home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
GEMini Atari
/
GEMini_Atari_CD-ROM_Walnut_Creek_December_1993.iso
/
files
/
graphics
/
utility
/
jpeg4a
/
usage
< prev
Wrap
Text File
|
1993-08-25
|
17KB
|
346 lines
USAGE instructions for the Independent JPEG Group's JPEG software
=================================================================
INTRODUCTION
This distribution contains software to implement JPEG image compression and
decompression. JPEG (pronounced "jay-peg") is a standardized compression
method for full-color and gray-scale images. JPEG is designed to handle
"real-world" scenes, for example scanned photographs. Cartoons, line
drawings, and other non-realistic images are not JPEG's strong suit; on this
sort of material you may get poor image quality and/or little compression.
JPEG is lossy, meaning that the output image is not necessarily identical to
the input image. Hence you should not use JPEG if you have to have identical
output bits. However, on typical real-world images, very good compression
levels can be obtained with no visible change, and amazingly high compression
is possible if you can tolerate a low-quality image. You can trade off image
quality against file size by adjusting the compressor's "quality" setting.
NOTE: the switch syntax has been redesigned since the v3 release of
cjpeg/djpeg. Switch names are now words instead of single letters.
ATARI USAGE
This software has been compiled with a dos-like userinterface that
supports using wildcards ('*' and '?'). I have changed the names
so "cjpeg" is now called "gif2jpg" and "djpeg" is named "jpg2gif".
The wildcard expansion works fine for TOS filesystems, but will give
poor results on minix or other MiNT filesystems. But don't worry, most
of the usual MiNT shell do the wildcard expansion themselves and pass
a list of files to our programs.
jpg2gif and gif2jpg use the standard "ARGV" argument passing scheme.
You can also install them in desktop as standard applications for ".gif"
and ".jpg" files if you like to.
All these changes have been done by Frank Möhle, germany. (that's me!)
My internet adress is :
Frank.Moehle@arbi.informatik.uni-oldenburg.DE
have fun !
Now let's continue with the general usage ...
GENERAL USAGE
We provide two programs, cjpeg to compress an image file into JPEG format,
and djpeg to decompress a JPEG file back into a conventional image format.
The basic command line is:
cjpeg [switches] list of image files
or
djpeg [switches] list of jpeg files
Each file named is compressed or decompressed. The input file(s) are not
modified; the output data is written to files which have the same names except
for extension. cjpeg always uses ".jpg" for the output file name's extension;
djpeg uses one of ".gif", ".ppm", ".rle", or ".tga", depending on what output
format is selected by the switches.
For example, to convert xxx.gif to xxx.jpg and yyy.ppm to yyy.jpg, say:
cjpeg xxx.gif yyy.ppm
On most systems you can use standard wildcards to specify the list of input
files; for example, on DOS "djpeg *.jpg" decompresses all the JPEG files in
the current directory.
If an intended output file already exists, you'll be asked whether or not to
overwrite it. If you say no, the program skips that input file and goes on to
the next one.
You can intermix switches and file names; for example
djpeg -gif file1.jpg -targa file2.jpg
decompresses file1.jpg into GIF format (file1.gif) and file2.jpg into Targa
format (file2.tga). Only switches to the left of a given file name affect
processing of that file; when there are conflicting switches, the rightmost
one takes precedence.
The currently supported image file formats are: PPM (PBMPLUS color format),
PGM (PBMPLUS gray-scale format), GIF, Targa, and RLE (Utah Raster Toolkit
format). (RLE is supported only if the URT library is available, which it
isn't on most non-Unix systems.) cjpeg recognizes the input image format
automatically, with the exception of some Targa-format files. You have to
tell djpeg which output format to generate.
The only JPEG file format currently supported is the JFIF format. Support for
the TIFF 6.0 JPEG format will probably be added at some future date.
All switch names may be abbreviated; for example, -grayscale may be written
-gray or -gr. Most of the "basic" switches can be abbreviated to as little as
one letter. Upper and lower case are equivalent (-GIF is the same as -gif).
British spellings are also accepted (e.g., -greyscale), though for brevity
these are not mentioned below.
CJPEG DETAILS
The basic command line switches for cjpeg are:
-quality N Scale quantization tables to adjust image quality.
Quality is 0 (worst) to 100 (best); default is 75.
(See below for more info.)
-grayscale Create monochrome JPEG file from color input.
Be sure to use this switch when compressing a grayscale
GIF file, because cjpeg isn't bright enough to notice
whether a GIF file uses only shades of gray. By
saying -grayscale, you'll get a smaller JPEG file that
takes less time to process.
-optimize Perform optimization of entropy encoding parameters.
Without this, default encoding parameters are used.
-optimize usually makes the JPEG file a little smaller,
but cjpeg runs somewhat slower and needs much more
memory. Image quality and speed of decompression are
unaffected by -optimize.
-targa Input file is Targa format. Targa files that contain
an "identification" field will not be automatically
recognized by cjpeg; for such files you must specify
-targa to make cjpeg treat the input as Targa format.
The -quality switch lets you trade off compressed file size against quality of
the reconstructed image: the higher the quality setting, the larger the JPEG
file, and the closer the output image will be to the original input. Normally
you want to use the lowest quality setting (smallest file) that decompresses
into something visually indistinguishable from the original image. For this
purpose the quality setting should be between 50 and 95; the default of 75 is
often about right. If you see defects at -quality 75, then go up 5 or 10
counts at a time until you are happy with the output image. (The optimal
setting will vary from one image to another.)
-quality 100 will generate a quantization table of all 1's, eliminating loss
in the quantization step (but there is still information loss in subsampling,
as well as roundoff error). This setting is mainly of interest for
experimental purposes. Quality values above about 95 are NOT recommended for
normal use; the compressed file size goes up dramatically for hardly any gain
in output image quality.
In the other direction, quality values below 50 will produce very small files
of low image quality. Settings around 5 to 10 might be useful in preparing an
index of a large image library, for example. Try -quality 2 (or so) for some
amusing Cubist effects. (Note: quality values below about 25 generate 2-byte
quantization tables, which are considered optional in the JPEG standard.
cjpeg emits a warning message when you give such a quality value, because
some commercial JPEG programs may be unable to decode the resulting file.)
Switches for advanced users:
-maxmemory N Set limit for amount of memory to use in processing
large images. Value is in thousands of bytes, or
millions of bytes if "M" is attached to the number.
For example, -max 4m selects 4000000 bytes. If more
space is needed, temporary files will be used.
-restart N Emit a JPEG restart marker every N MCU rows, or every
N MCU blocks if "B" is attached to the number.
-restart 0 (the default) means no restart markers.
-smooth N Smooth the input image to eliminate dithering noise.
N, ranging from 1 to 100, indicates the strength of
smoothing. 0 (the default) means no smoothing.
-verbose Enable debug printout. More -v's give more printout.
or -debug Also, version information is printed at startup.
The -restart option inserts extra markers that allow a JPEG decoder to
resynchronize after a transmission error. Without restart markers, any damage
to a compressed file will usually ruin the image from the point of the error
to the end of the image; with restart markers, the damage is usually confined
to the portion of the image up to the next restart marker. Of course, the
restart markers occupy extra space. We recommend -restart 1 for images that
will be transmitted across unreliable networks such as Usenet.
The -smooth option filters the input to eliminate fine-scale noise. This is
often useful when converting GIF files to JPEG: a moderate smoothing factor of
10 to 50 gets rid of dithering patterns in the input file, resulting in a
smaller JPEG file and a better-looking image. Too large a smoothing factor
will visibly blur the image, however.
Switches for wizards:
-arithmetic Use arithmetic coding rather than Huffman coding.
(Not currently supported for legal reasons.)
-nointerleave Generate noninterleaved JPEG file (not yet supported).
-qtables file Use the quantization tables given in the specified
file. The file should contain one to four tables
(64 values each) as plain text. Comments preceded by
'#' may be included in the file. The tables are
implicitly numbered 0,1,etc. If -quality N is also
specified, the values in the file are scaled according
to cjpeg's quality scaling curve.
-sample HxV[,...] Set JPEG sampling factors. If you specify
fewer H/V pairs than there are components, the
remaining components are set to 1x1 sampling. The
default setting is equivalent to "-sample 2x2".
The "wizard" switches are intended for experimentation with JPEG. If you
don't know what you are doing, DON'T USE THEM. You can easily produce files
with worse image quality and/or poorer compression than you'll get from the
default settings. Furthermore, these switches should not be used when making
files intended for general use, because not all JPEG implementations will
support unusual JPEG parameter settings.
DJPEG DETAILS
The basic command line switches for djpeg are:
-colors N Reduce image to at most N colors. This reduces the
or -quantize N number of colors used in the output image, so that it
can be displayed on a colormapped display or stored in
a colormapped file format. For example, if you have
an 8-bit display, you'd need to reduce to 256 or fewer
colors. (-colors is the recommended name, -quantize
is provided only for backwards compatibility.)
-gif Select GIF output format. Since GIF does not support
more than 256 colors, -colors 256 is assumed (unless
you specify a smaller number of colors).
-pnm Select PBMPLUS (PPM/PGM) output format (this is the
default format). PGM is emitted if the JPEG file is
gray-scale or if -grayscale is specified; otherwise
PPM is emitted.
-rle Select RLE output format. (Requires URT library.)
-targa Select Targa output format. Gray-scale format is
emitted if the JPEG file is gray-scale or if
-grayscale is specified; otherwise, colormapped format
is emitted if -colors is specified; otherwise, 24-bit
full-color format is emitted.
Switches for advanced users:
-blocksmooth Perform cross-block smoothing. This is slow, quite
memory-intensive, and only seems to improve the image
at very low quality settings (-quality 10 to 20 or so).
At normal quality settings it may make things worse.
-grayscale Force gray-scale output even if JPEG file is color.
Useful for viewing on monochrome displays.
-maxmemory N Set limit for amount of memory to use in processing
large images. Value is in thousands of bytes, or
millions of bytes if "M" is attached to the number.
For example, -max 4m selects 4000000 bytes. If more
space is needed, temporary files will be used.
-nodither Do not use dithering in color quantization.
By default, Floyd-Steinberg dithering is applied when
quantizing colors, but on some images dithering may
result in objectionable "graininess". If that
happens, you can turn off dithering with -nodither.
-nodither is ignored unless you also say -colors N.
-onepass Use one-pass instead of two-pass color quantization.
The one-pass method is faster and needs less memory,
but it produces a lower-quality image. -onepass is
ignored unless you also say -colors N. Also,
the one-pass method is always used for gray-scale
output (the two-pass method is no improvement then).
-verbose Enable debug printout. More -v's give more printout.
or -debug Also, version information is printed at startup.
HINTS
Color GIF files are not the ideal input for JPEG; JPEG is really intended for
compressing full-color (24-bit) images. In particular, don't try to convert
cartoons, line drawings, and other images that have only a few distinct
colors. GIF works great on these, JPEG does not. If you want to convert a
GIF to JPEG, you should experiment with cjpeg's -quality and -smooth options
to get a satisfactory conversion. -smooth 10 or so is often helpful.
Avoid running an image through a series of JPEG compression/decompression
cycles. Image quality loss will accumulate; after ten or so cycles the image
may be noticeably worse than it was after one cycle. It's best to use a
lossless format while manipulating an image, then convert to JPEG format when
you are ready to file the image away.
The -optimize option to cjpeg is worth using when you are making a "final"
version for posting or archiving. It's also a win when you are using low
quality settings to make very small JPEG files; the percentage improvement
is often a lot more than it is on larger files.
When making images to be posted on Usenet, we recommend using cjpeg's option
-restart 1. This option limits the damage done to a compressed image by
netnews transmission errors.
The default memory usage limit (-maxmemory) is set when the software is
compiled. If you get an "insufficient memory" error, try specifying a smaller
-maxmemory value, even -maxmemory 0 to use the absolute minimum space. You
may want to recompile with a smaller default value if this happens often.
On machines that have "environment" variables, you can define the environment
variable JPEGMEM to set the default memory limit. The value is specified as
described for the -maxmemory switch. JPEGMEM overrides the default value
specified when the program was compiled, and itself is overridden by an
explicit -maxmemory switch.
djpeg with two-pass color quantization requires a good deal of memory; on
MS-DOS machines it may run out of memory even with -maxmemory 0. In that case
you can still decompress, with some loss of image quality, by specifying
-onepass for one-pass quantization.
If more space is needed than will fit in the available main memory (as
determined by -maxmemory), temporary files will be used. (MS-DOS versions
will try to get extended or expanded memory first.) The temporary files are
often rather large: in typical cases they occupy three bytes per pixel, for
example 3*800*600 = 1.44Mb for an 800x600 image. If you don't have enough
free disk space, leave out -optimize (for cjpeg) or specify -onepass (for
djpeg). On MS-DOS and ATARI systems, the temporary files are created in the
directory named by the TMP or TEMP environment variable, or in the current
directory if neither of those exist. Amiga implementations put the temp files
in the directory named by JPEGTMP:, so be sure to assign JPEGTMP: to a disk
partition with adequate free space.
DISCLAIMER
----------
THIS SOFTWARE IS NOT COMPLETE NOR FULLY DEBUGGED. It is not guaranteed to be
useful for anything, nor to be compatible with subsequent releases, nor to be
an accurate implementation of the JPEG standard. (See LEGAL ISSUES for even
more disclaimers.)
Despite that, we believe that this software is pretty good, and if you find
any problems with it, we'd like to know about them. Please report problems
by e-mail to jpeg-info@uunet.uu.net.
COPYRIGHT
---------
This software is copyright (C) 1992, Thomas G. Lane.
The Atari specific parts are (C)1993 Frank Möhle.
Terms of distribution and use are the same as for the free IJG JPEG software;
see its README file for details.
The authors make NO WARRANTY or representation, either express or implied,
with respect to this software, its quality, accuracy, merchantability, or
fitness for a particular purpose. This software is provided "AS IS", and you,
its user, assume the entire risk as to its quality and accuracy.