home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
GEMini Atari
/
GEMini_Atari_CD-ROM_Walnut_Creek_December_1993.iso
/
files
/
gnu
/
gplibt02
/
expected.out
next >
Wrap
Text File
|
1993-07-24
|
23KB
|
648 lines
tfile
Hello, world via cout
enter a char:c = "a"
enter three integers (short, int, long):first = 123 via dec = 123
second = 4567 via form = 4567 = 010727 via cout.form = 4567 = 0x11d7
third = 89012 via hex = 15bb4
enter a float then a double:first = 123.456
second = -0.012
enter 5 characters separated with spaces:first = 1
rest = 2 3 4 5
Making streams sout and sin...contents of file:
Thisfilehasonelinetestingoutputstreams.
Making File tf ... first line of file:
This is the first and only line of this file.
next char = 10
reopening tempfile, appending: Now there is a second line.
First 10 chars via raw system read after reopen for input:
This is th
Contents after raw lseek to pos 5:
is the first and only line of this file.
Now there is a second line.
Making SFile rf...odd elements of file in reverse order:
(i = 9 c = j d = 0.009)
(i = 7 c = h d = 0.007)
(i = 5 c = f d = 0.005)
(i = 3 c = d d = 0.003)
(i = 1 c = b d = 0.001)
Making PlotFile pf ...(You may delete or attempt to plot plot.out)
creating ostrstream...
with contents:
This is a string-based stream.
With two lines.
using it to create istrstream...
with contents:
This is a string-based stream.
With two lines.
Making filebuf streams fout and fin...contents of file:
Thisfilehasonelinetestingoutputstreams.
Final names & states:
cin: (stdin) 0
cout: (stdout) 0
cerr: (stderr) 0
end of test.
tobstack
enter anything at all, end with an EOF(^D)
unique words:
deleted
redundant
with
this
in
words
the
list
simply
should
program
The
Obstacks
for
file
test
simple
a
is
This
Obstack vars:
alignment_mask = 3
chunk_size = 4080
size = 0
room = 4056
end of test
tstring
an empty String:
A string initialized to Hello:Hello
A string initialized to previous string:Hello
A string initialized to previous string.at(1, 2):el
A string initialized to @:@
A string initialized to dec(20):20
n = 20 atoi(n) = 20 atof(n) = 20
z = x + y = Helloworld
x += y; x = Helloworld
y.prepend(x); y = Helloworld
cat(x, y, x, x); x = HelloworldHello
cat(y, x, x, x); x = worldHelloHello
z = x + s + + y.at(w) + y.after(w) + . = Hello, world.
ch = x[0] = H
z = x.at(2, 3) = llo
x.at(2, 2) = r; x = Hero
x.at(0, 1) = j; x = jello
x.at(He) = je; x = jello
x.at(l, -1) = i; x = Helio
z = x.at(r) = ello
z = x.before(o) = Hell
x.before(ll) = Bri; x = Brillo
z = x.before(2) = He
z = x.after(Hel) = lo
x.after(Hel) = p; x = Help
z = x.after(3) = o
z = a bc; z = z.after(RXwhite); z =a bc
x.gsub(l, ll); x = Hellllo
x.gsub(r, ...); x = Hello should have been replaced by this string
x.gsub(RXwhite, #); x = Hello#should#have#been#replaced#by#this#string
z = x+y; z.del(loworl); z = Held
reverse(x) = olleH
x.reverse() = olleH
upcase(x) = HELLO
downcase(x) = hello
capitalize(x) = Hello
z = replicate(*, 10) = **********
z = This string has
five words
from split(z, RXwhite, w, 10), n words = 5:
This
string
has
five
words
z = join(w, nw, /); z =This/string/has/five/words
enter a word:
tinteger
one = 1
one + 1 = 2
two = 2
fact30 = factorial(30) = 265252859812191058636308480000000
fact28 = factorial(28) = 304888344611713860501504000000
fact30 + fact28 = 265557748156802772496809984000000
fact30 - fact28 = 264947971467579344775806976000000
fact30 * fact28 = 80872505331661933764010628483512781121876047953920000000000000
fact30 / fact28 = 870
fact30 % fact28 = 0
-fact30 = -265252859812191058636308480000000
lg(fact30) = 107
gcd(fact30, fact28) = 304888344611713860501504000000
sqrt(fact30) = 16286585271694955
negfact31 = -8222838654177922817725562880000000
fact30 + negfact31 = -7957585794365731759089254400000000
fact30 - negfact31 = 8488091513990113876361871360000000
fact30 * negfact31 = -2181131468794922353615366650200339706856997013317222400000000000000
fact30 / negfact31 = 0
fact30 % negfact31 = 265252859812191058636308480000000
gcd(fact30, negfact31) = 265252859812191058636308480000000
fib50 = fibonacci(50) = 12586269025
fib48 = fibonacci(48) = 4807526976
fib48 + fib50 = 17393796001
fib48 - fib50 = -7778742049
fib48 * fib50 = 60508827864880718400
fib48 / fib50 = 0
fib48 % fib50 = 4807526976
gcd(fib50, fib48) = 1
sqrt(fib50) = 112188
pow64 = Ipow(2, 64) = 18446744073709551616
lg(pow64) = 64
s64 = 1 << 64 = 18446744073709551616
s32 = s64 >> 32 = 4294967296
comps64 = ~s64 = 18446744073709551615
comps64 & s32 = 4294967296
comps64 | s32 = 18446744073709551615
comps64 ^ s32 = 18446744069414584319
enter an Integer: number = 12345678901234567890
End of test
trationa
one = 1
third = 1/3
half = 1/2
third + half = 5/6
third - half = -1/6
third * half = 1/6
third / half = 2/3
onePointTwo = 5404319552844595/4503599627370496
double(onePointTwo) = 1.2
a = 1
a += half = 3/2
a -= half = 1
a *= half = 1/2
a /= half = 1
approxpi = 355/113
double(approxpi) = 3.14159
rpi = Rational(PI) = 884279719003555/281474976710656
double(rpi) = 3.14159
approxpi + rpi = 199847224979684595/31806672368304128
approxpi - rpi = 8484881165/31806672368304128
approxpi * rpi = 313919300246262025/31806672368304128
approxpi / rpi = 19984723346456576/19984721649480343
-approxpi = -355/113
abs(negapproxpi) = 355/113
enter a Rational in form a/b or a: number = 61727839/49382716
approximating e as pow(1+1/n),n) for n =10
double(approxe) = 2.59374
log(approxe) = 0.953102
approxe = 25937424601/10000000000
approximating e as pow(1+1/n),n) for n =100
double(approxe) = 2.70481
log(approxe) = 0.995033
approxe = 270481382942152609326719471080753083367793838278100277689020104911710151430673927943945601434674459097335651375483564268312519281766832427980496322329650055217977882315938008175933291885667484249510001/100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
approximating e as pow(1+1/n),n) for n =1000
double(approxe) = 2.71692
log(approxe) = 0.9995
approxe = 2716923932235892457383088121947577188964315018836572803722354774868894945523768158997885697298661429053421034015406256924859461187617653889457753593083386399572063538500432650176144488046171044844121805479607648086607018742077798375087855857012278053105042704758822511824867218226931719410407150364389665913091822576819072281835735365786202176167228686198158460724641052407506305826211156964723064441295969498221919251479211700941935114755531972677360157561485144237786816579422141378066423317811515462669946309306263409027388915931082226854264858661420878279983534424128672461206356847463821364630504359665171573635397346037274752410368174877433941234543153511100471651472869116068528478976916600585383497180172395573924789047989563714318957536493108041591460911612078698461739084741934442448701416575483263891529095158013233115648534154086009312190489168546024398834243847135102411661996020129557921444666343641039137906807591342742464200991933722791531063202677650581946360422027765645970182463780273161113009717582155489902677095053354207944772439271656447869921825959042801322775729022491402012084605367784456090892987682547811360481731795980637847551788259384243997341190753089343387201753821360405430310320564488741142120089460368986590136324737459372963666586532443570474179352656517635333744783401695951969936296323256525034685525470426185224036844803487442831639483152362831735350269624668701702424450940840884555271325190876102665277858154695092765613639718577127438538649414492678358762110235621776218781360881010654696273264706319088453035858355052988808507775439561385232652305316287705653436727647681405618323757201022946801118770148072424021385261829594248369890171583993147934044232792517118743393217276416179842097554494269012251329134783596037733973478306188255291484352384699871420472711423079586319041837563678498472779422282261024744394844558738378027105699691260086532632930941478779680554645850778168703661423819000515895232903243738763481571999080702098369316199601942246247887808385073821861517636839926907458184604648942036355256683219218129910422822177336785268627274482037476294341444562207197209503659518266210432791078248321015453218019586608696207295299183111963158564162419152742807437346241667671688466998244424726765837682151606230638111654756595917019206453978024157097042546937345673337179165242325399648121877178987723999503839197328183925340949191821443698275476295245249466361817367207248089144718808572152781037112209285944844021186534832159964297181970584453756163204297111185823467744743465840230098261424789313315093951766314459027947176701489215746884363426961577348384651887153140609616362927338107686794499974902581579897076172716541504294334300741444106749994715713419630688719451362658288812132056854807330827050505064714442618243101018812153563795539024370219967801515099970721926240625418512417940854760415566229746248973756297569452302821563467574313259066016089521122779204844875998864114930516063910324359331903843040069467324167490917499501000001/1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
End of test
tcomplex
Complex one = (1, 0)
i = (0, 1)
neg_one = (-1, 0)
sqrt(neg_one) = (0, 1)
a = (2, 3)
b = (4, 5)
a + one = (3, 3)
a - one = (1, 3)
a * one = (2, 3)
a / one = (2, 3)
a + b = (6, 8)
a - b = (-2, -2)
a * b = (-7, 22)
a / b = (0.560976, 0.0487805)
c = a; c += b = (6, 8)
c = a; c -= b = (-2, -2)
c = a; c *= b = (-7, 22)
c = a; c /= b = (0.560976, 0.0487805)
-a = (-2, -3)
real(a) = 2
imag(a) = 3
conj(a) = (2, -3)
norm(a) = 13
abs(a) = 3.60555
arg(a) = 0.982794
cos(a) = (-4.18963, -9.10923)
sin(a) = (9.1545, -4.16891)
cosh(a) = (-3.72455, 0.511823)
sinh(a) = (-3.59056, 0.530921)
log(a) = (1.28247, 0.982794)
exp(a) = (-7.31511, 1.04274)
sqrt(a) = (1.67415, 0.895977)
pow(a, 2) = (-5, 12)
pow(a, b) = (-0.753046, -0.986429)
enter a Complex number in form (a, b) or (a) or a: number = (1.2, -34)
End of test
tbitset
BitSet tests:
a = 0*
b = 000000000010*
c = 1010101010101010101010101010101010101010*
c[0] =1
c[1] =0
c[2] =1
c[3] =0
c[4] =1
d = 00110011001100110011001100110011001100110*
e = 1111000011110000111100001111000011110*
u = ~a = 1*
g = ~e = 0000111100001111000011110000111100001*
~c = 0101010101010101010101010101010101010101*
c & d = 0010001000100010001000100010001000100010*
c | d = 10111011101110111011101110111011101110110*
c - d = 10001000100010001000100010001000100010*
c ^ d = 10011001100110011001100110011001100110010*
f = b = 100000000010*
f &= c = 100000000010*
f |= d = 10110011001100110011001100110011001100110*
f -= e = 00000011000000110000001100000011000000110*
f ^= u = 11111100111111001111110011111100111111001*
h = d
:00110011001100110011001100110011001100110*
h.set(0):
10110011001100110011001100110011001100110*
h.set(65):
1011001100110011001100110011001100110011000000000000000000000000010*
h.clear(2):
1001001100110011001100110011001100110011000000000000000000000000010*
h.invert(11,20):
1001001100101100110010110011001100110011000000000000000000000000010*
h.set(21,30):
1001001100101100110011111111111100110011000000000000000000000000010*
h.clear(31, 40):
1001001100101100110011111111111000000000000000000000000000000000010*
h.test(0,5) = 1
h.test(31,40) = 0
set bits in e:
0 1 2 3 8 9 10 11 16 17 18 19 24 25 26 27 32 33 34 35
clear bits in g (reverse order):
35 34 33 32 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0
End of test.
tbitstri
a =
b = 1000000001
c = 10101010101010101010
d = 00110011001100110011
e = 11110000111100001111
f = b = 1000000001
g = ~e = 00001111000011110000
h = d = 00110011001100110011
bits in e:
0 1 2 3 8 9 10 11 16 17 18 19
clear bits in g (reverse order):
19 18 17 16 11 10 9 8 3 2 1 0
~c = 01010101010101010101
c & d = 00100010001000100010
c | d = 10111011101110111011
c - d = 10001000100010001000
c ^ d = 10011001100110011001
c + d = 1010101010101010101000110011001100110011
c <<2 = 0010101010101010101010
c >>2 = 101010101010101010
f &= c = 1000000000
f |= d = 10110011001100110011
f -= e = 10000000000000000000
f ^= c = 00101010101010101010
f += b = 001010101010101010101000000001
f <<=5 = 00000001010101010101010101000000001
f >>=10= 0101010101010101000000001
l = 101010101010101010100011001100110011001110101010101010101010
BitPattern pat = 0011XXXX0011XXXX0011
pat.pattern = 00110011001100110011
pat.mask = 11110000111100001111
l.index(pat) = 20
l.index(pat,-1)= 20
l.before(pat) = 10101010101010101010
l.at(pat) = 00110011001100110011
l.after(pat) = 10101010101010101010
b.set(0) :1000000001
b.set(65):
100000000100000000000000000000000000000000000000000000000000000001
b.clear(2):
100000000100000000000000000000000000000000000000000000000000000001
b.invert(11,20):
100000000100111111111000000000000000000000000000000000000000000001
b.set(21,30):
100000000100111111111111111111100000000000000000000000000000000001
b.clear(31, 40):
100000000100111111111111111111100000000000000000000000000000000001
b.set(0) :10110011001100110011
b.set(65):
101100110011001100110000000000000000000000000000000000000000000001
b.clear(2):
100100110011001100110000000000000000000000000000000000000000000001
b.invert(11,20):
100100110010110011001000000000000000000000000000000000000000000001
b.set(21,30):
100100110010110011001111111111100000000000000000000000000000000001
b.clear(31, 40):
100100110010110011001111111111100000000000000000000000000000000001
k = 0101
c.before(k) = 1
c.at(k) = 0101
c.after(k) = 010101010101010
c.after(k)=k :101010101
c.before(k)=k:010101010101
reverse(k) = 1010
k.left_trim(0) : 101
k.right_trim(1) : 10
k = 0110
c.before(k) = 0
c.at(k) = 0110
c.after(k) = 011001100110011
c.after(k)=k :001100110
c.before(k)=k:011001100110
reverse(k) = 0110
k.left_trim(0) : 110
k.right_trim(1) : 110
End of test.
trandom
five random ACG integers:
1525072166 1954057046 3406008937 226879594 4107049426
five random MLCG integers:
1341853672 83475514 936613571 888739672 2097844081
Binomial r1( 100, 0.50, &gen1) ...
five samples:
45 52 59 49 60
Statistics for 100 samples:
samples: 100 min: 40 max: 64
mean: 50.78 stdDev: 4.42577 var: 19.5875 confidence(95): 0.878369
Erlang r2( 2.0, 0.5, &gen1) ...
five samples:
1.79909 1.92989 2.50816 2.31409 1.48158
Statistics for 100 samples:
samples: 100 min: 0.592645 max: 3.81874
mean: 1.96664 stdDev: 0.696406 var: 0.484981 confidence(95): 0.138213
Geometric r3(&gen1, 0.5)...
five samples:
3 2 2 2 3
Statistics for 100 samples:
samples: 100 min: 1 max: 7
mean: 1.9 stdDev: 1.28315 var: 1.64646 confidence(95): 0.254662
HyperGeometric r4( 10.0, 150.0, &gen1)...
five samples:
15.0752 5.25802 7.82211 20.4995 7.08199
Statistics for 100 samples:
samples: 100 min: 0.0446068 max: 131.508
mean: 12.6763 stdDev: 16.7567 var: 280.786 confidence(95): 3.32564
NegativeExpntl r5( 1.0, &gen1)...
five samples:
1.90665 0.0921974 0.219318 1.79202 0.566202
Statistics for 100 samples:
samples: 100 min: 0.00794624 max: 4.23124
mean: 0.927343 stdDev: 0.8869 var: 0.786592 confidence(95): 0.17602
Normal r6( 0.0, 1.0, &gen1)...
five samples:
-0.174892 0.148871 -0.479753 0.65432 -0.92688
Statistics for 100 samples:
samples: 100 min: -2.22325 max: 2.61771
mean: 0.141292 stdDev: 0.972041 var: 0.944864 confidence(95): 0.192918
LogNormal r7( 1.0, 1.0, &gen1)...
five samples:
2.15572 0.985688 0.340019 0.959144 1.06052
Statistics for 100 samples:
samples: 100 min: 0.0393323 max: 6.16358
mean: 1.03547 stdDev: 0.963892 var: 0.929088 confidence(95): 0.191301
Poisson r8( 2.0, &gen1)...
five samples:
0 2 1 2 1
Statistics for 100 samples:
samples: 100 min: 0 max: 5
mean: 2 stdDev: 1.31041 var: 1.71717 confidence(95): 0.260073
DiscreteUniform r9( 0.0, 1.0, &gen1)...
five samples:
1 1 0 0 0
Statistics for 100 samples:
samples: 100 min: 0 max: 1
mean: 0.45 stdDev: 0.5 var: 0.25 confidence(95): 0.0992334
Uniform r10( 0.0, 1.0, &gen1)...
five samples:
0.557314 0.529968 0.997197 0.25163 0.947497
Statistics for 100 samples:
samples: 100 min: 0.00205286 max: 0.997197
mean: 0.518789 stdDev: 0.321429 var: 0.103317 confidence(95): 0.0637931
Weibull r11( 0.5, 1.0, &gen1)...
five samples:
10.4918 0.295112 0.184577 2.14799 0.10053
Statistics for 100 samples:
samples: 100 min: 0.000236481 max: 15.4934
mean: 1.96369 stdDev: 2.97642 var: 8.85906 confidence(95): 0.59072
SampleHistogram for 100 Normal samples
< -4 : 0
< -3.2 : 0
< -2.4 : 0
< -1.6 : 7
< -0.8 : 15
< 6.66134e-16 : 36
< 0.8 : 15
< 1.6 : 19
< 2.4 : 7
< 3.2 : 1
< 4 : 0
< max : 0
End of test
tfix
Fix: identities should be displayed
[X] displays the precision of a given value
[*] indicates that the full precision is not used for coding reasons
0 [16] = 0.00000 [16]
.5 [16] = 0.50000 [16]
-.5 [17] = -0.50000 [17]
.1 [33] = 0.10000 [33]
-.5 [17] = -0.50000 [17]
.3 [16] = 0.29999 [16]
.5 [16] = 0.50000 [16]
.1 [16] = 0.09998 [16]
.1 [33*] = 0.09998 [33]
-.2 [17] = -0.20001 [17]
-.5 [17] = -0.50000 [17]
.1 [16] == .1 [33*] = 1
.1 [16] == .1 [33] = 0
.1 [33] != .5 [16] = 1
.1 [33] > .5 [16] = 0
.1 [33] <= -.2 [17] = 0
1073741824 = 1.07374e+09
.5 = 0.5
.5 [17] = 0.50000 [17]
-.5 [17] = -0.50000 [17]
.1 [33] + .5 [16] = 0.60000 [33]
.1 [33] - .5 [16] = -0.40000 [33]
.1 [33] * .5 [16] = 0.05000 [49]
.1 [33] * 3 = 0.30000 [33]
.1 [33] * -3 = -0.30000 [33]
-.1 [33] * 3 = -0.30000 [33]
-.1 [33] * -3 = 0.30000 [33]
.5 [17] * -2 = -1.00000 [17]
.1 [33] % 25 = 0.10000 [58]
.1 [33] % -25 = 0.09375 [8]
.1 [33] / .5 [16] = 0.20001 [33]
.1 [33] << 1 = 0.20000 [33]
-.1 [33] >> 2 = 0.47500 [33]
abs(-.2) = 0.20001 [17]
abs(.2) = 0.20001 [17]
sgn(-.2) = -1
sgn(.2) = 1
show .1 [33]
len = 33
siz = 3
ref = 1
man = ccccccc8000
val = 0.1
Fix: range errors warned
1.1 [16] = 0.00000 [16]
.5 [16] / .1 [33] = 0.00000 [16]
.5 [16] / 0. [16] = 0.00000 [16]
.5 [17] * 32768 = -1.00000 [17]
Fix: overflows saturated
.95 [16] + .1 [33] = 1.00000 [33]
-.1 [33] - .95 [16] = -1.00000 [33]
.5 [17] * 2 = 0.99998 [17]
Fix: overflows generate warnings
.95 [16] + .1 [33] = -0.94999 [33]
-.1 [33] - .95 [16] = 0.94999 [33]
.5 [17] * 2 = -0.49994 [17]
tfix16
Fix16: identities should be displayed
0 = 0
.5 = 0.5
-.5 = -0.5
.1 = 0.100006
.5 = 0.5
.5 = 0.5
.25 = 0.25
8192 = 8192
.25 = 0.25
.25 = 0.25
.25 = 0.25
-.25 = -0.25
.1 + .5 = 0.600006
.1 - .5 = -0.399994
.1 * .5 = 0.0500031
.1 * 3 = 0.300018
.1 * -3 = -0.300018
.1 / .5 = 0.200012
.1 << 1 = 0.200012
-.5 >> 2 = -0.125
.1 == .5 = 0
.1 != .5 = 1
.1 > .5 = 0
.5 <= -.5 = 0
Fix16: range errors ignored and overflows saturated
1.1 = 0.999969
.7 + .5 = 0.999969
-.5 - .7 = -1
.5 / .1 = 0.999969
Fix32: identities should be displayed
0 = 0
.5 = 0.5
-.5 = -0.5
.1 = 0.1
.5 = 0.5
.5 = 0.5
.25 = 0.25
536870912 = 536870912
.25 = 0.25
.25 = 0.25
.25 = 0.25
-.25 = -0.25
.1 + .5 = 0.6
.1 - .5 = -0.4
.1 * .5 = 0.05
.1 * 3 = 0.3
.1 * -3 = -0.3
.1 / .5 = 0.2
.1 << 1 = 0.2
-.5 >> 2 = -0.125
.1 == .5 = 0
.1 != .5 = 1
.1 > .5 = 0
.5 <= -.5 = 0
Fix32: range errors reported and overflows reported
1.1 = 1
.7 + .5 = -0.8
-.5 - .7 = 0.8
.5 / .1 = 1
tfix24
Fix24: identities should be displayed
0 = 0
.5 = 0.5
-.5 = -0.5
.1 = 0.1
.5 = 0.5
.5 = 0.5
.25 = 0.25
536870912 = 536870912
.25 = 0.25
.25 = 0.25
.25 = 0.25
-.25 = -0.25
.1 + .5 = 0.6
.1 - .5 = -0.4
.1 * .5 = 0.05
.1 * 3 = 0.3
.1 * -3 = -0.3
.1 / .5 = 0.2
.1 << 1 = 0.2
-.5 >> 2 = -0.125
.1 == .5 = 0
.1 != .5 = 1
.1 > .5 = 0
.5 <= -.5 = 0
Fix24: range errors ignored and overflows saturated
1.1 = 1
.7 + .5 = 1
-.5 - .7 = -1
.5 / .1 = 1
Fix48: identities should be displayed
0 = 0
.5 = 0.5
-.5 = -0.5
.1 = 0.1
.5 = 0.5
.5 = 0.5
.25 = 0.25
536870912 = 536870912
0 = 0
.25 = 0.25
.25 = 0.25
.25 = 0.25
-.25 = -0.25
.1 + .5 = 0.6
.1 - .5 = -0.4
.1 * 3 = 0.3
.1 * -3 = -0.3
.1 << 1 = 0.2
-.5 >> 2 = -0.125
.1 == .5 = 0
.1 != .5 = 1
.1 > .5 = 0
.5 <= -.5 = 0
Fix48: range errors reported and overflows reported
1.1 = 1
.7 + .5 = -0.8
-.5 - .7 = 0.8