home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Multimedia Algebra
/
Algebra1.iso
/
ALGEBRA1
/
CHAPTER7.1T
< prev
next >
Wrap
Text File
|
1994-02-15
|
3KB
|
218 lines
216
à 7.1ïReducing Rational Expressions.
äïPlease reduce each rational expression.
â
#êêêêReduceè 4xÄ
#êêêêêè───ï=ï2xì
êêêêêè2x
#éSêêêê 4xÄ
êïTo reduce the expression,ï───ï, first cancel the
êêêêê 2x
#êêêêï4xÄë2xÄ
coefficients.êêè───ï=ï───
êêêêï2xêx
Then subtract the exponents on the variable " x ".
#êêêêï2xÄ
#êêêêï───ï=ï2xì
êêêêèx
1
#êêë12aÉêê aÄêêè4
#êïReduceè ──── .êèA) ──è B) 4aÄè C) ──è D) 4aÆ
#êêë 3aìêê 4êêè aÄ
ü
#êêè 12aÉêï4aÉ
#êêè ────è =è ───è =è 4aÄ
#êêë3aìêèaì
Ç B
2
#êêë14xÉyìêêêë7
#êïReduceè ────── .êïA) 2xôyÄèB) ───èC) 2xìyèD) 2xÄ
#êêë 7xÄyêêêëxìy
ü
#êêï14xÉyìêï2xÉyì
#êêï──────è =è ─────è =è 2xìy
#êêè7xÄyêè xÄy
Ç C
3
#êê 27aÉbÄêê9aÄ
#ëReduceè ────── .êïA) ───èB) 27aÄbÅèC) 9aÆbÅïD) 3aÆbîò
#êê 3aìbÆêê bÅ
ü
#êêï27aÉbÄêï9aÉbÄêï9aÄ
êêï──────è =è ─────è =è ───
#êêè3aìbÆêèaìbÆêèbÅ
Ç A
4
#êê 4xìyÄzÅêë xyzë xÉyÆzöêêè1
ëReduceè ───────.êïA) ───èB) ──────èC) 3xyzèD) ────
#êê12xÄyÅzÉêê3êï3êêë3xyz
ü
#êêêè4xìyÄzÅêè 1
êêêè───────è =è ─────
#êêêï12xÄyÅzÉêè3xyz
Ç D
äè Please factor and reduce each rational expression.
#âêêêêë xì - 4x + 4
êè Factor and reduce,êë───────────.
#êêêêêë xì + x - 6
#êê xì - 4x + 4ê(x - 2)(x - 2)êx - 2
êê ───────────è=è──────────────è=è─────
#êêïxì + x - 6ê(x + 3)(x - 2)êx + 3
éS
êêTo factor and reduce the rational expression,
#êêêêïxì - 4x +4
êêêêï────────── ,
#êêêêïxì + x - 6
first factor the trinomials on top and bottom separately by either the
master product method or by the trial and error method.
#êêêxì - 4x + 4êï(x - 2)(x - 2)
êêê───────────è =è ──────────────
#êêêxì + x - 6êè(x + 3)(x - 2)
Then cancel the common factor of (x - 2) from the top and bottom.
êêêï(x - 2)(x - 2)êï(x - 2)
êêêï──────────────è =è ───────
êêêï(x + 3)(x - 2)êï(x + 3)
This is the reduced expression.
5êêêë 8x + 12
êê Factor and reduceè ─────── .
êêêêêè 4
êêêè2x + 6
ëA) (2x + 3)ëB) ──────ë C) (2x + 12)ëD) (8x + 3)
êêêë 3
ü
êêè8x + 12êï4(2x + 3)
êêè───────è =è ─────────è =è 2x + 3
êêë 4êêï4
Ç A
6êêêê6a - 9
êê Factor and reduce,è ────── .
êêêêêë3
ëA) (2a - 9)ëB) (6a - 3)ë C) (2a - 3)ëD) 6a
ü
êêè6a - 9êè3(2a - 3)
êêè───────è =è ─────────è =è 2a - 3
êêë 3êêï3
Ç C
# 7êêêêxì - 4
êê Factor and reduce,è ────── .
êêêêêï(x + 2)
#ëA) (x + 2)ëB) (xì - 2)ë C) (x + 4)ëD) (x - 2)
ü
#êêèxì - 4êè(x + 2)(x - 2)
êêè───────è =è ──────────────è =è (x - 2)
êêè(x + 2)êë(x + 2)
Ç D
8êêêê9y - 18
êê Factor and reduce,è ───────.
êêêêêï5y - 10
ê y - 9êë9êêêê -9
ëA) ─────ê B) ───êèC) 2êè D) ───
ê y - 5êë5êêêêï5
ü
êêè9y - 18êï9(y - 2)êè9
êêè───────è =è ────────è =è ───
êêè5y - 10êï5(y - 2)êè5
Ç B
# 9êêêê5bì - 10b
êê Factor and reduce,è ─────────.
êêêêêè2b - 4
ê b - 2êè b - 4êè 5bêê 5
ëA) ─────ê B) ─────ê C) ───êïD) ──────
êï-2êë b - 2êë2êë 2b - 4
ü
#êê 5bì - 10bêï5b(b - 2)êï5b
êê ─────────è =è ─────────è =è ───
êêè2b - 4êè 2(b - 2)êè2
Ç C
# 10êêêë xì - x - 6
êê Factor and reduce,è ─────────── .
#êêêêêïxì + x - 12
ê x + 2êè x - 3êè x + 2êèx - 2
ëA) ─────ê B) ─────ê C) ─────êD) ─────
ê x + 4êè x + 4êè x - 3êèx - 3
ü
#êëxì - x - 6êè (x - 3)(x + 2)êïx + 2
êë───────────ë=è ──────────────è =è ─────
#êëxì + x - 12êè(x + 4)(x - 3)êïx + 4
Ç A