home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
src
/
f-syl.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
5KB
|
224 lines
// f-syl.cc -*- C++ -*-
/*
Copyright (C) 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// Written by A. S. Hodel <scotte@eng.auburn.edu>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "dMatrix.h"
#include "CMatrix.h"
#include "dbleSCHUR.h"
#include "CmplxSCHUR.h"
#include "f77-uscore.h"
#include "tree-const.h"
#include "user-prefs.h"
#include "gripes.h"
#include "error.h"
#include "utils.h"
#include "help.h"
#include "defun-dld.h"
extern "C"
{
int F77_FCN (dtrsyl) (const char*, const char*, const int*,
const int*, const int*, const double*,
const int*, const double*, const int*,
const double*, const int*, double*, int*,
long, long);
int F77_FCN (ztrsyl) (const char*, const char*, const int*,
const int*, const int*, const Complex*,
const int*, const Complex*, const int*,
const Complex*, const int*, double*, int*,
long, long);
}
DEFUN_DLD_BUILTIN ("syl", Fsyl, Ssyl, 4, 1,
"X = syl (A, B, C): solve the Sylvester equation A X + X B + C = 0")
{
Octave_object retval;
int nargin = args.length ();
if (nargin != 3 || nargout > 1)
{
print_usage ("syl");
return retval;
}
tree_constant arg_a = args(0);
tree_constant arg_b = args(1);
tree_constant arg_c = args(2);
int a_nr = arg_a.rows ();
int a_nc = arg_a.columns ();
int b_nr = arg_b.rows ();
int b_nc = arg_b.columns ();
int c_nr = arg_c.rows ();
int c_nc = arg_c.columns ();
int arg_a_is_empty = empty_arg ("syl", a_nr, a_nc);
int arg_b_is_empty = empty_arg ("syl", b_nr, b_nc);
int arg_c_is_empty = empty_arg ("syl", c_nr, c_nc);
if (arg_a_is_empty > 0 && arg_b_is_empty > 0 && arg_c_is_empty > 0)
return Matrix ();
else if (arg_a_is_empty || arg_b_is_empty || arg_c_is_empty)
return retval;
// Arguments are not empty, so check for correct dimensions.
if (a_nr != a_nc || b_nr != b_nc)
{
gripe_square_matrix_required ("syl: first two parameters:");
return retval;
}
else if (a_nr != c_nr || b_nr != c_nc)
{
gripe_nonconformant ();
return retval;
}
// Dimensions look o.k., let's solve the problem.
if (arg_a.is_complex_type ()
|| arg_b.is_complex_type ()
|| arg_c.is_complex_type ())
{
// Do everything in complex arithmetic;
ComplexMatrix ca = arg_a.complex_matrix_value ();
if (error_state)
return retval;
ComplexMatrix cb = arg_b.complex_matrix_value ();
if (error_state)
return retval;
ComplexMatrix cc = arg_c.complex_matrix_value ();
if (error_state)
return retval;
// Compute Schur decompositions
ComplexSCHUR as (ca, "U");
ComplexSCHUR bs (cb, "U");
// Transform cc to new coordinates.
ComplexMatrix ua = as.unitary_matrix ();
ComplexMatrix sch_a = as.schur_matrix ();
ComplexMatrix ub = bs.unitary_matrix ();
ComplexMatrix sch_b = bs.schur_matrix ();
ComplexMatrix cx = ua.hermitian () * cc * ub;
// Solve the sylvester equation, back-transform, and return the solution.
double scale;
int info;
int one = 1;
F77_FCN (ztrsyl) ("N", "N", &one, &a_nr, &b_nr,
sch_a.fortran_vec (), &a_nr,
sch_b.fortran_vec (), &b_nr,
cx.fortran_vec (), &a_nr, &scale, &info,
1L, 1L);
cx = -ua * cx * ub.hermitian ();
retval = cx;
}
else
{
// Do everything in real arithmetic;
Matrix ca = arg_a.matrix_value ();
if (error_state)
return retval;
Matrix cb = arg_b.matrix_value ();
if (error_state)
return retval;
Matrix cc = arg_c.matrix_value ();
if (error_state)
return retval;
// Compute Schur decompositions.
SCHUR as (ca, "U");
SCHUR bs (cb, "U");
// Transform cc to new coordinates.
Matrix ua = as.unitary_matrix ();
Matrix sch_a = as.schur_matrix ();
Matrix ub = bs.unitary_matrix ();
Matrix sch_b = bs.schur_matrix ();
Matrix cx = ua.transpose () * cc * ub;
// Solve the sylvester equation, back-transform, and return the solution.
double scale;
int info;
int one = 1;
F77_FCN (dtrsyl) ("N", "N", &one, &a_nr, &b_nr,
sch_a.fortran_vec (), &a_nr,
sch_b.fortran_vec (), &b_nr,
cx.fortran_vec (), &a_nr, &scale, &info,
1L, 1L);
if (info)
error ("syl: trouble in dtrsyl info = %d", info);
cx = -ua*cx*ub.transpose ();
retval = cx;
}
return retval;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/