home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Programming Win32 Under the API
/
ProgrammingWin32UnderTheApiPatVillani.iso
/
gcc-2.95.2-msvcrt.exe
/
include
/
g++-3
/
stl_function.h
< prev
next >
Wrap
C/C++ Source or Header
|
1999-11-07
|
22KB
|
701 lines
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996-1998
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_FUNCTION_H
#define __SGI_STL_INTERNAL_FUNCTION_H
__STL_BEGIN_NAMESPACE
template <class _Arg, class _Result>
struct unary_function {
typedef _Arg argument_type;
typedef _Result result_type;
};
template <class _Arg1, class _Arg2, class _Result>
struct binary_function {
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
};
template <class _Tp>
struct plus : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }
};
template <class _Tp>
struct minus : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }
};
template <class _Tp>
struct multiplies : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }
};
template <class _Tp>
struct divides : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }
};
// identity_element (not part of the C++ standard).
template <class _Tp> inline _Tp identity_element(plus<_Tp>) {
return _Tp(0);
}
template <class _Tp> inline _Tp identity_element(multiplies<_Tp>) {
return _Tp(1);
}
template <class _Tp>
struct modulus : public binary_function<_Tp,_Tp,_Tp>
{
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }
};
template <class _Tp>
struct negate : public unary_function<_Tp,_Tp>
{
_Tp operator()(const _Tp& __x) const { return -__x; }
};
template <class _Tp>
struct equal_to : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }
};
template <class _Tp>
struct not_equal_to : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }
};
template <class _Tp>
struct greater : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }
};
template <class _Tp>
struct less : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }
};
template <class _Tp>
struct greater_equal : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }
};
template <class _Tp>
struct less_equal : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }
};
template <class _Tp>
struct logical_and : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }
};
template <class _Tp>
struct logical_or : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }
};
template <class _Tp>
struct logical_not : public unary_function<_Tp,bool>
{
bool operator()(const _Tp& __x) const { return !__x; }
};
template <class _Predicate>
class unary_negate
: public unary_function<typename _Predicate::argument_type, bool> {
protected:
_Predicate _M_pred;
public:
explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}
bool operator()(const typename _Predicate::argument_type& __x) const {
return !_M_pred(__x);
}
};
template <class _Predicate>
inline unary_negate<_Predicate>
not1(const _Predicate& __pred)
{
return unary_negate<_Predicate>(__pred);
}
template <class _Predicate>
class binary_negate
: public binary_function<typename _Predicate::first_argument_type,
typename _Predicate::second_argument_type,
bool> {
protected:
_Predicate _M_pred;
public:
explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}
bool operator()(const typename _Predicate::first_argument_type& __x,
const typename _Predicate::second_argument_type& __y) const
{
return !_M_pred(__x, __y);
}
};
template <class _Predicate>
inline binary_negate<_Predicate>
not2(const _Predicate& __pred)
{
return binary_negate<_Predicate>(__pred);
}
template <class _Operation>
class binder1st
: public unary_function<typename _Operation::second_argument_type,
typename _Operation::result_type> {
protected:
_Operation op;
typename _Operation::first_argument_type value;
public:
binder1st(const _Operation& __x,
const typename _Operation::first_argument_type& __y)
: op(__x), value(__y) {}
typename _Operation::result_type
operator()(const typename _Operation::second_argument_type& __x) const {
return op(value, __x);
}
};
template <class _Operation, class _Tp>
inline binder1st<_Operation>
bind1st(const _Operation& __oper, const _Tp& __x)
{
typedef typename _Operation::first_argument_type _Arg1_type;
return binder1st<_Operation>(__oper, _Arg1_type(__x));
}
template <class _Operation>
class binder2nd
: public unary_function<typename _Operation::first_argument_type,
typename _Operation::result_type> {
protected:
_Operation op;
typename _Operation::second_argument_type value;
public:
binder2nd(const _Operation& __x,
const typename _Operation::second_argument_type& __y)
: op(__x), value(__y) {}
typename _Operation::result_type
operator()(const typename _Operation::first_argument_type& __x) const {
return op(__x, value);
}
};
template <class _Operation, class _Tp>
inline binder2nd<_Operation>
bind2nd(const _Operation& __oper, const _Tp& __x)
{
typedef typename _Operation::second_argument_type _Arg2_type;
return binder2nd<_Operation>(__oper, _Arg2_type(__x));
}
// unary_compose and binary_compose (extensions, not part of the standard).
template <class _Operation1, class _Operation2>
class unary_compose
: public unary_function<typename _Operation2::argument_type,
typename _Operation1::result_type>
{
protected:
_Operation1 __op1;
_Operation2 __op2;
public:
unary_compose(const _Operation1& __x, const _Operation2& __y)
: __op1(__x), __op2(__y) {}
typename _Operation1::result_type
operator()(const typename _Operation2::argument_type& __x) const {
return __op1(__op2(__x));
}
};
template <class _Operation1, class _Operation2>
inline unary_compose<_Operation1,_Operation2>
compose1(const _Operation1& __op1, const _Operation2& __op2)
{
return unary_compose<_Operation1,_Operation2>(__op1, __op2);
}
template <class _Operation1, class _Operation2, class _Operation3>
class binary_compose
: public unary_function<typename _Operation2::argument_type,
typename _Operation1::result_type> {
protected:
_Operation1 _M_op1;
_Operation2 _M_op2;
_Operation3 _M_op3;
public:
binary_compose(const _Operation1& __x, const _Operation2& __y,
const _Operation3& __z)
: _M_op1(__x), _M_op2(__y), _M_op3(__z) { }
typename _Operation1::result_type
operator()(const typename _Operation2::argument_type& __x) const {
return _M_op1(_M_op2(__x), _M_op3(__x));
}
};
template <class _Operation1, class _Operation2, class _Operation3>
inline binary_compose<_Operation1, _Operation2, _Operation3>
compose2(const _Operation1& __op1, const _Operation2& __op2,
const _Operation3& __op3)
{
return binary_compose<_Operation1,_Operation2,_Operation3>
(__op1, __op2, __op3);
}
template <class _Arg, class _Result>
class pointer_to_unary_function : public unary_function<_Arg, _Result> {
protected:
_Result (*_M_ptr)(_Arg);
public:
pointer_to_unary_function() {}
explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}
_Result operator()(_Arg __x) const { return _M_ptr(__x); }
};
template <class _Arg, class _Result>
inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg))
{
return pointer_to_unary_function<_Arg, _Result>(__x);
}
template <class _Arg1, class _Arg2, class _Result>
class pointer_to_binary_function :
public binary_function<_Arg1,_Arg2,_Result> {
protected:
_Result (*_M_ptr)(_Arg1, _Arg2);
public:
pointer_to_binary_function() {}
explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
: _M_ptr(__x) {}
_Result operator()(_Arg1 __x, _Arg2 __y) const {
return _M_ptr(__x, __y);
}
};
template <class _Arg1, class _Arg2, class _Result>
inline pointer_to_binary_function<_Arg1,_Arg2,_Result>
ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {
return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);
}
// identity is an extensions: it is not part of the standard.
template <class _Tp>
struct _Identity : public unary_function<_Tp,_Tp> {
const _Tp& operator()(const _Tp& __x) const { return __x; }
};
template <class _Tp> struct identity : public _Identity<_Tp> {};
// select1st and select2nd are extensions: they are not part of the standard.
template <class _Pair>
struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {
const typename _Pair::first_type& operator()(const _Pair& __x) const {
return __x.first;
}
};
template <class _Pair>
struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>
{
const typename _Pair::second_type& operator()(const _Pair& __x) const {
return __x.second;
}
};
template <class _Pair> struct select1st : public _Select1st<_Pair> {};
template <class _Pair> struct select2nd : public _Select2nd<_Pair> {};
// project1st and project2nd are extensions: they are not part of the standard
template <class _Arg1, class _Arg2>
struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1> {
_Arg1 operator()(const _Arg1& __x, const _Arg2&) const { return __x; }
};
template <class _Arg1, class _Arg2>
struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2> {
_Arg2 operator()(const _Arg1&, const _Arg2& __y) const { return __y; }
};
template <class _Arg1, class _Arg2>
struct project1st : public _Project1st<_Arg1, _Arg2> {};
template <class _Arg1, class _Arg2>
struct project2nd : public _Project2nd<_Arg1, _Arg2> {};
// constant_void_fun, constant_unary_fun, and constant_binary_fun are
// extensions: they are not part of the standard. (The same, of course,
// is true of the helper functions constant0, constant1, and constant2.)
template <class _Result>
struct constant_void_fun
{
typedef _Result result_type;
result_type __val;
constant_void_fun(const result_type& __v) : __val(__v) {}
const result_type& operator()() const { return __val; }
};
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class _Result, class _Argument = _Result>
#else
template <class _Result, class _Argument>
#endif
struct constant_unary_fun : public unary_function<_Argument, _Result> {
_Result _M_val;
constant_unary_fun(const _Result& __v) : _M_val(__v) {}
const _Result& operator()(const _Argument&) const { return _M_val; }
};
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class _Result, class _Arg1 = _Result, class _Arg2 = _Arg1>
#else
template <class _Result, class _Arg1, class _Arg2>
#endif
struct constant_binary_fun : public binary_function<_Arg1, _Arg2, _Result> {
_Result _M_val;
constant_binary_fun(const _Result& __v) : _M_val(__v) {}
const _Result& operator()(const _Arg1&, const _Arg2&) const {
return _M_val;
}
};
template <class _Result>
inline constant_void_fun<_Result> constant0(const _Result& __val)
{
return constant_void_fun<_Result>(__val);
}
template <class _Result>
inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val)
{
return constant_unary_fun<_Result,_Result>(__val);
}
template <class _Result>
inline constant_binary_fun<_Result,_Result,_Result>
constant2(const _Result& __val)
{
return constant_binary_fun<_Result,_Result,_Result>(__val);
}
// subtractive_rng is an extension: it is not part of the standard.
// Note: this code assumes that int is 32 bits.
class subtractive_rng : public unary_function<unsigned int, unsigned int> {
private:
unsigned int _M_table[55];
size_t _M_index1;
size_t _M_index2;
public:
unsigned int operator()(unsigned int __limit) {
_M_index1 = (_M_index1 + 1) % 55;
_M_index2 = (_M_index2 + 1) % 55;
_M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];
return _M_table[_M_index1] % __limit;
}
void _M_initialize(unsigned int __seed)
{
unsigned int __k = 1;
_M_table[54] = __seed;
size_t __i;
for (__i = 0; __i < 54; __i++) {
size_t __ii = (21 * (__i + 1) % 55) - 1;
_M_table[__ii] = __k;
__k = __seed - __k;
__seed = _M_table[__ii];
}
for (int __loop = 0; __loop < 4; __loop++) {
for (__i = 0; __i < 55; __i++)
_M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55];
}
_M_index1 = 0;
_M_index2 = 31;
}
subtractive_rng(unsigned int __seed) { _M_initialize(__seed); }
subtractive_rng() { _M_initialize(161803398u); }
};
// Adaptor function objects: pointers to member functions.
// There are a total of 16 = 2^4 function objects in this family.
// (1) Member functions taking no arguments vs member functions taking
// one argument.
// (2) Call through pointer vs call through reference.
// (3) Member function with void return type vs member function with
// non-void return type.
// (4) Const vs non-const member function.
// Note that choice (3) is nothing more than a workaround: according
// to the draft, compilers should handle void and non-void the same way.
// This feature is not yet widely implemented, though. You can only use
// member functions returning void if your compiler supports partial
// specialization.
// All of this complexity is in the function objects themselves. You can
// ignore it by using the helper function mem_fun and mem_fun_ref,
// which create whichever type of adaptor is appropriate.
// (mem_fun1 and mem_fun1_ref are no longer part of the C++ standard,
// but they are provided for backward compatibility.)
template <class _Ret, class _Tp>
class mem_fun_t : public unary_function<_Tp*,_Ret> {
public:
explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
_Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }
private:
_Ret (_Tp::*_M_f)();
};
template <class _Ret, class _Tp>
class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {
public:
explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
_Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }
private:
_Ret (_Tp::*_M_f)() const;
};
template <class _Ret, class _Tp>
class mem_fun_ref_t : public unary_function<_Tp,_Ret> {
public:
explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
_Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }
private:
_Ret (_Tp::*_M_f)();
};
template <class _Ret, class _Tp>
class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {
public:
explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
_Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }
private:
_Ret (_Tp::*_M_f)() const;
};
template <class _Ret, class _Tp, class _Arg>
class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {
public:
explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
_Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }
private:
_Ret (_Tp::*_M_f)(_Arg);
};
template <class _Ret, class _Tp, class _Arg>
class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {
public:
explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
_Ret operator()(const _Tp* __p, _Arg __x) const
{ return (__p->*_M_f)(__x); }
private:
_Ret (_Tp::*_M_f)(_Arg) const;
};
template <class _Ret, class _Tp, class _Arg>
class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
public:
explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
_Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
private:
_Ret (_Tp::*_M_f)(_Arg);
};
template <class _Ret, class _Tp, class _Arg>
class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
public:
explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
_Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
private:
_Ret (_Tp::*_M_f)(_Arg) const;
};
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class _Tp>
class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {
public:
explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
void operator()(_Tp* __p) const { (__p->*_M_f)(); }
private:
void (_Tp::*_M_f)();
};
template <class _Tp>
class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {
public:
explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
void operator()(const _Tp* __p) const { (__p->*_M_f)(); }
private:
void (_Tp::*_M_f)() const;
};
template <class _Tp>
class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
public:
explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
void operator()(_Tp& __r) const { (__r.*_M_f)(); }
private:
void (_Tp::*_M_f)();
};
template <class _Tp>
class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
public:
explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
void operator()(const _Tp& __r) const { (__r.*_M_f)(); }
private:
void (_Tp::*_M_f)() const;
};
template <class _Tp, class _Arg>
class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {
public:
explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
private:
void (_Tp::*_M_f)(_Arg);
};
template <class _Tp, class _Arg>
class const_mem_fun1_t<void, _Tp, _Arg>
: public binary_function<const _Tp*,_Arg,void> {
public:
explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
private:
void (_Tp::*_M_f)(_Arg) const;
};
template <class _Tp, class _Arg>
class mem_fun1_ref_t<void, _Tp, _Arg>
: public binary_function<_Tp,_Arg,void> {
public:
explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
private:
void (_Tp::*_M_f)(_Arg);
};
template <class _Tp, class _Arg>
class const_mem_fun1_ref_t<void, _Tp, _Arg>
: public binary_function<_Tp,_Arg,void> {
public:
explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
private:
void (_Tp::*_M_f)(_Arg) const;
};
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// Mem_fun adaptor helper functions. There are only two:
// mem_fun and mem_fun_ref. (mem_fun1 and mem_fun1_ref
// are provided for backward compatibility, but they are no longer
// part of the C++ standard.)
template <class _Ret, class _Tp>
inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)())
{ return mem_fun_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp>
inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const)
{ return const_mem_fun_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp>
inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)())
{ return mem_fun_ref_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp>
inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const)
{ return const_mem_fun_ref_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_FUNCTION_H */
// Local Variables:
// mode:C++
// End: