home *** CD-ROM | disk | FTP | other *** search
- 155
- à 1.7èWhole Numbers in Prime Factored Form.
- äïPlease write the following Whole Numbers in Prime
- êêFactored Form.
- âS
-
- êêêï1)ï6è=è2 ∙ 3
-
- êêêï2)ï18è=è2 ∙ 3 ∙ 3
- éS
- To write the Whole Number 6 in Prime Factored Form, you
- should break it down into products of prime numbers.ïThe prime numbers
- are described in the following list.
- êêï2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...
-
- Each of ç numbers has the property that the only factors they have
- are "1" and the number itself.ïThe Whole Number, 6, is not a prime
- number.ïIt is a "composite" number, and composite numbers can be
- factored into products of prime numbers.ïSince "6" factors into the
- product of the two prime numbers, 2 and 3, the Prime Factorization of
- 6 is 2 ∙ 3.èThus, 6è=è2 ∙ 3.
-
- To express the Whole Number "18" in Prime Factored Form, you should
- start with the smallest prime number, 2, and see if it divides evenly
- into "18".ïSince 2 goes into 18 nine times, you can express 18 as 2∙9.
- Also, since the next smallest prime number, 3, divides evenly into 9,
- 18 can be expressed as 2 ∙ 3 ∙ 3.ïSince ç factors are all prime
- numbers, the Prime Factorization of 18 is 2 ∙ 3 ∙ 3.
- êêêïThus,ï18è=è2 ∙ 3 ∙ 3
- 1
- êêëExpress 12 in Prime Factored Form.
-
-
- ë A)ï2∙3∙3êïB)ï2∙2∙3êïC)ï4∙3êè D)ïå
- ü
-
-
- êêêê12è=è2∙2∙3
- Ç B
- 2
- êêëExpress 24 in Prime Factored Form.
-
-
- ë A)ï8∙3êè B)ï4∙6êè C)ï2∙2∙2∙3êD)ïå
- ü
-
-
- êêêê24è=è2∙2∙2∙3
- Ç C
- 3
- êêëExpress 19 in Prime Factored Form.
-
-
- ë A)ïprimeêïB)ï18∙1êèC)ï10∙9êèD)ïå
- ü
-
-
- êêêê19 is prime
- Ç A
- 4
- êêëExpress 75 in Prime Factored Form.
-
-
- ë A)ï25∙3êèB)ï3∙5∙5êïC)ï5∙7∙5êïD)ïå
- ü
-
-
- êêêê75è=è3∙5∙5
- Ç B
- 5
- êêëExpress 90 in Prime Factored Form.
-
-
- ë A)ï2∙3∙3∙5êB)ï2∙5∙9êïC)ï2∙45êèD)ïå
- ü
-
-
- êêêê90è=è2∙3∙3∙5
- Ç A
- 6
- êêëExpress 105 in Prime Factored Form.
-
-
- ë A)ï3∙5∙7êïB)ï21∙5êèC)ï3∙35êèD)ïå
- ü
-
-
- êêêë 105è=è3∙5∙7
- Ç A
- 7
- êêëExpress 206 in Prime Factored Form.
-
-
- ë A)ï2∙3∙10ê B)ï2∙103êïC)ï2∙2∙3∙3∙7ëD)ïå
- üêêê206è=è2∙103
- è Note the difficulty in telling whether "103" is a prime number.
- In order to see if "103" is a prime number, you should try to divide it
- by 2, 3, 5, 7, and 11.ïSince none of ç prime numbers divide evenly
- into 103, you know that "103" is itself prime.ïIt is not necessary
- to see if "13" will divide evenly into 103 because 13∙13 = 169 is
- larger than 103.
- Ç B
- 8
- êêëExpress 125 in Prime Factored Form.
-
-
- ë A)ï3∙5∙5êB)ï3∙3∙5∙5êC)ï5∙5∙5êïD)ïå
- ü
-
-
- êêêë 125è=è5∙5∙5
- Ç C
- 9
- êêëExpress 67 in Prime Factored Form.
-
-
- ë A)ï9∙7êè B)ïprimeêïC)ï3∙3∙7êïD)ïå
- ü
-
-
- êêêë 67 is prime.
- Ç B
- 10
- êêëExpress 78 in Prime Factored Form.
-
-
- ë A)ï2∙3∙13ë B)ï2∙7∙7êïC)ï2∙3∙11ê D)ïå
- ü
-
-
- êêêê78è=è2∙3∙13
- Ç A
- 11
- êêëExpress 144 in Prime Factored Form.
-
-
- ë A)ï8∙2∙3êïB)ï9∙16êèC)ï2∙2∙2∙2∙3∙3èD)ïå
- ü
-
-
- êêêë144è=è2∙2∙2∙2∙3∙3
- Ç C
- 12
- êêëExpress 180 in Prime Factored Form.
-
-
- ë A)ï2∙2∙3∙3∙5ëB)ï4∙5∙9êïC)ï2∙2∙5∙9êD)ïå
- ü
-
-
- êêêë180è=è2∙2∙3∙3∙5
- Ç A
-
-
-
-
-