home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
src
/
load-save.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
63KB
|
3,062 lines
// load-save.cc -*- C++ -*-
/*
Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <float.h>
#include <limits.h>
#include <string.h>
#include <iostream.h>
#include <fstream.h>
#include <strstream.h>
#include <ctype.h>
#include "tree-base.h"
#include "tree-expr.h"
#include "tree-const.h"
#include "user-prefs.h"
#include "unwind-prot.h"
#include "load-save.h"
#include "symtab.h"
#include "pager.h"
#include "error.h"
#include "gripes.h"
#include "defun.h"
#include "utils.h"
#include "help.h"
extern "C"
{
#include <readline/tilde.h>
#include "fnmatch.h"
}
#if CHAR_BIT != 8
LOSE! LOSE!
#endif
#if SIZEOF_SHORT == 2
#define TWO_BYTE_INT short
#elif SIZEOF_INT == 2
#define TWO_BYTE_INT int
#else
LOSE! LOSE!
#endif
#if SIZEOF_INT == 4
#define FOUR_BYTE_INT int
#elif SIZEOF_LONG == 4
#define FOUR_BYTE_INT long
#else
LOSE! LOSE!
#endif
// Used when converting Inf to something that gnuplot can read.
#ifndef OCT_RBV
#define OCT_RBV DBL_MAX / 100.0
#endif
enum load_save_format
{
LS_ASCII,
LS_BINARY,
LS_MAT_BINARY,
LS_UNKNOWN,
};
enum floating_point_format
{
LS_IEEE_LITTLE,
LS_IEEE_BIG,
LS_VAX_D,
LS_VAX_G,
LS_CRAY,
LS_UNKNOWN_FLT_FMT,
};
// Not all of the following are currently used.
enum save_type
{
LS_U_CHAR,
LS_U_SHORT,
LS_U_INT,
LS_CHAR,
LS_SHORT,
LS_INT,
LS_FLOAT,
LS_DOUBLE,
};
#if defined (IEEE_LITTLE_ENDIAN)
#define NATIVE_FLOAT_FORMAT LS_IEEE_LITTLE
#elif defined (IEEE_BIG_ENDIAN)
#define NATIVE_FLOAT_FORMAT LS_IEEE_BIG
#elif defined (VAX_D_FLOAT)
#define NATIVE_FLOAT_FORMAT LS_VAX_D
#elif defined (VAX_G_FLOAT)
#define NATIVE_FLOAT_FORMAT LS_VAX_G
#else
LOSE! LOSE!
#endif
#define swap_1_bytes(x,y)
#define LS_DO_READ(TYPE,swap,data,size,len,stream) \
do \
{ \
volatile TYPE *ptr = (TYPE *) data; \
stream.read ((TYPE *) ptr, size * len); \
if (swap) \
swap_ ## size ## _bytes ((char *) ptr, len); \
TYPE tmp = ptr[0]; \
for (int i = len - 1; i > 0; i--) \
data[i] = ptr[i]; \
data[0] = tmp; \
} \
while (0)
// Have to use copy here to avoid writing over data accessed via
// Matrix::data().
#define LS_DO_WRITE(TYPE,data,size,len,stream) \
do \
{ \
char tmp_type = (char) type; \
stream.write (&tmp_type, 1); \
TYPE *ptr = new TYPE [len]; \
for (int i = 0; i < len; i++) \
ptr[i] = (TYPE) data[i]; \
stream.write ((TYPE *) ptr, size * len); \
delete [] ptr ; \
} \
while (0)
// Loading variables from files.
// But first, some data conversion routines.
// Currently, we only handle conversions for the IEEE types. To fix
// that, make more of the following routines work.
#define LS_SWAP_BYTES(i,j) \
tmp = t[i]; \
t[i] = t[j]; \
t[j] = tmp; \
static inline void
swap_2_bytes (char *t)
{
char tmp;
LS_SWAP_BYTES (0, 1);
}
static inline void
swap_4_bytes (char *t)
{
char tmp;
LS_SWAP_BYTES (0, 3);
LS_SWAP_BYTES (1, 2);
}
static inline void
swap_8_bytes (char *t)
{
char tmp;
LS_SWAP_BYTES (0, 7);
LS_SWAP_BYTES (1, 6);
LS_SWAP_BYTES (2, 5);
LS_SWAP_BYTES (3, 4);
}
static inline void
swap_2_bytes (char *t, int len)
{
char *ptr = t;
for (int i = 0; i < len; i++)
{
swap_2_bytes (ptr);
ptr += 2;
}
}
static inline void
swap_4_bytes (char *t, int len)
{
char *ptr = t;
for (int i = 0; i < len; i++)
{
swap_4_bytes (ptr);
ptr += 4;
}
}
static inline void
swap_8_bytes (char *t, int len)
{
char *ptr = t;
for (int i = 0; i < len; i++)
{
swap_8_bytes (ptr);
ptr += 8;
}
}
// XXX FIXME XXX -- assumes sizeof (Complex) == 8
// XXX FIXME XXX -- assumes sizeof (double) == 8
// XXX FIXME XXX -- assumes sizeof (float) == 4
#if defined (IEEE_LITTLE_ENDIAN)
static void
IEEE_big_double_to_IEEE_little_double (double *d, int len)
{
swap_8_bytes ((char *) d, len);
}
static void
VAX_D_double_to_IEEE_little_double (double *d, int len)
{
gripe_data_conversion ("VAX D float", "IEEE little endian format");
}
static void
VAX_G_double_to_IEEE_little_double (double *d, int len)
{
gripe_data_conversion ("VAX G float", "IEEE little endian format");
}
static void
Cray_to_IEEE_little_double (double *d, int len)
{
gripe_data_conversion ("Cray", "IEEE little endian format");
}
static void
IEEE_big_float_to_IEEE_little_float (float *d, int len)
{
swap_4_bytes ((char *) d, len);
}
static void
VAX_D_float_to_IEEE_little_float (float *d, int len)
{
gripe_data_conversion ("VAX D float", "IEEE little endian format");
}
static void
VAX_G_float_to_IEEE_little_float (float *d, int len)
{
gripe_data_conversion ("VAX G float", "IEEE little endian format");
}
static void
Cray_to_IEEE_little_float (float *d, int len)
{
gripe_data_conversion ("Cray", "IEEE little endian format");
}
#elif defined (IEEE_BIG_ENDIAN)
static void
IEEE_little_double_to_IEEE_big_double (double *d, int len)
{
swap_8_bytes ((char *) d, len);
}
static void
VAX_D_double_to_IEEE_big_double (double *d, int len)
{
gripe_data_conversion ("VAX D float", "IEEE big endian format");
}
static void
VAX_G_double_to_IEEE_big_double (double *d, int len)
{
gripe_data_conversion ("VAX G float", "IEEE big endian format");
}
static void
Cray_to_IEEE_big_double (double *d, int len)
{
gripe_data_conversion ("Cray", "IEEE big endian format");
}
static void
IEEE_little_float_to_IEEE_big_float (float *d, int len)
{
swap_4_bytes ((char *) d, len);
}
static void
VAX_D_float_to_IEEE_big_float (float *d, int len)
{
gripe_data_conversion ("VAX D float", "IEEE big endian format");
}
static void
VAX_G_float_to_IEEE_big_float (float *d, int len)
{
gripe_data_conversion ("VAX G float", "IEEE big endian format");
}
static void
Cray_to_IEEE_big_float (float *d, int len)
{
gripe_data_conversion ("Cray", "IEEE big endian format");
}
#elif defined (VAX_D_FLOAT)
static void
IEEE_little_double_to_VAX_D_double (double *d, int len)
{
gripe_data_conversion ("IEEE little endian", "VAX D");
}
static void
IEEE_big_double_to_VAX_D_double (double *d, int len)
{
gripe_data_conversion ("IEEE big endian", "VAX D");
}
static void
VAX_G_double_to_VAX_D_double (double *d, int len)
{
gripe_data_conversion ("VAX G float", "VAX D");
}
static void
Cray_to_VAX_D_double (double *d, int len)
{
gripe_data_conversion ("Cray", "VAX D");
}
static void
IEEE_little_float_to_VAX_D_float (float *d, int len)
{
gripe_data_conversion ("IEEE little endian", "VAX D");
}
static void
IEEE_big_float_to_VAX_D_float (float *d, int len)
{
gripe_data_conversion ("IEEE big endian", "VAX D");
}
static void
VAX_G_float_to_VAX_D_float (float *d, int len)
{
gripe_data_conversion ("VAX G float", "VAX D");
}
static void
Cray_to_VAX_D_float (float *d, int len)
{
gripe_data_conversion ("Cray", "VAX D");
}
#elif defined (VAX_G_FLOAT)
static void
IEEE_little_double_to_VAX_G_double (double *d, int len)
{
gripe_data_conversion ("IEEE little endian", "VAX G");
}
static void
IEEE_big_double_to_VAX_G_double (double *d, int len)
{
gripe_data_conversion ("IEEE big endian", "VAX G");
}
static void
VAX_D_double_to_VAX_G_double (double *d, int len)
{
gripe_data_conversion ("VAX D float", "VAX G");
}
static void
Cray_to_VAX_G_double (double *d, int len)
{
gripe_data_conversion ("VAX G float", "VAX G");
}
static void
IEEE_little_float_to_VAX_G_float (float *d, int len)
{
gripe_data_conversion ("IEEE little endian", "VAX G");
}
static void
IEEE_big_float_to_VAX_G_float (float *d, int len)
{
gripe_data_conversion ("IEEE big endian", "VAX G");
}
static void
VAX_D_float_to_VAX_G_float (float *d, int len)
{
gripe_data_conversion ("VAX D float", "VAX G");
}
static void
Cray_to_VAX_G_float (float *d, int len)
{
gripe_data_conversion ("VAX G float", "VAX G");
}
#endif
static void
do_double_format_conversion (double *data, int len,
floating_point_format fmt)
{
switch (fmt)
{
#if defined (IEEE_LITTLE_ENDIAN)
case LS_IEEE_LITTLE:
break;
case LS_IEEE_BIG:
IEEE_big_double_to_IEEE_little_double (data, len);
break;
case LS_VAX_D:
VAX_D_double_to_IEEE_little_double (data, len);
break;
case LS_VAX_G:
VAX_G_double_to_IEEE_little_double (data, len);
break;
case LS_CRAY:
Cray_to_IEEE_little_double (data, len);
break;
#elif defined (IEEE_BIG_ENDIAN)
case LS_IEEE_LITTLE:
IEEE_little_double_to_IEEE_big_double (data, len);
break;
case LS_IEEE_BIG:
break;
case LS_VAX_D:
VAX_D_double_to_IEEE_big_double (data, len);
break;
case LS_VAX_G:
VAX_G_double_to_IEEE_big_double (data, len);
break;
case LS_CRAY:
Cray_to_IEEE_big_double (data, len);
break;
#elif defined (VAX_D_FLOAT)
case LS_IEEE_LITTLE:
IEEE_little_double_to_VAX_D_double (data, len);
break;
case LS_IEEE_BIG:
IEEE_big_double_to_VAX_D_double (data, len);
break;
case LS_VAX_D:
break;
case LS_VAX_G:
VAX_G_double_to_VAX_D_double (data, len);
break;
case LS_CRAY:
Cray_to_VAX_D_double (data, len);
break;
#elif defined (VAX_G_FLOAT)
case LS_IEEE_LITTLE:
IEEE_little_double_to_VAX_G_double (data, len);
break;
case LS_IEEE_BIG:
IEEE_big_double_to_VAX_G_double (data, len);
break;
case LS_VAX_D:
VAX_D_double_to_VAX_G_double (data, len);
break;
case LS_VAX_G:
break;
case LS_CRAY:
Cray_to_VAX_G_double (data, len);
break;
#else
LOSE! LOSE!
#endif
default:
gripe_unrecognized_float_fmt ();
break;
}
}
static void
do_float_format_conversion (float *data, int len,
floating_point_format fmt)
{
switch (fmt)
{
#if defined (IEEE_LITTLE_ENDIAN)
case LS_IEEE_LITTLE:
break;
case LS_IEEE_BIG:
IEEE_big_float_to_IEEE_little_float (data, len);
break;
case LS_VAX_D:
VAX_D_float_to_IEEE_little_float (data, len);
break;
case LS_VAX_G:
VAX_G_float_to_IEEE_little_float (data, len);
break;
case LS_CRAY:
Cray_to_IEEE_little_float (data, len);
break;
#elif defined (IEEE_BIG_ENDIAN)
case LS_IEEE_LITTLE:
IEEE_little_float_to_IEEE_big_float (data, len);
break;
case LS_IEEE_BIG:
break;
case LS_VAX_D:
VAX_D_float_to_IEEE_big_float (data, len);
break;
case LS_VAX_G:
VAX_G_float_to_IEEE_big_float (data, len);
break;
case LS_CRAY:
Cray_to_IEEE_big_float (data, len);
break;
#elif defined (VAX_D_FLOAT)
case LS_IEEE_LITTLE:
IEEE_little_float_to_VAX_D_float (data, len);
break;
case LS_IEEE_BIG:
IEEE_big_float_to_VAX_D_float (data, len);
break;
case LS_VAX_D:
break;
case LS_VAX_G:
VAX_G_float_to_VAX_D_float (data, len);
break;
case LS_CRAY:
Cray_to_VAX_D_float (data, len);
break;
#elif defined (VAX_G_FLOAT)
case LS_IEEE_LITTLE:
IEEE_little_float_to_VAX_G_float (data, len);
break;
case LS_IEEE_BIG:
IEEE_big_float_to_VAX_G_float (data, len);
break;
case LS_VAX_D:
VAX_D_float_to_VAX_G_float (data, len);
break;
case LS_VAX_G:
break;
case LS_CRAY:
Cray_to_VAX_G_float (data, len);
break;
#else
LOSE! LOSE!
#endif
default:
gripe_unrecognized_float_fmt ();
break;
}
}
static void
read_doubles (istream& is, double *data, save_type type, int len,
int swap, floating_point_format fmt)
{
switch (type)
{
case LS_U_CHAR:
LS_DO_READ (unsigned char, swap, data, 1, len, is);
break;
case LS_U_SHORT:
LS_DO_READ (unsigned TWO_BYTE_INT, swap, data, 2, len, is);
break;
case LS_U_INT:
LS_DO_READ (unsigned FOUR_BYTE_INT, swap, data, 4, len, is);
break;
case LS_CHAR:
LS_DO_READ (signed char, swap, data, 1, len, is);
break;
case LS_SHORT:
LS_DO_READ (TWO_BYTE_INT, swap, data, 2, len, is);
break;
case LS_INT:
LS_DO_READ (FOUR_BYTE_INT, swap, data, 4, len, is);
break;
case LS_FLOAT:
{
volatile float *ptr = (float *) data;
is.read (data, 4 * len);
do_float_format_conversion ((float *) data, len, fmt);
float tmp = ptr[0];
for (int i = len - 1; i > 0; i--)
data[i] = ptr[i];
data[0] = tmp;
}
break;
case LS_DOUBLE:
is.read (data, 8 * len);
do_double_format_conversion (data, len, fmt);
break;
default:
is.clear (ios::failbit|is.rdstate ());
break;
}
}
static void
write_doubles (ostream& os, const double *data, save_type type, int len)
{
switch (type)
{
case LS_U_CHAR:
LS_DO_WRITE (unsigned char, data, 1, len, os);
break;
case LS_U_SHORT:
LS_DO_WRITE (unsigned TWO_BYTE_INT, data, 2, len, os);
break;
case LS_U_INT:
LS_DO_WRITE (unsigned FOUR_BYTE_INT, data, 4, len, os);
break;
case LS_CHAR:
LS_DO_WRITE (signed char, data, 1, len, os);
break;
case LS_SHORT:
LS_DO_WRITE (TWO_BYTE_INT, data, 2, len, os);
break;
case LS_INT:
LS_DO_WRITE (FOUR_BYTE_INT, data, 4, len, os);
break;
case LS_FLOAT:
LS_DO_WRITE (float, data, 4, len, os);
break;
case LS_DOUBLE:
{
char tmp_type = (char) type;
os.write (&tmp_type, 1);
os.write (data, 8 * len);
}
break;
default:
error ("unrecognized data format requested");
break;
}
}
// Return nonzero if S is a valid identifier.
static int
valid_identifier (char *s)
{
if (! s || ! (isalnum (*s) || *s == '_'))
return 0;
while (*++s != '\0')
if (! (isalnum (*s) || *s == '_'))
return 0;
return 1;
}
// Return nonzero if any element of M is not an integer. Also extract
// the largest and smallest values and return them in MAX_VAL and MIN_VAL.
static int
all_parts_int (const Matrix& m, double& max_val, double& min_val)
{
int nr = m.rows ();
int nc = m.columns ();
if (nr > 0 && nc > 0)
{
max_val = m.elem (0, 0);
min_val = m.elem (0, 0);
}
else
return 0;
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
{
double val = m.elem (i, j);
if (val > max_val)
max_val = val;
if (val < min_val)
min_val = val;
if (D_NINT (val) != val)
return 0;
}
return 1;
}
// Return nonzero if any element of CM has a non-integer real or
// imaginary part. Also extract the largest and smallest (real or
// imaginary) values and return them in MAX_VAL and MIN_VAL.
static int
all_parts_int (const ComplexMatrix& m, double& max_val, double& min_val)
{
int nr = m.rows ();
int nc = m.columns ();
if (nr > 0 && nc > 0)
{
Complex val = m.elem (0, 0);
double r_val = real (val);
double i_val = imag (val);
max_val = r_val;
min_val = r_val;
if (i_val > max_val)
max_val = i_val;
if (i_val < max_val)
min_val = i_val;
}
else
return 0;
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
{
Complex val = m.elem (i, j);
double r_val = real (val);
double i_val = imag (val);
if (r_val > max_val)
max_val = r_val;
if (i_val > max_val)
max_val = i_val;
if (r_val < min_val)
min_val = r_val;
if (i_val < min_val)
min_val = i_val;
if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val)
return 0;
}
return 1;
}
static int
too_large_for_float (const Matrix& m)
{
int nr = m.rows ();
int nc = m.columns ();
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
{
Complex val = m.elem (i, j);
double r_val = real (val);
double i_val = imag (val);
if (r_val > FLT_MAX
|| i_val > FLT_MAX
|| r_val < FLT_MIN
|| i_val < FLT_MIN)
return 1;
}
return 0;
}
static int
too_large_for_float (const ComplexMatrix& m)
{
int nr = m.rows ();
int nc = m.columns ();
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
{
Complex val = m.elem (i, j);
double r_val = real (val);
double i_val = imag (val);
if (r_val > FLT_MAX
|| i_val > FLT_MAX
|| r_val < FLT_MIN
|| i_val < FLT_MIN)
return 1;
}
return 0;
}
// XXX FIXME XXX -- shouldn't this be implemented in terms of other
// functions that are already available?
// Install a variable with name NAME and the value specified TC in the
// symbol table. If FORCE is nonzero, replace any existing definition
// for NAME. If GLOBAL is nonzero, make the variable global.
//
// Assumes TC is defined.
static void
install_loaded_variable (int force, char *name, const tree_constant& tc,
int global, char *doc)
{
// Is there already a symbol by this name? If so, what is it?
symbol_record *lsr = curr_sym_tab->lookup (name, 0, 0);
int is_undefined = 1;
int is_variable = 0;
int is_function = 0;
int is_global = 0;
if (lsr)
{
is_undefined = ! lsr->is_defined ();
is_variable = lsr->is_variable ();
is_function = lsr->is_function ();
is_global = lsr->is_linked_to_global ();
}
symbol_record *sr = 0;
if (global)
{
if (is_global || is_undefined)
{
if (force || is_undefined)
{
lsr = curr_sym_tab->lookup (name, 1, 0);
link_to_global_variable (lsr);
sr = lsr;
}
else
{
warning ("load: global variable name `%s' exists.", name);
warning ("use `load -force' to overwrite");
}
}
else if (is_function)
{
if (force)
{
lsr = curr_sym_tab->lookup (name, 1, 0);
link_to_global_variable (lsr);
sr = lsr;
}
else
{
warning ("load: `%s' is currently a function in this scope", name);
warning ("`load -force' will load variable and hide function");
}
}
else if (is_variable)
{
if (force)
{
lsr = curr_sym_tab->lookup (name, 1, 0);
link_to_global_variable (lsr);
sr = lsr;
}
else
{
warning ("load: local variable name `%s' exists.", name);
warning ("use `load -force' to overwrite");
}
}
else
error ("load: unable to load data for unknown symbol type");
}
else
{
if (is_global)
{
if (force || is_undefined)
{
lsr = curr_sym_tab->lookup (name, 1, 0);
link_to_global_variable (lsr);
sr = lsr;
}
else
{
warning ("load: global variable name `%s' exists.", name);
warning ("use `load -force' to overwrite");
}
}
else if (is_function)
{
if (force)
{
lsr = curr_sym_tab->lookup (name, 1, 0);
link_to_global_variable (lsr);
sr = lsr;
}
else
{
warning ("load: `%s' is currently a function in this scope", name);
warning ("`load -force' will load variable and hide function");
}
}
else if (is_variable || is_undefined)
{
if (force || is_undefined)
{
lsr = curr_sym_tab->lookup (name, 1, 0);
sr = lsr;
}
else
{
warning ("load: local variable name `%s' exists.", name);
warning ("use `load -force' to overwrite");
}
}
else
error ("load: unable to load data for unknown symbol type");
}
if (sr)
{
tree_constant *tmp_tc = new tree_constant (tc);
sr->define (tmp_tc);
if (doc)
sr->document (doc);
return;
}
else
error ("load: unable to load variable `%s'", name);
return;
}
// Functions for reading ascii data.
// Skip white space and comments on stream IS.
static void
skip_comments (istream& is)
{
char c = '\0';
while (is.get (c))
{
if (c == ' ' || c == '\t' || c == '\n')
; // Skip whitespace on way to beginning of next line.
else
break;
}
for (;;)
{
if (is && c == '#')
while (is.get (c) && c != '\n')
; // Skip to beginning of next line, ignoring everything.
else
break;
}
}
// Extract a KEYWORD and its value from stream IS, returning the
// associated value in a new string.
//
// Input should look something like:
//
// #[ \t]*keyword[ \t]*:[ \t]*string-value[ \t]*\n
static char *
extract_keyword (istream& is, char *keyword)
{
ostrstream buf;
char *retval = 0;
char c;
while (is.get (c))
{
if (c == '#')
{
while (is.get (c) && (c == ' ' || c == '\t' || c == '#'))
; // Skip whitespace and comment characters.
if (isalpha (c))
buf << c;
while (is.get (c) && isalpha (c))
buf << c;
buf << ends;
char *tmp = buf.str ();
int match = (strncmp (tmp, keyword, strlen (keyword)) == 0);
delete [] tmp;
if (match)
{
ostrstream value;
while (is.get (c) && (c == ' ' || c == '\t' || c == ':'))
; // Skip whitespace and the colon.
if (c != '\n')
{
value << c;
while (is.get (c) && c != '\n')
value << c;
}
value << ends;
retval = value.str ();
break;
}
}
}
if (retval)
{
int len = strlen (retval);
if (len > 0)
{
char *ptr = retval + len - 1;
while (*ptr == ' ' || *ptr == '\t')
ptr--;
*(ptr+1) = '\0';
}
}
return retval;
}
// Match KEYWORD on stream IS, placing the associated value in VALUE,
// returning 1 if successful and 0 otherwise.
//
// Input should look something like:
//
// [ \t]*keyword[ \t]*int-value.*\n
static int
extract_keyword (istream& is, char *keyword, int& value)
{
ostrstream buf;
int status = 0;
value = 0;
char c;
while (is.get (c))
{
if (c == '#')
{
while (is.get (c) && (c == ' ' || c == '\t' || c == '#'))
; // Skip whitespace and comment characters.
if (isalpha (c))
buf << c;
while (is.get (c) && isalpha (c))
buf << c;
buf << ends;
char *tmp = buf.str ();
int match = (strncmp (tmp, keyword, strlen (keyword)) == 0);
delete [] tmp;
if (match)
{
while (is.get (c) && (c == ' ' || c == '\t' || c == ':'))
; // Skip whitespace and the colon.
is.putback (c);
if (c != '\n')
is >> value;
if (is)
status = 1;
while (is.get (c) && c != '\n')
; // Skip to beginning of next line;
break;
}
}
}
return status;
}
// Extract one value (scalar, matrix, string, etc.) from stream IS and
// place it in TC, returning the name of the variable. If the value
// is tagged as global in the file, return nonzero in GLOBAL.
//
// FILENAME is used for error messages.
//
// The data is expected to be in the following format:
//
// The input file must have a header followed by some data.
//
// All lines in the header must begin with a `#' character.
//
// The header must contain a list of keyword and value pairs with the
// keyword and value separated by a colon.
//
// Keywords must appear in the following order:
//
// # name: <name>
// # type: <type>
// # <info>
//
// Where:
//
// <name> : a valid identifier
//
// <type> : <typename>
// | global <typename>
//
// <typename> : scalar
// | complex scalar
// | matrix
// | complex matrix
// | string
// | range
//
// <info> : <matrix info>
// | <string info>
//
// <matrix info> : # rows: <integer>
// | # columns: <integer>
//
// <string info> : # len: <integer>
//
// Formatted ASCII data follows the header.
//
// Example:
//
// # name: foo
// # type: matrix
// # rows: 2
// # columns: 2
// 2 4
// 1 3
//
// XXX FIXME XXX -- this format is fairly rigid, and doesn't allow for
// arbitrary comments, etc. Someone should fix that.
static char *
read_ascii_data (istream& is, const char *filename, int& global,
tree_constant& tc)
{
// Read name for this entry or break on EOF.
char *name = extract_keyword (is, "name");
if (! name)
return 0;
if (! *name)
{
error ("load: empty name keyword found in file `%s'", filename);
delete [] name;
return 0;
}
if (! valid_identifier (name))
{
error ("load: bogus identifier `%s' found in file `%s'", name, filename);
delete [] name;
return 0;
}
// Look for type keyword
char *tag = extract_keyword (is, "type");
if (tag && *tag)
{
char *ptr = strchr (tag, ' ');
if (ptr)
{
*ptr = '\0';
global = (strncmp (tag, "global", 6) == 0);
*ptr = ' ';
if (global)
ptr++;
else
ptr = tag;
}
else
ptr = tag;
if (strncmp (ptr, "scalar", 6) == 0)
{
double tmp;
is >> tmp;
if (is)
tc = tmp;
else
error ("load: failed to load scalar constant");
}
else if (strncmp (ptr, "matrix", 6) == 0)
{
int nr = 0, nc = 0;
if (extract_keyword (is, "rows", nr) && nr > 0
&& extract_keyword (is, "columns", nc) && nc > 0)
{
Matrix tmp (nr, nc);
is >> tmp;
if (is)
tc = tmp;
else
error ("load: failed to load matrix constant");
}
else
error ("load: failed to extract number of rows and columns");
}
else if (strncmp (ptr, "complex scalar", 14) == 0)
{
Complex tmp;
is >> tmp;
if (is)
tc = tmp;
else
error ("load: failed to load complex scalar constant");
}
else if (strncmp (ptr, "complex matrix", 14) == 0)
{
int nr = 0, nc = 0;
if (extract_keyword (is, "rows", nr) && nr > 0
&& extract_keyword (is, "columns", nc) && nc > 0)
{
ComplexMatrix tmp (nr, nc);
is >> tmp;
if (is)
tc = tmp;
else
error ("load: failed to load complex matrix constant");
}
else
error ("load: failed to extract number of rows and columns");
}
else if (strncmp (ptr, "string", 6) == 0)
{
int len;
if (extract_keyword (is, "length", len) && len > 0)
{
char *tmp = new char [len+1];
is.get (tmp, len+1, EOF);
if (is)
tc = tmp;
else
error ("load: failed to load string constant");
}
else
error ("load: failed to extract string length");
}
else if (strncmp (ptr, "range", 5) == 0)
{
// # base, limit, range comment added by save().
skip_comments (is);
Range tmp;
is >> tmp;
if (is)
tc = tmp;
else
error ("load: failed to load range constant");
}
else
error ("load: unknown constant type `%s'", tag);
}
else
error ("load: failed to extract keyword specifying value type");
delete [] tag;
if (error_state)
{
error ("load: reading file %s", filename);
return 0;
}
return name;
}
// Extract one value (scalar, matrix, string, etc.) from stream IS and
// place it in TC, returning the name of the variable. If the value
// is tagged as global in the file, return nonzero in GLOBAL. If SWAP
// is nonzero, swap bytes after reading.
//
// The data is expected to be in the following format:
//
// Header (one per file):
// =====================
//
// object type bytes
// ------ ---- -----
// magic number string 10
//
// float format integer 1
//
//
// Data (one set for each item):
// ============================
//
// object type bytes
// ------ ---- -----
// name_length integer 4
//
// name string name_length
//
// doc_length integer 4
//
// doc string doc_length
//
// global flag integer 1
//
// data type integer 1
//
// data (one of):
//
// scalar:
// data real 8
//
// complex scalar:
// data complex 16
//
// matrix:
// rows integer 4
// columns integer 4
// data real r*c*8
//
// complex matrix:
// rows integer 4
// columns integer 4
// data complex r*c*16
//
// string:
// length int 4
// data string length
//
// range:
// base real 8
// limit real 8
// increment real 8
//
// FILENAME is used for error messages.
static char *
read_binary_data (istream& is, int swap, floating_point_format fmt,
const char *filename, int& global,
tree_constant& tc, char *&doc)
{
char tmp = 0;
FOUR_BYTE_INT name_len = 0, doc_len = 0;
char *name = 0;
doc = 0;
// We expect to fail here, at the beginning of a record, so not being
// able to read another name should not result in an error.
is.read (&name_len, 4);
if (! is)
return 0;
if (swap)
swap_4_bytes ((char *) &name_len);
name = new char [name_len+1];
name[name_len] = '\0';
if (! is.read (name, name_len))
goto data_read_error;
is.read (&doc_len, 4);
if (! is)
goto data_read_error;
if (swap)
swap_4_bytes ((char *) &doc_len);
doc = new char [doc_len+1];
doc[doc_len] = '\0';
if (! is.read (doc, doc_len))
goto data_read_error;
if (! is.read (&tmp, 1))
goto data_read_error;
global = tmp ? 1 : 0;
tmp = 0;
if (! is.read (&tmp, 1))
goto data_read_error;
switch (tmp)
{
case 1:
{
if (! is.read (&tmp, 1))
goto data_read_error;
double dtmp;
read_doubles (is, &dtmp, (save_type) tmp, 1, swap, fmt);
if (error_state || ! is)
goto data_read_error;
tc = dtmp;
}
break;
case 2:
{
FOUR_BYTE_INT nr, nc;
if (! is.read (&nr, 4))
goto data_read_error;
if (swap)
swap_4_bytes ((char *) &nr);
if (! is.read (&nc, 4))
goto data_read_error;
if (swap)
swap_4_bytes ((char *) &nc);
if (! is.read (&tmp, 1))
goto data_read_error;
Matrix m (nr, nc);
double *re = m.fortran_vec ();
int len = nr * nc;
read_doubles (is, re, (save_type) tmp, len, swap, fmt);
if (error_state || ! is)
goto data_read_error;
tc = m;
}
break;
case 3:
{
if (! is.read (&tmp, 1))
goto data_read_error;
Complex ctmp;
read_doubles (is, (double *) &ctmp, (save_type) tmp, 2, swap, fmt);
if (error_state || ! is)
goto data_read_error;
tc = ctmp;
}
break;
case 4:
{
FOUR_BYTE_INT nr, nc;
if (! is.read (&nr, 4))
goto data_read_error;
if (swap)
swap_4_bytes ((char *) &nr);
if (! is.read (&nc, 4))
goto data_read_error;
if (swap)
swap_4_bytes ((char *) &nc);
if (! is.read (&tmp, 1))
goto data_read_error;
ComplexMatrix m (nr, nc);
Complex *im = m.fortran_vec ();
int len = nr * nc;
read_doubles (is, (double *) im, (save_type) tmp, 2*len,
swap, fmt);
if (error_state || ! is)
goto data_read_error;
tc = m;
}
break;
case 5:
{
int nr = tc.rows ();
int nc = tc.columns ();
FOUR_BYTE_INT len = nr * nc;
if (! is.read (&len, 4))
goto data_read_error;
if (swap)
swap_4_bytes ((char *) &len);
char *s = new char [len+1];
if (! is.read (s, len))
{
delete [] s;
goto data_read_error;
}
s[len] = '\0';
tc = s;
}
break;
case 6:
{
if (! is.read (&tmp, 1))
goto data_read_error;
double bas, lim, inc;
if (! is.read (&bas, 8))
goto data_read_error;
if (swap)
swap_8_bytes ((char *) &bas);
if (! is.read (&lim, 8))
goto data_read_error;
if (swap)
swap_8_bytes ((char *) &lim);
if (! is.read (&inc, 8))
goto data_read_error;
if (swap)
swap_8_bytes ((char *) &inc);
Range r (bas, lim, inc);
tc = r;
}
break;
default:
data_read_error:
error ("load: trouble reading binary file `%s'", filename);
delete [] name;
name = 0;
break;
}
return name;
}
// Read LEN elements of data from IS in the format specified by
// PRECISION, placing the result in DATA. If SWAP is nonzero, swap
// the bytes of each element before copying to DATA. FLT_FMT
// specifies the format of the data if we are reading floating point
// numbers.
static void
read_mat_binary_data (istream& is, double *data, int precision,
int len, int swap, floating_point_format flt_fmt)
{
switch (precision)
{
case 0:
read_doubles (is, data, LS_DOUBLE, len, swap, flt_fmt);
break;
case 1:
read_doubles (is, data, LS_FLOAT, len, swap, flt_fmt);
break;
case 2:
read_doubles (is, data, LS_INT, len, swap, flt_fmt);
break;
case 3:
read_doubles (is, data, LS_SHORT, len, swap, flt_fmt);
break;
case 4:
read_doubles (is, data, LS_U_SHORT, len, swap, flt_fmt);
break;
case 5:
read_doubles (is, data, LS_U_CHAR, len, swap, flt_fmt);
break;
default:
break;
}
}
static int
read_mat_file_header (istream& is, int& swap, FOUR_BYTE_INT& mopt,
FOUR_BYTE_INT& nr, FOUR_BYTE_INT& nc,
FOUR_BYTE_INT& imag, FOUR_BYTE_INT& len,
int quiet = 0)
{
swap = 0;
// We expect to fail here, at the beginning of a record, so not being
// able to read another mopt value should not result in an error.
is.read (&mopt, 4);
if (! is)
return 1;
if (! is.read (&nr, 4))
goto data_read_error;
if (! is.read (&nc, 4))
goto data_read_error;
if (! is.read (&imag, 4))
goto data_read_error;
if (! is.read (&len, 4))
goto data_read_error;
// If mopt is nonzero and the byte order is swapped, mopt will be
// bigger than we expect, so we swap bytes.
//
// If mopt is zero, it means the file was written on a little endian
// machine, and we only need to swap if we are running on a big endian
// machine.
//
// Gag me.
#if defined (WORDS_BIGENDIAN)
if (mopt == 0)
swap = 1;
#endif
// mopt is signed, therefore byte swap may result in negative value.
if (mopt > 9999 || mopt < 0)
swap = 1;
if (swap)
{
swap_4_bytes ((char *) &mopt);
swap_4_bytes ((char *) &nr);
swap_4_bytes ((char *) &nc);
swap_4_bytes ((char *) &imag);
swap_4_bytes ((char *) &len);
}
if (mopt > 9999 || mopt < 0 || imag > 1 || imag < 0)
{
if (! quiet)
error ("load: can't read binary file");
return -1;
}
return 0;
data_read_error:
return -1;
}
// We don't just use a cast here, because we need to be able to detect
// possible errors.
static floating_point_format
get_floating_point_format (int mach)
{
floating_point_format flt_fmt = LS_UNKNOWN_FLT_FMT;
switch (mach)
{
case 0:
flt_fmt = LS_IEEE_LITTLE;
break;
case 1:
flt_fmt = LS_IEEE_BIG;
break;
case 2:
flt_fmt = LS_VAX_D;
break;
case 3:
flt_fmt = LS_VAX_G;
break;
case 4:
flt_fmt = LS_CRAY;
break;
default:
flt_fmt = LS_UNKNOWN_FLT_FMT;
break;
}
return flt_fmt;
}
// Extract one value (scalar, matrix, string, etc.) from stream IS and
// place it in TC, returning the name of the variable.
//
// The data is expected to be in Matlab's .mat format, though not all
// the features of that format are supported.
//
// FILENAME is used for error messages.
//
// This format provides no way to tag the data as global.
static char *
read_mat_binary_data (istream& is, const char *filename,
tree_constant& tc)
{
// These are initialized here instead of closer to where they are
// first used to avoid errors from gcc about goto crossing
// initialization of variable.
Matrix re;
floating_point_format flt_fmt = LS_UNKNOWN_FLT_FMT;
char *name = 0;
int swap = 0, type = 0, prec = 0, mach = 0, dlen = 0;
FOUR_BYTE_INT mopt, nr, nc, imag, len;
int err = read_mat_file_header (is, swap, mopt, nr, nc, imag, len);
if (err)
{
if (err < 0)
goto data_read_error;
else
return 0;
}
type = mopt % 10; // Full, sparse, etc.
mopt /= 10; // Eliminate first digit.
prec = mopt % 10; // double, float, int, etc.
mopt /= 100; // Skip unused third digit too.
mach = mopt % 10; // IEEE, VAX, etc.
flt_fmt = get_floating_point_format (mach);
if (flt_fmt == LS_UNKNOWN_FLT_FMT)
{
error ("load: unrecognized binary format!");
return 0;
}
if (type != 0 && type != 1)
{
error ("load: can't read sparse matrices");
return 0;
}
if (imag && type == 1)
{
error ("load: encountered complex matrix with string flag set!");
return 0;
}
name = new char [len];
if (! is.read (name, len))
goto data_read_error;
dlen = nr * nc;
if (dlen < 0)
goto data_read_error;
re.resize (nr, nc);
read_mat_binary_data (is, re.fortran_vec (), prec, dlen, swap, flt_fmt);
if (! is || error_state)
{
error ("load: reading matrix data for `%s'", name);
goto data_read_error;
}
if (imag)
{
Matrix im (nr, nc);
read_mat_binary_data (is, im.fortran_vec (), prec, dlen, swap, flt_fmt);
if (! is || error_state)
{
error ("load: reading imaginary matrix data for `%s'", name);
goto data_read_error;
}
ComplexMatrix ctmp (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
ctmp.elem (i, j) = Complex (re.elem (i, j), im.elem (i, j));
tc = ctmp;
}
else
tc = re;
// XXX FIXME XXX -- this needs to change once strings really work.
if (type == 1 && nr == 1)
tc = tc.convert_to_str ();
return name;
data_read_error:
error ("load: trouble reading binary file `%s'", filename);
delete [] name;
return 0;
}
// Return nonzero if NAME matches one of the given globbing PATTERNS.
static int
matches_patterns (char **patterns, int num_pat, char *name)
{
while (num_pat-- > 0)
{
if (fnmatch (*patterns++, name, __FNM_FLAGS) == 0)
return 1;
}
return 0;
}
static int
read_binary_file_header (istream& is, int& swap,
floating_point_format& flt_fmt, int quiet = 0)
{
int magic_len = 10;
char magic [magic_len+1];
is.read (magic, magic_len);
magic[magic_len] = '\0';
if (strncmp (magic, "Octave-1-L", magic_len) == 0)
{
#if defined (WORDS_BIGENDIAN)
swap = 1;
#else
swap = 0;
#endif
}
else if (strncmp (magic, "Octave-1-B", magic_len) == 0)
{
#if defined (WORDS_BIGENDIAN)
swap = 0;
#else
swap = 1;
#endif
}
else
{
if (! quiet)
error ("load: can't read binary file");
return -1;
}
char tmp = 0;
is.read (&tmp, 1);
flt_fmt = get_floating_point_format (tmp);
if (flt_fmt == LS_UNKNOWN_FLT_FMT)
{
if (! quiet)
error ("load: unrecognized binary format!");
return -1;
}
return 0;
}
static load_save_format
get_file_format (const char *fname, const char *orig_fname)
{
load_save_format retval = LS_UNKNOWN;
ifstream file (fname);
if (! file)
{
error ("load: couldn't open input file `%s'", orig_fname);
return retval;
}
int swap;
floating_point_format flt_fmt = LS_UNKNOWN_FLT_FMT;
if (read_binary_file_header (file, swap, flt_fmt, 1) == 0)
retval = LS_BINARY;
else
{
file.seekg (0, ios::beg);
FOUR_BYTE_INT mopt, nr, nc, imag, len;
int swap;
if (read_mat_file_header (file, swap, mopt, nr, nc, imag, len, 1) == 0)
retval = LS_MAT_BINARY;
else
{
file.seekg (0, ios::beg);
char *tmp = extract_keyword (file, "name");
if (tmp)
retval = LS_ASCII;
delete [] tmp;
}
}
file.close ();
if (retval == LS_UNKNOWN)
error ("load: unable to determine file format for `%s'", orig_fname);
return retval;
}
static Octave_object
do_load (istream& stream, const char *orig_fname, int force,
load_save_format format, floating_point_format flt_fmt,
int list_only, int swap, int verbose, char **argv,
int argc, int nargout)
{
Octave_object retval;
ostrstream output_buf;
int count = 0;
for (;;)
{
int global = 0;
tree_constant tc;
char *name = 0;
char *doc = 0;
switch (format)
{
case LS_ASCII:
name = read_ascii_data (stream, orig_fname, global, tc);
break;
case LS_BINARY:
name = read_binary_data (stream, swap, flt_fmt, orig_fname,
global, tc, doc);
break;
case LS_MAT_BINARY:
name = read_mat_binary_data (stream, orig_fname, tc);
break;
default:
gripe_unrecognized_data_fmt ("load");
break;
}
if (error_state || stream.eof () || ! name)
{
delete [] name;
delete [] doc;
break;
}
else if (! error_state && name)
{
if (tc.is_defined ())
{
if (argc == 0 || matches_patterns (argv, argc, name))
{
count++;
if (list_only)
{
if (verbose)
{
if (count == 1)
output_buf
<< "type rows cols name\n"
<< "==== ==== ==== ====\n";
output_buf.form ("%-16s", tc.type_as_string ());
output_buf.form ("%7d", tc.rows ());
output_buf.form ("%7d", tc.columns ());
output_buf << " ";
}
output_buf << name << "\n";
}
else
{
install_loaded_variable (force, name, tc, global, doc);
}
}
}
else
error ("load: unable to load variable `%s'", name);
}
else
{
if (count == 0)
error ("load: are you sure `%s' is an Octave data file?",
orig_fname);
delete [] name;
delete [] doc;
break;
}
delete [] name;
delete [] doc;
}
if (list_only && count)
{
if (nargout > 0)
{
output_buf << ends;
char *msg = output_buf.str ();
retval = msg;
delete [] msg;
}
else
maybe_page_output (output_buf);
}
return retval;
}
DEFUN_TEXT ("load", Fload, Sload, -1, 1,
"load [-force] [-ascii] [-binary] [-mat-binary] file [pattern ...]\n\
\n\
Load variables from a file.\n\
\n\
If no argument is supplied to select a format, load tries to read the
named file as an Octave binary, then as a .mat file, and then as an
Octave text file.\n\
\n\
If the option -force is given, variables with the same names as those
found in the file will be replaced with the values read from the file.")
{
Octave_object retval;
DEFINE_ARGV ("load");
argc--;
argv++;
int force = 0;
// It isn't necessary to have the default load format stored in a user
// preference variable since we can determine the type of file as we
// are reading.
load_save_format format = LS_UNKNOWN;
int list_only = 0;
int verbose = 0;
while (argc > 0)
{
if (strcmp (*argv, "-force") == 0 || strcmp (*argv, "-f") == 0)
{
force++;
argc--;
argv++;
}
else if (strcmp (*argv, "-list") == 0 || strcmp (*argv, "-l") == 0)
{
list_only = 1;
argc--;
argv++;
}
else if (strcmp (*argv, "-verbose") == 0 || strcmp (*argv, "-v") == 0)
{
verbose = 1;
argc--;
argv++;
}
else if (strcmp (*argv, "-ascii") == 0 || strcmp (*argv, "-a") == 0)
{
format = LS_ASCII;
argc--;
argv++;
}
else if (strcmp (*argv, "-binary") == 0 || strcmp (*argv, "-b") == 0)
{
format = LS_BINARY;
argc--;
argv++;
}
else if (strcmp (*argv, "-mat-binary") == 0 || strcmp (*argv, "-m") == 0)
{
format = LS_MAT_BINARY;
argc--;
argv++;
}
else
break;
}
if (argc < 1)
{
error ("load: you must specify a single file to read");
DELETE_ARGV;
return retval;
}
char *orig_fname = *argv;
floating_point_format flt_fmt = LS_UNKNOWN_FLT_FMT;
int swap = 0;
if (strcmp (*argv, "-") == 0)
{
argc--;
argv++;
if (format != LS_UNKNOWN)
{
// XXX FIXME XXX -- if we have already seen EOF on a previous call,
// how do we fix up the state of cin so that we can get additional
// input? I'm afraid that we can't fix this using cin only.
retval = do_load (cin, orig_fname, force, format, flt_fmt,
list_only, swap, verbose, argv, argc,
nargout);
}
else
error ("load: must specify file format if reading from stdin");
}
else
{
char *fname = tilde_expand (*argv);
if (format == LS_UNKNOWN)
format = get_file_format (fname, orig_fname);
if (format != LS_UNKNOWN)
{
argv++;
argc--;
unsigned mode = ios::in;
if (format == LS_BINARY || format == LS_MAT_BINARY)
mode |= ios::bin;
ifstream file (fname, mode);
if (file)
{
if (format == LS_BINARY)
{
if (read_binary_file_header (file, swap, flt_fmt) < 0)
{
file.close ();
DELETE_ARGV;
return retval;
}
}
retval = do_load (file, orig_fname, force, format,
flt_fmt, list_only, swap, verbose,
argv, argc, nargout);
file.close ();
}
else
error ("load: couldn't open input file `%s'", orig_fname);
}
}
DELETE_ARGV;
return retval;
}
// Return nonzero if PATTERN has any special globbing chars in it.
static int
glob_pattern_p (char *pattern)
{
char *p = pattern;
char c;
int open = 0;
while ((c = *p++) != '\0')
{
switch (c)
{
case '?':
case '*':
return 1;
case '[': // Only accept an open brace if there is a close
open++; // brace to match it. Bracket expressions must be
continue; // complete, according to Posix.2
case ']':
if (open)
return 1;
continue;
case '\\':
if (*p++ == '\0')
return 0;
default:
continue;
}
}
return 0;
}
// MAX_VAL and MIN_VAL are assumed to have integral values even though
// they are stored in doubles.
static save_type
get_save_type (double max_val, double min_val)
{
save_type st = LS_DOUBLE;
if (max_val < 256 && min_val > -1)
st = LS_U_CHAR;
else if (max_val < 65536 && min_val > -1)
st = LS_U_SHORT;
else if (max_val < 4294967295 && min_val > -1)
st = LS_U_INT;
else if (max_val < 128 && min_val >= -128)
st = LS_CHAR;
else if (max_val < 32768 && min_val >= -32768)
st = LS_SHORT;
else if (max_val < 2147483648 && min_val > -2147483648)
st = LS_INT;
return st;
}
// Save the data from TC along with the corresponding NAME, help
// string DOC, and global flag MARK_AS_GLOBAL on stream OS in the
// binary format described above for load_binary_data.
static int
save_binary_data (ostream& os, const tree_constant& tc, char *name,
char *doc, int mark_as_global, int save_as_floats)
{
int fail = 0;
FOUR_BYTE_INT name_len = 0;
if (name)
name_len = strlen (name);
os.write (&name_len, 4);
os.write (name, name_len);
FOUR_BYTE_INT doc_len = 0;
if (doc)
doc_len = strlen (doc);
os.write (&doc_len, 4);
os.write (doc, doc_len);
char tmp;
tmp = mark_as_global;
os.write (&tmp, 1);
if (tc.is_real_scalar ())
{
tmp = 1;
os.write (&tmp, 1);
tmp = (char) LS_DOUBLE;
os.write (&tmp, 1);
double tmp = tc.double_value ();
os.write (&tmp, 8);
}
else if (tc.is_real_matrix ())
{
tmp = 2;
os.write (&tmp, 1);
Matrix m = tc.matrix_value ();
FOUR_BYTE_INT nr = m.rows ();
FOUR_BYTE_INT nc = m.columns ();
os.write (&nr, 4);
os.write (&nc, 4);
int len = nr * nc;
save_type st = LS_DOUBLE;
if (save_as_floats)
{
if (too_large_for_float (m))
{
warning ("save: some values too large to save as floats --");
warning ("save: saving as doubles instead");
}
else
st = LS_FLOAT;
}
else if (len > 8192) // XXX FIXME XXX -- make this configurable.
{
double max_val, min_val;
if (all_parts_int (m, max_val, min_val))
st = get_save_type (max_val, min_val);
}
const double *mtmp = m.data ();
write_doubles (os, mtmp, st, len);
}
else if (tc.is_complex_scalar ())
{
tmp = 3;
os.write (&tmp, 1);
tmp = (char) LS_DOUBLE;
os.write (&tmp, 1);
Complex tmp = tc.complex_value ();
os.write (&tmp, 16);
}
else if (tc.is_complex_matrix ())
{
tmp = 4;
os.write (&tmp, 1);
ComplexMatrix m = tc.complex_matrix_value ();
FOUR_BYTE_INT nr = m.rows ();
FOUR_BYTE_INT nc = m.columns ();
os.write (&nr, 4);
os.write (&nc, 4);
int len = nr * nc;
save_type st = LS_DOUBLE;
if (save_as_floats)
{
if (too_large_for_float (m))
{
warning ("save: some values too large to save as floats --");
warning ("save: saving as doubles instead");
}
else
st = LS_FLOAT;
}
else if (len > 4096) // XXX FIXME XXX -- make this configurable.
{
double max_val, min_val;
if (all_parts_int (m, max_val, min_val))
st = get_save_type (max_val, min_val);
}
const Complex *mtmp = m.data ();
write_doubles (os, (const double *) mtmp, st, 2*len);
}
else if (tc.is_string ())
{
tmp = 5;
os.write (&tmp, 1);
int nr = tc.rows ();
int nc = tc.columns ();
FOUR_BYTE_INT len = nr * nc;
os.write (&len, 4);
char *s = tc.string_value ();
os.write (s, len);
}
else if (tc.is_range ())
{
tmp = 6;
os.write (&tmp, 1);
tmp = (char) LS_DOUBLE;
os.write (&tmp, 1);
Range r = tc.range_value ();
double bas = r.base ();
double lim = r.limit ();
double inc = r.inc ();
os.write (&bas, 8);
os.write (&lim, 8);
os.write (&inc, 8);
}
else
{
gripe_wrong_type_arg ("save", tc);
fail = 1;
}
return (os && ! fail);
}
// Save the data from TC along with the corresponding NAME on stream OS
// in the MatLab binary format.
static int
save_mat_binary_data (ostream& os, const tree_constant& tc, char *name)
{
int fail = 0;
FOUR_BYTE_INT mopt = 0;
mopt += tc.is_string () ? 1 : 0;
mopt += 1000 * get_floating_point_format (NATIVE_FLOAT_FORMAT);
os.write (&mopt, 4);
FOUR_BYTE_INT nr = tc.rows ();
os.write (&nr, 4);
FOUR_BYTE_INT nc = tc.columns ();
os.write (&nc, 4);
int len = nr * nc;
FOUR_BYTE_INT imag = tc.is_complex_type () ? 1 : 0;
os.write (&imag, 4);
FOUR_BYTE_INT name_len = name ? strlen (name) + 1 : 0;
os.write (&name_len, 4);
os.write (name, name_len);
if (tc.is_real_scalar ())
{
double tmp = tc.double_value ();
os.write (&tmp, 8);
}
else if (tc.is_real_matrix ())
{
Matrix m = tc.matrix_value ();
os.write (m.data (), 8 * len);
}
else if (tc.is_complex_scalar ())
{
Complex tmp = tc.complex_value ();
os.write (&tmp, 16);
}
else if (tc.is_complex_matrix ())
{
ComplexMatrix m_cmplx = tc.complex_matrix_value ();
Matrix m = ::real(m_cmplx);
os.write (m.data (), 8 * len);
m = ::imag(m_cmplx);
os.write (m.data (), 8 * len);
}
else if (tc.is_string ())
{
begin_unwind_frame ("save_mat_binary_data");
unwind_protect_int (user_pref.implicit_str_to_num_ok);
user_pref.implicit_str_to_num_ok = 1;
Matrix m = tc.matrix_value ();
os.write (m.data (), 8 * len);
run_unwind_frame ("save_mat_binary_data");
}
else if (tc.is_range ())
{
Range r = tc.range_value ();
double base = r.base ();
double inc = r.inc ();
int nel = r.nelem ();
for (int i = 0; i < nel; i++)
{
double x = base + i * inc;
os.write (&x, 8);
}
}
else
{
gripe_wrong_type_arg ("save", tc);
fail = 1;
}
return (os && ! fail);
}
static void
ascii_save_type (ostream& os, char *type, int mark_as_global)
{
if (mark_as_global)
os << "# type: global ";
else
os << "# type: ";
os << type << "\n";
}
static Matrix
strip_infnan (const Matrix& m)
{
int nr = m.rows ();
int nc = m.columns ();
Matrix retval (nr, nc);
int k = 0;
for (int i = 0; i < nr; i++)
{
for (int j = 0; j < nc; j++)
{
double d = m.elem (i, j);
if (xisnan (d))
goto next_row;
else
retval.elem (k, j) = xisinf (d) ? (d > 0 ? OCT_RBV : -OCT_RBV) : d;
}
k++;
next_row:
continue;
}
if (k > 0)
retval.resize (k, nc);
return retval;
}
static ComplexMatrix
strip_infnan (const ComplexMatrix& m)
{
int nr = m.rows ();
int nc = m.columns ();
ComplexMatrix retval (nr, nc);
int k = 0;
for (int i = 0; i < nr; i++)
{
for (int j = 0; j < nc; j++)
{
Complex c = m.elem (i, j);
if (xisnan (c))
goto next_row;
else
{
double re = real (c);
double im = imag (c);
re = xisinf (re) ? (re > 0 ? OCT_RBV : -OCT_RBV) : re;
im = xisinf (im) ? (im > 0 ? OCT_RBV : -OCT_RBV) : im;
retval.elem (k, j) = Complex (re, im);
}
}
k++;
next_row:
continue;
}
if (k > 0)
retval.resize (k, nc);
return retval;
}
// Save the data from TC along with the corresponding NAME, and global
// flag MARK_AS_GLOBAL on stream OS in the plain text format described
// above for load_ascii_data. If NAME is null, the name: line is not
// generated. PRECISION specifies the number of decimal digits to print.
// If STRIP_NAN_AND_INF is nonzero, rows containing NaNs are deleted,
// and Infinite values are converted to +/-OCT_RBV (A Real Big Value,
// but not so big that gnuplot can't handle it when trying to compute
// axis ranges, etc.).
//
// Assumes ranges and strings cannot contain Inf or NaN values.
//
// Returns 1 for success and 0 for failure.
// XXX FIXME XXX -- should probably write the help string here too.
int
save_ascii_data (ostream& os, const tree_constant& tc,
char *name, int strip_nan_and_inf,
int mark_as_global, int precision)
{
int success = 1;
if (! precision)
precision = user_pref.save_precision;
if (name)
os << "# name: " << name << "\n";
long old_precision = os.precision ();
os.precision (precision);
if (tc.is_real_scalar ())
{
ascii_save_type (os, "scalar", mark_as_global);
double d = tc.double_value ();
if (strip_nan_and_inf)
{
if (xisnan (d))
{
error ("only value to plot is NaN");
success = 0;
}
else
{
d = xisinf (d) ? (d > 0 ? OCT_RBV : -OCT_RBV) : d;
os << d << "\n";
}
}
else
os << d << "\n";
}
else if (tc.is_real_matrix ())
{
ascii_save_type (os, "matrix", mark_as_global);
os << "# rows: " << tc.rows () << "\n"
<< "# columns: " << tc.columns () << "\n";
Matrix tmp = tc.matrix_value ();
if (strip_nan_and_inf)
tmp = strip_infnan (tmp);
os << tmp;
}
else if (tc.is_complex_scalar ())
{
ascii_save_type (os, "complex scalar", mark_as_global);
Complex c = tc.complex_value ();
if (strip_nan_and_inf)
{
if (xisnan (c))
{
error ("only value to plot is NaN");
success = 0;
}
else
{
double re = real (c);
double im = imag (c);
re = xisinf (re) ? (re > 0 ? OCT_RBV : -OCT_RBV) : re;
im = xisinf (im) ? (im > 0 ? OCT_RBV : -OCT_RBV) : im;
c = Complex (re, im);
os << c << "\n";
}
}
else
os << c << "\n";
}
else if (tc.is_complex_matrix ())
{
ascii_save_type (os, "complex matrix", mark_as_global);
os << "# rows: " << tc.rows () << "\n"
<< "# columns: " << tc.columns () << "\n";
ComplexMatrix tmp = tc.complex_matrix_value ();
if (strip_nan_and_inf)
tmp = strip_infnan (tmp);
os << tmp;
}
else if (tc.is_string ())
{
ascii_save_type (os, "string", mark_as_global);
char *tmp = tc.string_value ();
os << "# length: " << strlen (tmp) << "\n"
<< tmp << "\n";
}
else if (tc.is_range ())
{
ascii_save_type (os, "range", mark_as_global);
Range tmp = tc.range_value ();
os << "# base, limit, increment\n"
<< tmp.base () << " "
<< tmp.limit () << " "
<< tmp.inc () << "\n";
}
else
{
gripe_wrong_type_arg ("save", tc);
success = 0;
}
os.precision (old_precision);
return (os && success);
}
// Save the info from sr on stream os in the format specified by fmt.
static void
do_save (ostream& os, symbol_record *sr, load_save_format fmt,
int save_as_floats)
{
if (! sr->is_variable ())
{
error ("save: can only save variables, not functions");
return;
}
char *name = sr->name ();
char *help = sr->help ();
int global = sr->is_linked_to_global ();
tree_constant tc = *((tree_constant *) sr->def ());
if (! name || ! tc.is_defined ())
return;
switch (fmt)
{
case LS_ASCII:
save_ascii_data (os, tc, name, 0, global);
break;
case LS_BINARY:
save_binary_data (os, tc, name, help, global, save_as_floats);
break;
case LS_MAT_BINARY:
save_mat_binary_data (os, tc, name);
break;
default:
gripe_unrecognized_data_fmt ("save");
break;
}
}
// Save variables with names matching PATTERN on stream OS in the
// format specified by FMT. If SAVE_BUILTINS is nonzero, also save
// builtin variables with names that match PATTERN.
static int
save_vars (ostream& os, char *pattern, int save_builtins,
load_save_format fmt, int save_as_floats)
{
int count;
symbol_record **vars = curr_sym_tab->glob
(count, pattern, symbol_def::USER_VARIABLE, SYMTAB_ALL_SCOPES);
int saved = count;
int i;
for (i = 0; i < count; i++)
{
do_save (os, vars[i], fmt, save_as_floats);
if (error_state)
break;
}
delete [] vars;
if (! error_state && save_builtins)
{
symbol_record **vars = global_sym_tab->glob
(count, pattern, symbol_def::BUILTIN_VARIABLE, SYMTAB_ALL_SCOPES);
saved += count;
for (i = 0; i < count; i++)
{
do_save (os, vars[i], fmt, save_as_floats);
if (error_state)
break;
}
delete [] vars;
}
return saved;
}
static load_save_format
get_default_save_format (void)
{
load_save_format retval = LS_ASCII;
char *fmt = user_pref.default_save_format;
if (strcasecmp (fmt, "binary") == 0)
retval = LS_BINARY;
else if (strcasecmp (fmt, "mat-binary") == 0
|| strcasecmp (fmt, "mat_binary") == 0)
retval = LS_MAT_BINARY;
return retval;
}
static void
write_binary_header (ostream& stream, load_save_format format)
{
if (format == LS_BINARY)
{
#if defined (WORDS_BIGENDIAN)
stream << "Octave-1-B";
#else
stream << "Octave-1-L";
#endif
char tmp = (char) NATIVE_FLOAT_FORMAT;
stream.write (&tmp, 1);
}
}
static void
save_vars (char **argv, int argc, ostream& os, int save_builtins,
load_save_format fmt, int save_as_floats)
{
write_binary_header (os, fmt);
if (argc == 0)
{
save_vars (os, "*", save_builtins, fmt, save_as_floats);
}
else
{
while (argc-- > 0)
{
if (! save_vars (os, *argv, save_builtins, fmt, save_as_floats))
{
warning ("save: no such variable `%s'", *argv);
}
argv++;
}
}
}
DEFUN_TEXT ("save", Fsave, Ssave, -1, 1,
"save [-ascii] [-binary] [-float-binary] [-mat-binary] \n\
[-save-builtins] file [pattern ...]\n\
\n\
save variables in a file")
{
Octave_object retval;
DEFINE_ARGV ("save");
argc--;
argv++;
// Here is where we would get the default save format if it were
// stored in a user preference variable.
int save_builtins = 0;
int save_as_floats = 0;
load_save_format format = get_default_save_format ();
while (argc > 0)
{
if (strcmp (*argv, "-ascii") == 0 || strcmp (*argv, "-a") == 0)
{
format = LS_ASCII;
argc--;
argv++;
}
else if (strcmp (*argv, "-binary") == 0 || strcmp (*argv, "-b") == 0)
{
format = LS_BINARY;
argc--;
argv++;
}
else if (strcmp (*argv, "-mat-binary") == 0 || strcmp (*argv, "-m") == 0)
{
format = LS_MAT_BINARY;
argc--;
argv++;
}
else if (strcmp (*argv, "-float-binary") == 0
|| strcmp (*argv, "-f") == 0)
{
format = LS_BINARY;
save_as_floats = 1;
argc--;
argv++;
}
else if (strcmp (*argv, "-save-builtins") == 0)
{
save_builtins = 1;
argc--;
argv++;
}
else
break;
}
if (argc < 1)
{
print_usage ("save");
DELETE_ARGV;
return retval;
}
if (save_as_floats && format == LS_ASCII)
{
error ("save: cannot specify both -ascii and -float-binary");
DELETE_ARGV;
return retval;
}
if (strcmp (*argv, "-") == 0)
{
argc--;
argv++;
// XXX FIXME XXX -- should things intended for the screen end up in a
// tree_constant (string)?
ostrstream buf;
save_vars (argv, argc, buf, save_builtins, format,
save_as_floats);
maybe_page_output (buf);
}
else if (argc == 1 && glob_pattern_p (*argv)) // Guard against things
{ // like `save a*',
print_usage ("save"); // which are probably
DELETE_ARGV; // mistakes...
return retval;
}
else
{
char *fname = tilde_expand (*argv);
argc--;
argv++;
unsigned mode = ios::out|ios::trunc;
if (format == LS_BINARY || format == LS_MAT_BINARY)
mode |= ios::bin;
ofstream file (fname, mode);
if (file)
{
save_vars (argv, argc, file, save_builtins, format,
save_as_floats);
}
else
{
error ("save: couldn't open output file `%s'", *argv);
DELETE_ARGV;
return retval;
}
}
DELETE_ARGV;
return retval;
}
// Maybe this should be a static function in tree-plot.cc?
// If TC is matrix, save it on stream OS in a format useful for
// making a 3-dimensional plot with gnuplot. If PARAMETRIC is
// nonzero, assume a parametric 3-dimensional plot will be generated.
int
save_three_d (ostream& os, const tree_constant& tc, int parametric)
{
int fail = 0;
int nr = tc.rows ();
int nc = tc.columns ();
if (tc.is_real_matrix ())
{
os << "# 3D data...\n"
<< "# type: matrix\n"
<< "# total rows: " << nr << "\n"
<< "# total columns: " << nc << "\n";
if (parametric)
{
int extras = nc % 3;
if (extras)
warning ("ignoring last %d columns", extras);
Matrix tmp = tc.matrix_value ();
tmp = strip_infnan (tmp);
nr = tmp.rows ();
for (int i = 0; i < nc-extras; i += 3)
{
os << tmp.extract (0, i, nr-1, i+2);
if (i+3 < nc-extras)
os << "\n";
}
}
else
{
Matrix tmp = tc.matrix_value ();
tmp = strip_infnan (tmp);
nr = tmp.rows ();
for (int i = 0; i < nc; i++)
{
os << tmp.extract (0, i, nr-1, i);
if (i+1 < nc)
os << "\n";
}
}
}
else
{
::error ("for now, I can only save real matrices in 3D format");
fail = 1;
}
return (os && ! fail);
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/