home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Multimedia Algebra
/
Algebra1.iso
/
ALGEBRA1
/
CHAPTER2.1T
< prev
next >
Wrap
Text File
|
1994-02-15
|
5KB
|
195 lines
193
à 2.1ïNumber systems.
äïPlease list the natural, whole, integer, rational,
êêirrational, and real numbers from the given set.
â
êêêê See Details
éS The natural, whole, integer, rational, and real numbers are
ê described as follows.ï(...means pattern continues indefinitely)
NATURAL NUMBERS={1, 2, 3, 4, 5, 6, ...}
WHOLE NUMBERS={0, 1, 2, 3, 4, ...}è INTEGERS={... -2, -1, 0, 1, 2,...}
RATIONAL NUMBERS={numbers thatê IRRATIONAL NUMBERS={non-rational
can be written as quotients of twoè numbers represented by points on
integers, with denominator not 0}ëthe number line}
#Examplesï2è 1ï0ï1ï2ï3êèExamplesïí─è í─êïí─
#ê - ─, - ─, ─, ─, ─, ─ .êêè á2, -Äá5, π, and á6 .
êè1è 2ï1ï4ï3ï1êèIrrational numbers can be describ-
Rational numbers can be describedëed as the set of all real numbers
as all of the fractions.êêthat are not fractions.
The real numbers are formed by combining all of the rational and
irrational numbers together in one set.
1
#êêêêêí─ë3è 1ëí─
#Given the setêê{ -9, - á7, - 1─, - ─, 0, á5, 5, 7.2, 11}
list the NATURAL NUMBERSêêè 4è 4
A) - 9, 0, 5, 11ë B) 0, 5, 11ë C) 5, 11ë D) å of ç
ü
êêêêë5, 11
Ç C
2
#êêêêêí─ë3è 1ëí─
#Given the setêê{ -9, - á7, - 1─, - ─, 0, á5, 5, 7.2, 11}
list the WHOLE NUMBERSêêë 4è 4
A) - 9, 0, 5, 11ë B) 0, 5, 11ë C) 5, 11ë D) å of ç
ü
êêêêè0, 5, 11
Ç B
# 3ïGiven the setêë í─ë3è 1ëí─
#list the RATIONAL NUMBERSè { -9, - á7, - 1─, - ─, 0, á5, 5, 7.2, 11}
êêêêêêï4è 4
ë 3è 1êêë 3è 1êêêè 3è 1
#A) - 1─, - ─, 7.2è B) - 9, - 1─, - ─, 0, 5, 7.2, 11è C) - 1─, - ─, 0
ë 4è 4êêë 4è 4êêêè 4è 4
êêêê D) å of ç
ü
êêêêè3è 1
#êêêï- 9, - 1─, - ─, 0, 5, 7.2, 11
êêêêè4è 4
Ç B
4
#êêêêêí─ë3è 1ëí─
#Given the set list theë{ -9, - á7, - 1─, - ─, 0, á5, 5, 7.2, 11}
IRRATIONAL NUMBERSêêêè4è 4
#ëí─ïí─êêí─ëí─êïí─ïí─
#A) - á7, á5, 7.2è B) - á7, 0, á5è C) - á7, á5è D) å of ç
ü
#êêêêè í─ïí─
#êêêêï- á7, á5
Ç C
# 5ïGiven the setêë í─ë3è 1ëí─
#list the REAL NUMBERSê { -9, - á7, - 1─, - ─, 0, á5, 5, 7.2, 11}
êêêêêêï4è 4
#êêêí─ë3è 1êêêê å
#A)ïALLè B) - 9, - á7, - 1─, - ─ëC) - 9, 0, 5, 11ëD)ïof
êêêê4è 4êêêê ç
ü
êêêêë ALL
Ç A
äïPlease find the additive inverse of each number.
#âëNumberè Additive inverseï│ïNumberè Additive inverse
#êë────────────────────────────┼────────────────────────────
#êê7êë- 7êè│è│5│êë- 5
#êêêêêë│
#êê1êê1êè│è│-5│êè - 5
#êë- ─êê─êè│
#êê3êê3êè│è- 7êê7
éS
The additive inverse of a number is the real number that you would add
to it to get zero.ïThe additive inverse of - 2 is 2 and the additive
inverse of 1/3 is - 1/3.ïTo find the additive inverse of a number with
the absolute value symbol involved, you must first clear the absolute
value symbol and simplify before finding the additive inverse.ïThe
#absolute value of a positive number is just the number, (│14│ = 14). A
negative number inside the absolute value is made positive by putting
an extra minus in front of it when clearing the absolute value symbol
#(│-7│ = -(-7) = 7).
#The additive inverse of -│-5│ is found by clearing the absolute value
#symbol first.è-│-5│ = -(│-5│) = -(-(-5)) = -(5)ïThe additive inverse
of -5 is found to be 5.
6
êêê The additive inverse of -8 is
#êêA)ï8è B)ï-8è C) -│8│è D) å of ç
ü
êêë The additive inverse of -8 is 8.
Ç A
7
êêêThe additive inverse of 7.3 is
êêêê1
#êèA) -7.3ë B)ï───ëC) 7.3ë D) å of ç
êêêë 7.3
ü
êêëThe additive inverse of 7.3 is -7.3 .
Ç A
8
#êêë The additive inverse of │12│ is
#êè A)ï12ëB) -│-12│è C) -12ëD) å of ç
ü
êê First clear the absolute value value symbol.
#êêêêè │12│ = 12
êêè The additive inverse of 12 is -12.
Ç C
9
#êêë The additive inverse of -│-3│ is
#êè A)ï-3ëB)ï3ê C) -│3│è D) å of ç
ü
#êêê-│-3│ = -(-(-3)) = -(3) = -3
êêë The additive inverse of -3 is 3.
Ç B
äïPlease identify the smaller number and insert either the
less than, <, or greater than, >, symbol to make a true sentence.
âèGiven -9 and -2, the smaller number is -9 and so the less than
êèsymbol, <, makes a true sentence.
êêêêè-9 < -2
éS
The number that occurs further to the left on the number line is the
smaller of the two numbers.ïGiven two numbers like -5 and -3, first
locate them on the number line.
êêë ë
#êê<─────┼──┼──┼──┼──┼──┼──┼──┼──┼──┼─────>
êêë-5 -4 -3 -2 -1ï0ï1ï2ï3ï4
Since -5 occurs further to the left it is the smaller of the two.ïThus
êêë-5 < -3 is a true sentence.
10
êïGiven -7 and 3, insert < or > to make a true sentence.
ïA) -7 < 3ê B) -7 > 3ê C) 3 < -7êD) å of ç
ü
êêêêè -7 < 3
Ç A
11
êèGiven 15 and 7, insert < or > to make a true sentence.
èA) 15 < 7ê B) 15 > 7ê C) 7 > 15êD) å of ç
ü
êêêêè 15 > 7
Ç B
12
êïGiven -3 and -9, insert < or > to make a true sentence.
ïA) -9 > -3êB) -3 < -9êC) -3 > -9ë D) å of ç
ü
êêêêè -3 > -9
Ç C