home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
GEMini Atari
/
GEMini_Atari_CD-ROM_Walnut_Creek_December_1993.iso
/
files
/
telecomm
/
nhclb120
/
ip.c
< prev
next >
Wrap
C/C++ Source or Header
|
1993-09-26
|
10KB
|
412 lines
/* Upper half of IP, consisting of send/receive primitives, including
* fragment reassembly, for higher level protocols.
* Not needed when running as a standalone gateway.
*/
#define TLB 30 * (1000/MSPTICK) /* Reassembly limit time */
#include "global.h"
#include "mbuf.h"
#include "timer.h"
#include "internet.h"
#include "iface.h"
#include "ip.h"
#include "icmp.h"
void ip_recv();
static struct mbuf *fraghandle();
static struct reasm *lookup_reasm();
static struct reasm *creat_reasm();
static void free_reasm();
static void ip_timeout();
static struct frag * newfrag();
static void freefrag();
char ip_ttl = MAXTTL; /* Default time-to-live for IP datagrams */
struct reasm *reasmq;
#define INSERT 0
#define APPEND 1
#define PREPEND 2
/* Send an IP datagram. Modeled after the example interface on p 32 of
* RFC 791
*/
int
ip_send(source,dest,protocol,tos,ttl,bp,length,id,df)
int32 source; /* source address */
int32 dest; /* Destination address */
char protocol; /* Protocol */
char tos; /* Type of service */
char ttl; /* Time-to-live */
struct mbuf *bp; /* Data portion of datagram */
int16 length; /* Optional length of data portion */
int16 id; /* Optional identification */
char df; /* Don't-fragment flag */
{
struct mbuf *htonip(),*tbp;
struct ip ip; /* Pointer to IP header */
static int16 id_cntr; /* Datagram serial number */
int ip_route(); /* Datagram router */
if(length == 0 && bp != NULLBUF)
length = len_mbuf(bp);
if(id == 0)
id = id_cntr++;
if(ttl == 0)
ttl = ip_ttl;
/* Fill in IP header */
ip.tos = tos;
ip.length = IPLEN + length;
ip.id = id;
if(df)
ip.fl_offs = DF;
else
ip.fl_offs = 0;
ip.ttl = ttl;
ip.protocol = protocol;
ip.source = source;
ip.dest = dest;
ip.optlen = 0;
if((tbp = htonip(&ip,bp,0)) == NULLBUF){
free_p(bp);
return -1;
}
return ip_route(tbp,0); /* Toss it to the router */
}
/* Reassemble incoming IP fragments and dispatch completed datagrams
* to the proper transport module
*/
void
ip_recv(ip,bp,rxbroadcast)
struct ip *ip; /* Extracted IP header */
struct mbuf *bp; /* Data portion */
char rxbroadcast; /* True if received on subnet broadcast address */
{
struct mbuf *fraghandle();
void (*recv)(); /* Function to call with completed datagram */
void tcp_input(),udp_input(),icmp_input();
int length;
/* Initial check for protocols we can't handle */
switch(uchar(ip->protocol)){
case TCP_PTCL:
recv = tcp_input;
break;
case UDP_PTCL:
recv = udp_input;
break;
case ICMP_PTCL:
recv = icmp_input;
break;
default:
/* Send an ICMP Protocol Unknown response... */
ip_stats.badproto++;
/* ...unless it's a broadcast */
if(!rxbroadcast){
icmp_output(ip,bp,DEST_UNREACH,PROT_UNREACH,(union icmp_args *)NULL);
}
free_p(bp);
return;
}
/* If we have a complete packet, call the next layer
* to handle the result. Note that fraghandle passes back
* a length field that does NOT include the IP header
*/
if((bp = fraghandle(ip,bp)) != NULLBUF) {
length = ip->length - (IPLEN + ip->optlen);
/*
* the TCP will just append the bytes to the file. If we don't
* have the number of bytes we think we do, and the extras
* happen to be zero, the checksum test won't trigger, and we'll
* lose.
*/
if (len_mbuf(bp) != length) {
free_p(bp);
return;
}
(*recv)(bp,ip->protocol,ip->source,ip->dest,ip->tos,
length,rxbroadcast);
}
}
/* Process IP datagram fragments
* If datagram is complete, return it with ip->length containing the data
* length (MINUS header); otherwise return NULLBUF
*/
static
struct mbuf *
fraghandle(ip,bp)
struct ip *ip; /* IP header, host byte order */
struct mbuf *bp; /* The fragment itself */
{
void ip_timeout(),freefrag(),free_reasm();
struct reasm *lookup_reasm(),*creat_reasm();
register struct reasm *rp; /* Pointer to reassembly descriptor */
struct frag *lastfrag,*nextfrag,*tfp/* ,*newfrag()*/ ;
struct mbuf *tbp;
int16 i;
int16 offset; /* Index of first byte in fragment */
int16 last; /* Index of first byte beyond fragment */
char mf; /* 1 if not last fragment, 0 otherwise */
offset = (ip->fl_offs & F_OFFSET) << 3; /* Convert to bytes */
last = offset + ip->length - (IPLEN + ip->optlen);
mf = (ip->fl_offs & MF) ? 1 : 0;
rp = lookup_reasm(ip);
if(offset == 0 && !mf){
/* Complete datagram received. Discard any earlier fragments */
if(rp != NULLREASM)
free_reasm(rp);
return bp;
}
if(rp == NULLREASM){
/* First fragment; create new reassembly descriptor */
if((rp = creat_reasm(ip)) == NULLREASM){
/* No space for descriptor, drop fragment */
free_p(bp);
return NULLBUF;
}
}
/* Keep restarting timer as long as we keep getting fragments */
stop_timer(&rp->timer);
start_timer(&rp->timer);
/* If this is the last fragment, we now know how long the
* entire datagram is; record it
*/
if(!mf)
rp->length = last;
/* Set nextfrag to the first fragment which begins after us,
* and lastfrag to the last fragment which begins before us
*/
lastfrag = NULLFRAG;
for(nextfrag = rp->fraglist;nextfrag != NULLFRAG;nextfrag = nextfrag->next){
if(nextfrag->offset > offset)
break;
lastfrag = nextfrag;
}
/* Check for overlap with preceeding fragment */
if(lastfrag != NULLFRAG && offset < lastfrag->last){
/* Strip overlap from new fragment */
i = lastfrag->last - offset;
pullup(&bp,NULLCHAR,i);
if(bp == NULLBUF)
return NULLBUF; /* Nothing left */
offset += i;
}
/* Look for overlap with succeeding segments */
for(; nextfrag != NULLFRAG; nextfrag = tfp){
tfp = nextfrag->next; /* save in case we delete fp */
if(nextfrag->offset >= last)
break; /* Past our end */
/* Trim the front of this entry; if nothing is
* left, remove it.
*/
i = last - nextfrag->offset;
pullup(&nextfrag->buf,NULLCHAR,i);
if(nextfrag->buf == NULLBUF){
/* superseded; delete from list */
if(nextfrag->prev != NULLFRAG)
nextfrag->prev->next = nextfrag->next;
else
rp->fraglist = nextfrag->next;
if(tfp->next != NULLFRAG)
nextfrag->next->prev = nextfrag->prev;
freefrag(nextfrag);
} else
nextfrag->offset = last;
}
/* Lastfrag now points, as before, to the fragment before us;
* nextfrag points at the next fragment. Check to see if we can
* join to either or both fragments.
*/
i = INSERT;
if(lastfrag != NULLFRAG && lastfrag->last == offset)
i |= APPEND;
if(nextfrag != NULLFRAG && nextfrag->offset == last)
i |= PREPEND;
switch(i){
case INSERT: /* Insert new desc between lastfrag and nextfrag */
tfp = newfrag(offset,last,bp);
tfp->prev = lastfrag;
tfp->next = nextfrag;
if(lastfrag != NULLFRAG)
lastfrag->next = tfp; /* Middle of list */
else
rp->fraglist = tfp; /* First on list */
if(nextfrag != NULLFRAG)
nextfrag->prev = tfp;
break;
case APPEND: /* Append to lastfrag */
append(&lastfrag->buf,bp);
lastfrag->last = last; /* Extend forward */
break;
case PREPEND: /* Prepend to nextfrag */
tbp = nextfrag->buf;
nextfrag->buf = bp;
append(&nextfrag->buf,tbp);
nextfrag->offset = offset; /* Extend backward */
break;
case (APPEND|PREPEND):
/* Consolidate by appending this fragment and nextfrag
* to lastfrag and removing the nextfrag descriptor
*/
append(&lastfrag->buf,bp);
append(&lastfrag->buf,nextfrag->buf);
nextfrag->buf = NULLBUF;
lastfrag->last = nextfrag->last;
/* Finally unlink and delete the now unneeded nextfrag */
lastfrag->next = nextfrag->next;
if(nextfrag->next != NULLFRAG)
nextfrag->next->prev = lastfrag;
freefrag(nextfrag);
break;
}
if(rp->fraglist->offset == 0 && rp->fraglist->next == NULLFRAG
&& rp->length != 0){
/* We've gotten a complete datagram, so extract it from the
* reassembly buffer and pass it on.
*/
bp = rp->fraglist->buf;
rp->fraglist->buf = NULLBUF;
/* Tell IP the entire length */
ip->length = rp->length + (IPLEN + ip->optlen);
free_reasm(rp);
return bp;
} else
return NULLBUF;
}
static struct reasm *
lookup_reasm(ip)
struct ip *ip;
{
register struct reasm *rp;
for(rp = reasmq;rp != NULLREASM;rp = rp->next){
if(ip->source == rp->source && ip->dest == rp->dest
&& ip->protocol == rp->protocol && ip->id == rp->id)
return rp;
}
return NULLREASM;
}
#ifdef FOO
static
int16
hash_reasm(source,dest,protocol,id)
int32 source;
int32 dest,
char protocol;
int16 id;
{
register int16 hval;
hval = loword(source);
hval ^= hiword(source);
hval ^= loword(dest);
hval ^= hiword(dest);
hval ^= uchar(protocol);
hval ^= id;
hval %= RHASH;
return hval;
}
#endif
/* Create a reassembly descriptor,
* put at head of reassembly list
*/
static struct reasm *
creat_reasm(ip)
register struct ip *ip;
{
register struct reasm *rp;
void ip_timeout();
if((rp = (struct reasm *)calloc(1,sizeof(struct reasm))) == NULLREASM)
return rp; /* No space for descriptor */
rp->source = ip->source;
rp->dest = ip->dest;
rp->id = ip->id;
rp->protocol = ip->protocol;
rp->timer.start = TLB;
rp->timer.func = ip_timeout;
rp->timer.arg = (char *)rp;
rp->next = reasmq;
if(rp->next != NULLREASM)
rp->next->prev = rp;
reasmq = rp;
return rp;
}
/* Free all resources associated with a reassembly descriptor */
static void
free_reasm(rp)
register struct reasm *rp;
{
register struct frag *fp;
stop_timer(&rp->timer);
/* Remove from list of reassembly descriptors */
if(rp->prev != NULLREASM)
rp->prev->next = rp->next;
else
reasmq = rp->next;
if(rp->next != NULLREASM)
rp->next->prev = rp->prev;
/* Free any fragments on list, starting at beginning */
while((fp = rp->fraglist) != NULLFRAG){
rp->fraglist = fp->next;
free_p(fp->buf);
free((char *)fp);
}
free((char *)rp);
}
/* Handle reassembly timeouts by deleting all reassembly resources */
static void
ip_timeout(arg)
int *arg;
{
register struct reasm *rp;
rp = (struct reasm *)arg;
free_reasm(rp);
}
/* Create a fragment */
static
struct frag *
newfrag(offset,last,bp)
int16 offset,last;
struct mbuf *bp;
{
struct frag *fp;
if((fp = (struct frag *)calloc(1,sizeof(struct frag))) == NULLFRAG){
/* Drop fragment */
free_p(bp);
return NULLFRAG;
}
fp->buf = bp;
fp->offset = offset;
fp->last = last;
return fp;
}
/* Delete a fragment, return next one on queue */
static
void
freefrag(fp)
struct frag *fp;
{
free_p(fp->buf);
free((char *)fp);
}