home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Garbo
/
Garbo.cdr
/
mac
/
science
/
xlspstr1.sit
/
regression.lsp
< prev
next >
Wrap
Lisp/Scheme
|
1990-08-16
|
18KB
|
443 lines
;;;;
;;;; regression.lsp XLISP-STAT regression model proto and methods
;;;; XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney
;;;; Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz
;;;; You may give out copies of this software; for conditions see the file
;;;; COPYING included with this distribution.
;;;;
;;;;
;;;; Incorporates modifications suggested by Sandy Weisberg.
;;;;
(provide "regression")
(require "statistics")
(require "graphics")
(require "help")
;;;;
;;;;
;;;; Regresion Model Prototype
;;;;
;;;;
(defproto regression-model-proto
'(x y intercept sweep-matrix basis weights
included
total-sum-of-squares
residual-sum-of-squares
predictor-names
response-name
case-labels)
()
*object*
"Normal Linear Regression Model")
;; The doc for this function string is at the limit of XLISP's string
;; constant size - making it longer may cause problems
(defun regression-model (x y &key
(intercept T)
(print T)
weights
(included (repeat t (length y)))
predictor-names
response-name
case-labels)
"Args: (x y &key (intercept T) (print T) weights
included predictor-names response-name case-labels)
X - list of independent variables or X matrix
Y - dependent variable.
INTERCEPT - T to include (default), NIL for no intercept
PRINT - if not NIL print summary information
WEIGHTS - if supplied should be the same length as Y; error variances are
assumed to be inversely proportional to WEIGHTS
PREDICTOR-NAMES
RESPONSE-NAME
CASE-LABELS - sequences of strings or symbols.
INCLUDED - if supplied should be the same length as Y, with elements nil
to skip a in computing estimates (but not in residual analysis).
Returns a regression model object. To examine the model further assign the
result to a variable and send it messages.
Example (data are in file absorbtion.lsp in the sample data directory/folder):
(def m (regression-model (list iron aluminum) absorbtion))
(send m :help)
(send m :plot-residuals)"
(let ((x (cond
((matrixp x) x)
((vectorp x) (list x))
((and (consp x) (numberp (car x))) (list x))
(t x)))
(m (send regression-model-proto :new)))
(send m :x (if (matrixp x) x (apply #'bind-columns x)))
(send m :y y)
(send m :intercept intercept)
(send m :weights weights)
(send m :included included)
(send m :predictor-names predictor-names)
(send m :response-name response-name)
(send m :case-labels case-labels)
(if print (send m :display))
m))
(defmeth regression-model-proto :isnew () (send self :needs-computing t))
(defmeth regression-model-proto :save ()
"Message args: ()
Returns an expression that will reconstruct the regression model."
`(regression-model ',(send self :x)
',(send self :y)
:intercept ',(send self :intercept)
:weights ',(send self :weights)
:included ',(send self :included)
:predictor-names ',(send self :predictor-names)
:response-name ',(send self :response-name)
:case-labels ',(send self :case-labels)))
;;;
;;; Computing and Display Methods
;;;
(defmeth regression-model-proto :compute ()
"Message args: ()
Recomputes the estimates. For internal use by other messages"
(let* ((included (if-else (send self :included) 1 0))
(x (send self :x))
(y (send self :y))
(intercept (send self :intercept))
(weights (send self :weights))
(w (if weights (* included weights) included))
(m (make-sweep-matrix x y w))
(n (array-dimension x 1))
(p (- (array-dimension m 0) 1))
(tss (aref m p p))
(tol (* .0001 (mapcar #'standard-deviation (column-list x))))
(sweep-result
(if intercept
(sweep-operator m (iseq 1 n) tol)
(sweep-operator m (iseq 0 n) (cons 0.0 tol)))))
(setf (slot-value 'sweep-matrix) (first sweep-result))
(setf (slot-value 'total-sum-of-squares) tss)
(setf (slot-value 'residual-sum-of-squares)
(aref (first sweep-result) p p))
(setf (slot-value 'basis)
(let ((b (remove 0 (second sweep-result))))
(if b
(- (reverse b) 1)
(error "no columns could be swept"))))))
(defmeth regression-model-proto :needs-computing (&optional set)
(if set (setf (slot-value 'sweep-matrix) nil))
(null (slot-value 'sweep-matrix)))
(defmeth regression-model-proto :display ()
"Message args: ()
Prints the least squares regression summary. Variables not used in the fit
are marked as aliased."
(let ((coefs (coerce (send self :coef-estimates) 'list))
(se-s (send self :coef-standard-errors))
(x (send self :x))
(p-names (send self :predictor-names)))
(if (send self :weights)
(format t "~%Weighted Least Squares Estimates:~2%")
(format t "~%Least Squares Estimates:~2%"))
(when (send self :intercept)
(format t "Constant ~10g ~A~%"
(car coefs) (list (car se-s)))
(setf coefs (cdr coefs))
(setf se-s (cdr se-s)))
(dotimes (i (array-dimension x 1))
(cond
((member i (send self :basis))
(format t "~22a ~10g ~A~%"
(select p-names i) (car coefs) (list (car se-s)))
(setf coefs (cdr coefs) se-s (cdr se-s)))
(t (format t "~22a aliased~%" (select p-names i)))))
(format t "~%")
(format t "R Squared: ~10g~%" (send self :r-squared))
(format t "Sigma hat: ~10g~%" (send self :sigma-hat))
(format t "Number of cases: ~10d~%" (send self :num-cases))
(if (/= (send self :num-cases) (send self :num-included))
(format t "Number of cases used: ~10d~%" (send self :num-included)))
(format t "Degrees of freedom: ~10d~%" (send self :df))
(format t "~%")))
;;;
;;; Slot accessors and mutators
;;;
(defmeth regression-model-proto :x (&optional new-x)
"Message args: (&optional new-x)
With no argument returns the x matrix as supplied to m. With an argument
NEW-X sets the x matrix to NEW-X and recomputes the estimates."
(when (and new-x (matrixp new-x))
(setf (slot-value 'x) new-x)
(send self :needs-computing t))
(slot-value 'x))
(defmeth regression-model-proto :y (&optional new-y)
"Message args: (&optional new-y)
With no argument returns the y sequence as supplied to m. With an argument
NEW-Y sets the y sequence to NEW-Y and recomputes the estimates."
(when (and new-y (or (matrixp new-y) (sequencep new-y)))
(setf (slot-value 'y) new-y)
(send self :needs-computing t))
(slot-value 'y))
(defmeth regression-model-proto :intercept (&optional (val nil set))
"Message args: (&optional new-intercept)
With no argument returns T if the model includes an intercept term, nil if
not. With an argument NEW-INTERCEPT the model is changed to include or
exclude an intercept, according to the value of NEW-INTERCEPT."
(when set
(setf (slot-value 'intercept) val)
(send self :needs-computing t))
(slot-value 'intercept))
(defmeth regression-model-proto :weights (&optional (new-w nil set))
"Message args: (&optional new-w)
With no argument returns the weight sequence as supplied to m; NIL means
an unweighted model. NEW-W sets the weights sequence to NEW-W and
recomputes the estimates."
(when set
(setf (slot-value 'weights) new-w)
(send self :needs-computing t))
(slot-value 'weights))
(defmeth regression-model-proto :total-sum-of-squares ()
"Message args: ()
Returns the total sum of squares around the mean."
(if (send self :needs-computing) (send self :compute))
(slot-value 'total-sum-of-squares))
(defmeth regression-model-proto :residual-sum-of-squares ()
"Message args: ()
Returns the residual sum of squares for the model."
(if (send self :needs-computing) (send self :compute))
(slot-value 'residual-sum-of-squares))
(defmeth regression-model-proto :basis ()
"Message args: ()
Returns the indices of the variables used in fitting the model."
(if (send self :needs-computing) (send self :compute))
(slot-value 'basis))
(defmeth regression-model-proto :sweep-matrix ()
"Message args: ()
Returns the swept sweep matrix. For internal use"
(if (send self :needs-computing) (send self :compute))
(slot-value 'sweep-matrix))
(defmeth regression-model-proto :included (&optional new-included)
"Message args: (&optional new-included)
With no argument, NIL means a case is not used in calculating estimates, and non-nil means it is used. NEW-INCLUDED is a sequence of length of y of nil and t to select cases. Estimates are recomputed."
(when (and new-included
(= (length new-included) (send self :num-cases)))
(setf (slot-value 'included) (copy-seq new-included))
(send self :needs-computing t))
(if (slot-value 'included)
(slot-value 'included)
(repeat t (send self :num-cases))))
(defmeth regression-model-proto :predictor-names (&optional (names nil set))
"Message args: (&optional (names nil set))
With no argument returns the predictor names. NAMES sets the names."
(if set (setf (slot-value 'predictor-names) (mapcar #'string names)))
(let ((p (array-dimension (send self :x) 1))
(p-names (slot-value 'predictor-names)))
(if (not (and p-names (= (length p-names) p)))
(setf (slot-value 'predictor-names)
(mapcar #'(lambda (a) (format nil "Variable ~a" a))
(iseq 0 (- p 1))))))
(slot-value 'predictor-names))
(defmeth regression-model-proto :response-name (&optional (name "Y" set))
"Message args: (&optional name)
With no argument returns the response name. NAME sets the name."
(if set (setf (slot-value 'response-name) (if name (string name) "Y")))
(slot-value 'response-name))
(defmeth regression-model-proto :case-labels (&optional (labels nil set))
"Message args: (&optional labels)
With no argument returns the case-labels. LABELS sets the labels."
(if set (setf (slot-value 'case-labels)
(if labels
(mapcar #'string labels)
(mapcar #'(lambda (x) (format nil "~d" x))
(iseq 0 (- (send self :num-cases) 1))))))
(slot-value 'case-labels))
;;;
;;; Other Methods
;;; None of these methods access any slots directly.
;;;
(defmeth regression-model-proto :num-cases ()
"Message args: ()
Returns the number of cases in the model."
(length (send self :y)))
(defmeth regression-model-proto :num-included ()
"Message args: ()
Returns the number of cases used in the computations."
(sum (if-else (send self :included) 1 0)))
(defmeth regression-model-proto :num-coefs ()
"Message args: ()
Returns the number of coefficients in the fit model (including the
intercept if the model includes one)."
(if (send self :intercept)
(+ 1 (length (send self :basis)))
(length (send self :basis))))
(defmeth regression-model-proto :df ()
"Message args: ()
Returns the number of degrees of freedom in the model."
(- (send self :num-included) (send self :num-coefs)))
(defmeth regression-model-proto :x-matrix ()
"Message args: ()
Returns the X matrix for the model, including a column of 1's, if
appropriate. Columns of X matrix correspond to entries in basis."
(let ((m (select (send self :x)
(iseq 0 (- (send self :num-cases) 1))
(send self :basis))))
(if (send self :intercept)
(bind-columns (repeat 1 (send self :num-cases)) m)
m)))
(defmeth regression-model-proto :leverages ()
"Message args: ()
Returns the diagonal elements of the hat matrix."
(let* ((weights (send self :weights))
(x (send self :x-matrix))
(raw-levs
(matmult (* (matmult x (send self :xtxinv)) x)
(repeat 1 (send self :num-coefs)))))
(if weights (* weights raw-levs) raw-levs)))
(defmeth regression-model-proto :fit-values ()
"Message args: ()
Returns the fitted values for the model."
(matmult (send self :x-matrix) (send self :coef-estimates)))
(defmeth regression-model-proto :raw-residuals ()
"Message args: ()
Returns the raw residuals for a model."
(- (send self :y) (send self :fit-values)))
(defmeth regression-model-proto :residuals ()
"Message args: ()
Returns the raw residuals for a model without weights. If the model
includes weights the raw residuals times the square roots of the weights
are returned."
(let ((raw-residuals (send self :raw-residuals))
(weights (send self :weights)))
(if weights (* (sqrt weights) raw-residuals) raw-residuals)))
(defmeth regression-model-proto :sum-of-squares ()
"Message args: ()
Returns the error sum of squares for the model."
(send self :residual-sum-of-squares))
(defmeth regression-model-proto :sigma-hat ()
"Message args: ()
Returns the estimated standard deviation of the deviations about the
regression line."
(let ((ss (send self :sum-of-squares))
(df (send self :df)))
(if (/= df 0) (sqrt (/ ss df)))))
;; for models without an intercept the 'usual' formula for R^2 can give
;; negative results; hence the max.
(defmeth regression-model-proto :r-squared ()
"Message args: ()
Returns the sample squared multiple correlation coefficient, R squared, for
the regression."
(max (- 1 (/ (send self :sum-of-squares) (send self :total-sum-of-squares)))
0))
(defmeth regression-model-proto :coef-estimates ()
"Message args: ()
Returns the OLS (ordinary least squares) estimates of the regression
coefficients. Entries beyond the intercept correspond to entries in basis."
(let ((n (array-dimension (send self :x) 1))
(indices (if (send self :intercept)
(cons 0 (+ 1 (send self :basis)))
(+ 1 (send self :basis))))
(m (send self :sweep-matrix)))
(coerce (compound-data-seq (select m (+ 1 n) indices)) 'list)))
(defmeth regression-model-proto :xtxinv ()
"Message args: ()
Returns ((X^T) X)^(-1) or ((X^T) W X)^(-1)."
(let ((indices (if (send self :intercept)
(cons 0 (1+ (send self :basis)))
(1+ (send self :basis)))))
(select (send self :sweep-matrix) indices indices)))
(defmeth regression-model-proto :coef-standard-errors ()
"Message args: ()
Returns estimated standard errors of coefficients. Entries beyond the
intercept correspond to entries in basis."
(let ((s (send self :sigma-hat)))
(if s (* (send self :sigma-hat) (sqrt (diagonal (send self :xtxinv)))))))
(defmeth regression-model-proto :studentized-residuals ()
"Message args: ()
Computes the internally studentized residuals for included cases and externally studentized residuals for excluded cases."
(let ((res (send self :residuals))
(lev (send self :leverages))
(sig (send self :sigma-hat))
(inc (send self :included)))
(if-else inc
(/ res (* sig (sqrt (pmax .00001 (- 1 lev)))))
(/ res (* sig (sqrt (+ 1 lev)))))))
(defmeth regression-model-proto :externally-studentized-residuals ()
"Message args: ()
Computes the externally studentized residuals."
(let* ((res (send self :studentized-residuals))
(df (send self :df)))
(if-else (send self :included)
(* res (sqrt (/ (- df 1) (- df (^ res 2)))))
res)))
(defmeth regression-model-proto :cooks-distances ()
"Message args: ()
Computes Cook's distances."
(let ((lev (send self :leverages))
(res (/ (^ (send self :studentized-residuals) 2)
(send self :num-coefs))))
(if-else (send self :included) (* res (/ lev (- 1 lev) )) (* res lev))))
(defmeth regression-model-proto :plot-residuals (&optional x-values)
"Message args: (&optional x-values)
Opens a window with a plot of the residuals. If X-VALUES are not supplied
the fitted values are used. The plot can be linked to other plots with the
link-views function. Returns a plot object."
(plot-points (if x-values x-values (send self :fit-values))
(send self :residuals)
:title "Residual Plot"
:point-labels (send self :case-labels)))
(defmeth regression-model-proto :plot-bayes-residuals
(&optional x-values)
"Message args: (&optional x-values)
Opens a window with a plot of the standardized residuals and two standard
error bars for the posterior distribution of the actual deviations from the
line. See Chaloner and Brant. If X-VALUES are not supplied the fitted values
are used. The plot can be linked to other plots with the link-views function.
Returns a plot object."
(let* ((r (/ (send self :residuals) (send self :sigma-hat)))
(d (* 2 (sqrt (send self :leverages))))
(low (- r d))
(high (+ r d))
(x-values (if x-values x-values (send self :fit-values)))
(p (plot-points x-values r :title "Bayes Residual Plot"
:point-labels (send self :case-labels))))
(map 'list #'(lambda (a b c d) (send p :plotline a b c d nil))
x-values low x-values high)
(send p :adjust-to-data)
p))