home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
src
/
xpow.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
15KB
|
704 lines
// xpow.cc -*- C++ -*-
/*
Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <assert.h>
#include <Complex.h>
#include "xpow.h"
#include "dMatrix.h"
#include "CMatrix.h"
#include "dDiagMatrix.h"
#include "CDiagMatrix.h"
#include "CColVector.h"
#include "EIG.h"
#include "tree-const.h"
#include "error.h"
// This function also appears in tree-const.cc. Maybe it should be a
// member function of the Matrix class.
static int
any_element_is_negative (const Matrix& a)
{
int nr = a.rows ();
int nc = a.columns ();
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
if (a.elem (i, j) < 0.0)
return 1;
return 0;
}
// Safer pow functions.
//
// op2 \ op1: s m cs cm
// +-- +---+---+----+----+
// scalar | | 1 | 5 | 7 | 11 |
// +---+---+----+----+
// matrix | 2 | E | 8 | E |
// +---+---+----+----+
// complex_scalar | 3 | 6 | 9 | 12 |
// +---+---+----+----+
// complex_matrix | 4 | E | 10 | E |
// +---+---+----+----+
//
// E -> error, trapped in arith-ops.cc.
// -*- 1 -*-
tree_constant
xpow (double a, double b)
{
if (a < 0.0 && (int) b != b)
{
Complex atmp (a);
return tree_constant (pow (atmp, b));
}
else
return tree_constant (pow (a, b));
}
// -*- 2 -*-
tree_constant
xpow (double a, const Matrix& b)
{
tree_constant retval;
int nr = b.rows ();
int nc = b.columns ();
if (nr == 0 || nc == 0 || nr != nc)
error ("for x^A, A must be square");
else
{
EIG b_eig (b);
ComplexColumnVector lambda (b_eig.eigenvalues ());
ComplexMatrix Q (b_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
{
Complex elt = lambda.elem (i);
if (imag (elt) == 0.0)
lambda.elem (i) = pow (a, real (elt));
else
lambda.elem (i) = pow (a, elt);
}
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
retval = tree_constant (result);
}
return retval;
}
// -*- 3 -*-
tree_constant
xpow (double a, const Complex& b)
{
Complex result;
Complex atmp (a);
result = pow (atmp, b);
return tree_constant (result);
}
// -*- 4 -*-
tree_constant
xpow (double a, const ComplexMatrix& b)
{
tree_constant retval;
int nr = b.rows ();
int nc = b.columns ();
if (nr == 0 || nc == 0 || nr != nc)
error ("for x^A, A must be square");
else
{
EIG b_eig (b);
ComplexColumnVector lambda (b_eig.eigenvalues ());
ComplexMatrix Q (b_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
{
Complex elt = lambda.elem (i);
if (imag (elt) == 0.0)
lambda.elem (i) = pow (a, real (elt));
else
lambda.elem (i) = pow (a, elt);
}
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
retval = tree_constant (result);
}
return retval;
}
// -*- 5 -*-
tree_constant
xpow (const Matrix& a, double b)
{
tree_constant retval;
int nr = a.rows ();
int nc = a.columns ();
if (nr == 0 || nc == 0 || nr != nc)
{
error ("for A^b, A must be square");
return retval;
}
if ((int) b == b)
{
int btmp = (int) b;
if (btmp == 0)
{
DiagMatrix result (nr, nr, 1.0);
retval = tree_constant (result);
}
else
{
// Too much copying?
// XXX FIXME XXX -- we shouldn\'t do this if the exponent is large...
Matrix atmp;
if (btmp < 0)
{
btmp = -btmp;
atmp = a.inverse ();
}
else
atmp = a;
Matrix result (atmp);
for (int i = 1; i < btmp; i++)
result = result * atmp;
retval = tree_constant (result);
}
}
else
{
EIG a_eig (a);
ComplexColumnVector lambda (a_eig.eigenvalues ());
ComplexMatrix Q (a_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
lambda.elem (i) = pow (lambda.elem (i), b);
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
retval = tree_constant (result);
}
return retval;
}
// -*- 6 -*-
tree_constant
xpow (const Matrix& a, const Complex& b)
{
int nr = a.rows ();
int nc = a.columns ();
if (nr == 0 || nc == 0 || nr != nc)
{
error ("for A^b, A must be square");
return tree_constant ();
}
EIG a_eig (a);
ComplexColumnVector lambda (a_eig.eigenvalues ());
ComplexMatrix Q (a_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
lambda.elem (i) = pow (lambda.elem (i), b);
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
return tree_constant (result);
}
// -*- 7 -*-
tree_constant
xpow (const Complex& a, double b)
{
Complex result;
result = pow (a, b);
return tree_constant (result);
}
// -*- 8 -*-
tree_constant
xpow (const Complex& a, const Matrix& b)
{
tree_constant retval;
int nr = b.rows ();
int nc = b.columns ();
if (nr == 0 || nc == 0 || nr != nc)
{
error ("for x^A, A must be square");
}
else
{
EIG b_eig (b);
ComplexColumnVector lambda (b_eig.eigenvalues ());
ComplexMatrix Q (b_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
{
Complex elt = lambda.elem (i);
if (imag (elt) == 0.0)
lambda.elem (i) = pow (a, real (elt));
else
lambda.elem (i) = pow (a, elt);
}
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
retval = tree_constant (result);
}
return retval;
}
// -*- 9 -*-
tree_constant
xpow (const Complex& a, const Complex& b)
{
Complex result;
result = pow (a, b);
return tree_constant (result);
}
// -*- 10 -*-
tree_constant
xpow (const Complex& a, const ComplexMatrix& b)
{
tree_constant retval;
int nr = b.rows ();
int nc = b.columns ();
if (nr == 0 || nc == 0 || nr != nc)
error ("for x^A, A must be square");
else
{
EIG b_eig (b);
ComplexColumnVector lambda (b_eig.eigenvalues ());
ComplexMatrix Q (b_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
{
Complex elt = lambda.elem (i);
if (imag (elt) == 0.0)
lambda.elem (i) = pow (a, real (elt));
else
lambda.elem (i) = pow (a, elt);
}
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
retval = tree_constant (result);
}
return retval;
}
// -*- 11 -*-
tree_constant
xpow (const ComplexMatrix& a, double b)
{
tree_constant retval;
int nr = a.rows ();
int nc = a.columns ();
if (nr == 0 || nc == 0 || nr != nc)
{
error ("for A^b, A must be square");
return retval;
}
if ((int) b == b)
{
int btmp = (int) b;
if (btmp == 0)
{
DiagMatrix result (nr, nr, 1.0);
retval = tree_constant (result);
}
else
{
// Too much copying?
// XXX FIXME XXX -- we shouldn\'t do this if the exponent is large...
ComplexMatrix atmp;
if (btmp < 0)
{
btmp = -btmp;
atmp = a.inverse ();
}
else
atmp = a;
ComplexMatrix result (atmp);
for (int i = 1; i < btmp; i++)
result = result * atmp;
retval = tree_constant (result);
}
}
else
{
EIG a_eig (a);
ComplexColumnVector lambda (a_eig.eigenvalues ());
ComplexMatrix Q (a_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
lambda.elem (i) = pow (lambda.elem (i), b);
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
retval = tree_constant (result);
}
return retval;
}
// -*- 12 -*-
tree_constant
xpow (const ComplexMatrix& a, const Complex& b)
{
int nr = a.rows ();
int nc = a.columns ();
if (nr == 0 || nc == 0 || nr != nc)
{
error ("for A^b, A must be square");
return tree_constant ();
}
EIG a_eig (a);
ComplexColumnVector lambda (a_eig.eigenvalues ());
ComplexMatrix Q (a_eig.eigenvectors ());
for (int i = 0; i < nr; i++)
lambda.elem (i) = pow (lambda.elem (i), b);
ComplexDiagMatrix D (lambda);
ComplexMatrix result = Q * D * Q.inverse ();
return tree_constant (result);
}
// Safer pow functions that work elementwise for matrices.
//
// op2 \ op1: s m cs cm
// +-- +---+---+----+----+
// scalar | | * | 3 | * | 9 |
// +---+---+----+----+
// matrix | 1 | 4 | 7 | 10 |
// +---+---+----+----+
// complex_scalar | * | 5 | * | 11 |
// +---+---+----+----+
// complex_matrix | 2 | 6 | 8 | 12 |
// +---+---+----+----+
//
// * -> not needed.
// -*- 1 -*-
tree_constant
elem_xpow (double a, const Matrix& b)
{
tree_constant retval;
int nr = b.rows ();
int nc = b.columns ();
// For now, assume the worst.
if (a < 0.0)
{
Complex atmp (a);
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (atmp, b.elem (i, j));
retval = tree_constant (result);
}
else
{
Matrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a, b.elem (i, j));
retval = tree_constant (result);
}
return retval;
}
// -*- 2 -*-
tree_constant
elem_xpow (double a, const ComplexMatrix& b)
{
int nr = b.rows ();
int nc = b.columns ();
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a, b.elem (i, j));
return tree_constant (result);
}
// -*- 3 -*-
tree_constant
elem_xpow (const Matrix& a, double b)
{
tree_constant retval;
int nr = a.rows ();
int nc = a.columns ();
if ((int) b != b && any_element_is_negative (a))
{
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
{
Complex atmp (a.elem (i, j));
result.elem (i, j) = pow (atmp, b);
}
retval = tree_constant (result);
}
else
{
Matrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a.elem (i, j), b);
retval = tree_constant (result);
}
return retval;
}
// -*- 4 -*-
tree_constant
elem_xpow (const Matrix& a, const Matrix& b)
{
int nr = a.rows ();
int nc = a.columns ();
assert (nr == b.rows () && nc == b.columns ());
int convert_to_complex = 0;
int i;
for (int j = 0; j < nc; j++)
for (i = 0; i < nr; i++)
{
double atmp = a.elem (i, j);
double btmp = b.elem (i, j);
if (atmp < 0.0 && (int) btmp != btmp)
{
convert_to_complex = 1;
goto done;
}
}
done:
if (convert_to_complex)
{
ComplexMatrix complex_result (nr, nc);
for (j = 0; j < nc; j++)
for (i = 0; i < nr; i++)
{
Complex atmp (a.elem (i, j));
Complex btmp (b.elem (i, j));
complex_result.elem (i, j) = pow (atmp, btmp);
}
return tree_constant (complex_result);
}
else
{
Matrix result (nr, nc);
for (j = 0; j < nc; j++)
for (i = 0; i < nr; i++)
result.elem (i, j) = pow (a.elem (i, j), b.elem (i, j));
return tree_constant (result);
}
}
// -*- 5 -*-
tree_constant
elem_xpow (const Matrix& a, const Complex& b)
{
int nr = a.rows ();
int nc = a.columns ();
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a.elem (i, j), b);
return tree_constant (result);
}
// -*- 6 -*-
tree_constant
elem_xpow (const Matrix& a, const ComplexMatrix& b)
{
int nr = a.rows ();
int nc = a.columns ();
assert (nr == b.rows () && nc == b.columns ());
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a.elem (i, j), b.elem (i, j));
return tree_constant (result);
}
// -*- 7 -*-
tree_constant
elem_xpow (const Complex& a, const Matrix& b)
{
int nr = b.rows ();
int nc = b.columns ();
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a, b.elem (i, j));
return tree_constant (result);
}
// -*- 8 -*-
tree_constant
elem_xpow (const Complex& a, const ComplexMatrix& b)
{
int nr = b.rows ();
int nc = b.columns ();
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a, b.elem (i, j));
return tree_constant (result);
}
// -*- 9 -*-
tree_constant
elem_xpow (const ComplexMatrix& a, double b)
{
int nr = a.rows ();
int nc = a.columns ();
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a.elem (i, j), b);
return tree_constant (result);
}
// -*- 10 -*-
tree_constant
elem_xpow (const ComplexMatrix& a, const Matrix& b)
{
int nr = a.rows ();
int nc = a.columns ();
assert (nr == b.rows () && nc == b.columns ());
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a.elem (i, j), b.elem (i, j));
return tree_constant (result);
}
// -*- 11 -*-
tree_constant
elem_xpow (const ComplexMatrix& a, const Complex& b)
{
int nr = a.rows ();
int nc = a.columns ();
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a.elem (i, j), b);
return tree_constant (result);
}
// -*- 12 -*-
tree_constant
elem_xpow (const ComplexMatrix& a, const ComplexMatrix& b)
{
int nr = a.rows ();
int nc = a.columns ();
ComplexMatrix result (nr, nc);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
result.elem (i, j) = pow (a.elem (i, j), b.elem (i, j));
return tree_constant (result);
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/