empty = empty_arg ("logm", arg.rows (), arg.columns ());
if (arg_is_empty < 0)
return retval;
else if (arg_is_empty > 0)
return Matrix ();
if (arg.is_real_scalar ())
{
double d = arg.double_value ();
if (d > 0.0)
retval(0) = log (d);
else
{
Complex dtmp (d);
retval(0) = log (dtmp);
}
}
else if (arg.is_complex_scalar ())
{
Complex c = arg.complex_value ();
retval(0) = log (c);
}
else if (arg.is_real_type ())
{
Matrix m = arg.matrix_value ();
if (! error_state)
{
int nr = m.rows ();
int nc = m.columns ();
if (nr == 0 || nc == 0 || nr != nc)
gripe_square_matrix_required ("logm");
else
{
EIG m_eig (m);
ComplexColumnVector lambda (m_eig.eigenvalues ());
ComplexMatrix Q (m_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
{
Complex elt = lambda.elem (i);
if (imag (elt) == 0.0 && real (elt) > 0.0)
lambda.elem (i) = log (real (elt));
else
lambda.elem (i) = log (elt);
}
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
retval(0) = result;
}
}
}
else if (arg.is_complex_type ())
{
ComplexMatrix m = arg.complex_matrix_value ();
if (! error_state)
{
int nr = m.rows ();
int nc = m.columns ();
if (nr == 0 || nc == 0 || nr != nc)
gripe_square_matrix_required ("logm");
else
{
EIG m_eig (m);
ComplexColumnVector lambda (m_eig.eigenvalues ());
ComplexMatrix Q (m_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
{
Complex elt = lambda.elem (i);
if (imag (elt) == 0.0 && real (elt) > 0.0)
lambda.elem (i) = log (real (elt));
else
lambda.elem (i) = log (elt);
}
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
retval(0) = result;
}
}
}
else
{
gripe_wrong_type_arg ("logm", arg);
}
return retval;
}
DEFUN_DLD_BUILTIN ("sqrtm", Fsqrtm, Ssqrtm, 2, 1,
"sqrtm (X): matrix sqrt")
{
Octave_object retval;
int nargin = args.length ();
if (nargin != 1)
{
print_usage ("sqrtm");
return retval;
}
tree_constant arg = args(0);
int arg_is_empty = empty_arg ("sqrtm", arg.rows (), arg.columns ());
if (arg_is_empty < 0)
return retval;
else if (arg_is_empty > 0)
return Matrix ();
if (arg.is_real_scalar ())
{
double d = arg.double_value ();
if (d > 0.0)
retval(0) = sqrt (d);
else
{
Complex dtmp (d);
retval(0) = sqrt (dtmp);
}
}
else if (arg.is_complex_scalar ())
{
Complex c = arg.complex_value ();
retval(0) = log (c);
}
else if (arg.is_real_type ())
{
Matrix m = arg.matrix_value ();
if (! error_state)
{
int nr = m.rows ();
int nc = m.columns ();
if (nr == 0 || nc == 0 || nr != nc)
gripe_square_matrix_required ("sqrtm");
else
{
EIG m_eig (m);
ComplexColumnVector lambda (m_eig.eigenvalues ());
ComplexMatrix Q (m_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
{
Complex elt = lambda.elem (i);
if (imag (elt) == 0.0 && real (elt) > 0.0)
lambda.elem (i) = sqrt (real (elt));
else
lambda.elem (i) = sqrt (elt);
}
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
retval(0) = result;
}
}
}
else if (arg.is_complex_type ())
{
ComplexMatrix m = arg.complex_matrix_value ();
if (! error_state)
{
int nr = m.rows ();
int nc = m.columns ();
if (nr == 0 || nc == 0 || nr != nc)
gripe_square_matrix_required ("sqrtm");
else
{
EIG m_eig (m);
ComplexColumnVector lambda (m_eig.eigenvalues ());
ComplexMatrix Q (m_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
{
Complex elt = lambda.elem (i);
if (imag (elt) == 0.0 && real (elt) > 0.0)
lambda.elem (i) = sqrt (real (elt));
else
lambda.elem (i) = sqrt (elt);
}
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
retval(0) = result;
}
}
}
else
{
gripe_wrong_type_arg ("sqrtm", arg);
}
return retval;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/