home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Professional
/
OS2PRO194.ISO
/
os2
/
prgramer
/
unix
/
info
/
elisp.i12
(
.txt
)
< prev
next >
Wrap
GNU Info File
|
1993-06-14
|
52KB
|
928 lines
This is Info file elisp, produced by Makeinfo-1.47 from the input file
elisp.texi.
This file documents GNU Emacs Lisp.
This is edition 1.03 of the GNU Emacs Lisp Reference Manual, for
Emacs Version 18.
Published by the Free Software Foundation, 675 Massachusetts Avenue,
Cambridge, MA 02139 USA
Copyright (C) 1990 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that this permission notice may be stated in a
translation approved by the Foundation.
File: elisp, Node: Key Lookup, Next: Functions for Key Lookup, Prev: Creating Keymaps, Up: Keymaps
Key Lookup
==========
"Key lookup" is the process of finding the binding of a key sequence
from a given keymap. Actual execution of the definition is not part of
key lookup.
When the key sequence consists of multiple characters, the characters
are handled sequentially: the binding of the first character is found,
and must be a keymap; then the second character's binding is found in
that keymap, and so on until all the characters in the key sequence are
used up. (The binding thus found for the last character may or may not
be a keymap.) Thus, the process of key lookup is defined in terms of a
simpler process for looking up a single character in a keymap. How this
is done depends on the type of object associated with the character in
that keymap.
The value directly associated with a character in a keymap is called
a "keymap entry". While any Lisp object may be stored in a keymap
entry, only a few types of object make sense for key lookup. Here is a
list of them, and what they mean:
`nil'
`nil' means that the characters used so far in the lookup form an
undefined key. When a sparse keymap fails to mention a character,
that is equivalent to an entry of `nil'.
KEYMAP
The characters used so far in the lookup form a prefix key. The
next character of the key sequence is looked up in KEYMAP, which
may be full or sparse.
COMMAND
The characters used so far in the lookup form a complete key, and
COMMAND is its definition.
STRING
STRING represents a keyboard macro. The characters used so far in
the lookup form a complete key, and STRING is its definition. (See
*Note Keyboard Macros::, for more information.)
The meaning of a list depends on the types of the elements of the
list.
* If the CAR of LIST is the symbol `keymap', then the list is a
sparse keymap, and is treated as a keymap (see above).
* If the CAR of LIST is `lambda', then the list is a lambda
expression. This is presumed to be a command, and is treated
as such (see above).
* If the CAR of LIST is a keymap and the CDR is a character,
then this entry is an indirection to a slot in the other
keymap. When an indirect entry is found in key lookup, it is
immediately replaced by the entry in the specified keymap for
the specified character. This permits you to define one key
as an alias for another key. For example, an entry whose CAR
is the keymap called `esc-map' and whose CDR is 32 (the code
for space) means, "Use the global definition of `Meta-SPC',
whatever that may be."
SYMBOL
The function definition of SYMBOL is used in place of SYMBOL. If
that too is a symbol, then this process is repeated, any number of
times. Ultimately this should lead to a definition which is a
keymap, a command or a string. A list is allowed if it is a keymap
or a command, but indirect entries are not understood when found
via symbols.
Note that keymaps and strings are not valid functions, so a symbol
with a keymap or string as its function definition is likewise not
valid as a function. It is, however, valid as a key binding. If
the definition is a string, then the symbol is also valid as an
argument to `command-execute' (*note Interactive Call::.).
The symbol `undefined' is worth special mention: it means to treat
the key as undefined. Strictly speaking, the key is defined, and
its definition is the symbol `undefined', but that command does the
same thing that is done automatically for an undefined key: it
rings the bell (by calling `ding') but does not signal an error.
`undefined' is used in local keymaps to override a global key
binding and make the key undefined locally. A local binding of
`nil' would fail to do this because it would not override the
global binding.
ANYTHING ELSE
If any other type of object is found, the characters used so far
in the lookup form a complete key, and the object is its
definition.
In short, a keymap entry may be a keymap, a command, a string, a
symbol which leads to one of them, or an indirection or `nil'. Here is
an example of a sparse keymap with two characters bound to commands and
one bound to another keymap. This map is the normal value of
`emacs-lisp-mode-map'. Note that 9 is the code for TAB, 127 for DEL,
27 for ESC, 17 for `C-q' and 24 for `C-x'.
(keymap (9 . lisp-indent-line)
(127 . backward-delete-char-untabify)
(27 keymap (17 . indent-sexp) (24 . eval-defun)))
File: elisp, Node: Functions for Key Lookup, Next: Prefix Keys, Prev: Key Lookup, Up: Keymaps
Functions for Key Lookup
========================
Here are the functions and variables pertaining to key lookup.
-- Function: lookup-key KEYMAP KEY
This function returns the definition of KEY in KEYMAP. If the
string KEY is not a valid key sequence according to the prefix
keys specified in KEYMAP (which means it is "too long" and has
extra characters at the end), then the value is a number, the
number of characters at the front of KEY that compose a complete
key.
All the other functions described in this chapter that look up keys
use `lookup-key'.
(lookup-key (current-global-map) "\C-x\C-f")
=> find-file
(lookup-key (current-global-map) "\C-x\C-f12345")
=> 2
If KEY contains a meta-character, that character is implicitly
replaced by a two-character sequence: the value of
`meta-prefix-char', followed by the corresponding non-meta
character. Thus, the first example below is handled by conversion
into the second example.
(lookup-key (current-global-map) "\M-f")
=> forward-word
(lookup-key (current-global-map) "\ef")
=> forward-word
This function does not perform automatic downcasing like that of
`read-key-sequence' (*note Keyboard Input::.).
-- Command: undefined
Used in keymaps to undefine keys. It calls `ding', but does not
cause an error.
-- Variable: meta-prefix-char
This variable is the meta-prefix character code. It is used when
translating a meta-character to a two-character sequence so it can
be looked up in a keymap. For useful results, the value should be
a prefix character (*note Prefix Keys::.). The default value is
27, which is the ASCII code for ESC.
As long as the value of `meta-prefix-char' remains 27, key lookup
translates `M-b' into `ESC b', which is normally defined as the
`backward-word' command. However, if you set `meta-prefix-char'
to 24, the code for `C-x', then Emacs will translate `M-b' into
`C-x b', and call the `switch-to-buffer' command.
meta-prefix-char ; The default value.
=> 27
(key-binding "\M-b")
=> backward-word
?\C-x ; The print representation
=> 24 ; of a character.
(setq meta-prefix-char 24)
=> 24
(key-binding "\M-b")
=> switch-to-buffer ; Now, typing `M-b' is
; like typing `C-x b'.
(setq meta-prefix-char 27) ; Avoid confusion!
=> 27 ; Restore the default value!
File: elisp, Node: Prefix Keys, Next: Global and Local Keymaps, Prev: Functions for Key Lookup, Up: Keymaps
Prefix Keys
===========
A "prefix key" has an associated keymap which defines what to do
with key sequences that start with the prefix key. For example,
`ctl-x-map' is the keymap used for characters following the prefix key
`C-x'. Here is a list of the standard prefix keys of Emacs and their
keymaps:
* `ctl-x-map' is the variable name for the map used for characters
that follow `C-x'. This map is also the function definition of
`Control-X-prefix'.
* `ctl-x-4-map' used is for characters that follow `C-x 4'.
* `esc-map' is used for characters that follow ESC. Thus, the
global definitions of all Meta characters are actually found here.
This map is also the function definition of `ESC-prefix'.
* `help-map' is used for characters that follow `C-h'.
* `mode-specific-map' is for characters that follow `C-c'. This map
is not actually mode specific; its name was chosen to be
informative for the user in `C-h b' (`display-bindings'), where it
describes the main use of the `C-c' prefix key.
The binding of a prefix key is the keymap to use for looking up the
characters that follow the prefix key. (It may instead be a symbol
whose function definition is a keymap. The effect is the same, but the
symbol serves as a name for the prefix key.) Thus, the binding of
`C-x' is the symbol `Control-X-prefix', whose function definition is
the keymap for `C-x' commands. This keymap is also the value of
`ctl-x-map'.
Prefix key definitions of this sort can appear in either the global
map or a local map. The definitions of `C-c', `C-x', `C-h' and ESC as
prefix keys appear in the global map, so these prefix keys are always
available. Major modes can locally redefine a key as a prefix by
putting a prefix key definition for it in the local map.
If a key is defined as a prefix in both the local map and the global,
the two definitions are effectively merged: the commands defined in the
local map's prefix definition take priority; those not defined there are
taken from the global map.
In the following example, `C-p' is made a prefix key in the local
keymap (so that `C-p' is identical to `C-x'). Then the binding for
`C-p C-f' is the function `find-file', just like `C-x C-f'. The key
sequence `C-p 6' is not found in either the local map or global map.
(use-local-map (make-sparse-keymap))
=> nil
(local-set-key "\C-p" ctl-x-map)
=> nil
(key-binding "\C-p\C-f")
=> find-file
(key-binding "\C-p6")
=> nil
-- Function: define-prefix-command SYMBOL
This function defines SYMBOL as a prefix command: it creates a
full keymap and stores it as SYMBOL's function definition. Storing
the symbol as the binding of a key makes the key a prefix key
which has a name. This function returns SYMBOL.
It is convenient to store the keymap as the value of a variable as
well. In version 19, this function stores the keymap in both the
function definition and value of SYMBOL. However, in version 18,
only the function definition of SYMBOL is set, not the value.
File: elisp, Node: Global and Local Keymaps, Next: Changing Key Bindings, Prev: Prefix Keys, Up: Keymaps
Global and Local Keymaps
========================
The "global keymap" holds the bindings of keys that are defined
regardless of the current buffer, such as `C-f'. The variable
`global-map' holds this keymap.
Each buffer may have another keymap, its "local keymap", which may
contain new or overriding definitions for keys. Each buffer records
which local keymap is used with it.
Both the global and local keymaps are used to determine what command
to execute when a key is entered. The key lookup proceeds as described
earlier (*note Key Lookup::.), but Emacs *first* searches for the key
in the local map; if Emacs does not find a local definition, Emacs then
searches the global map.
Since every buffer that uses the same major mode normally uses the
very same local keymap, it may appear as if the keymap is local to the
mode. A change to the local keymap of a buffer (using `local-set-key',
for example) will be seen also in the other buffers that share that
keymap.
The local keymaps that are used for Lisp mode, C mode, and several
other major modes exist even if they have not yet been used. These
local maps are the values of the variables `lisp-mode-map',
`c-mode-map', and so on. For most other modes, which are less
frequently used, the local keymap is constructed only when the mode is
used for the first time in a session.
The minibuffer has local keymaps, too; they contain various
completion and exit commands. *Note Minibuffers::.
*Note Standard Keymaps::, for a list of standard keymaps.
-- Variable: global-map
This variable contains the default global keymap that maps Emacs
keyboard input to commands. Normally this keymap is the global
keymap. The default global keymap is a full keymap that binds
`self-insert-command' to all of the printing characters.
-- Function: current-global-map
This function returns the current global keymap. Normally, this is
the same as the value of the `global-map'.
(current-global-map)
=> [set-mark-command beginning-of-line ... delete-backward-char]
-- Function: current-local-map
This function returns the current buffer's local keymap, or `nil'
if it has none. In the following example, the keymap for the
`*scratch*' buffer (using Lisp Interaction mode) is a sparse keymap
in which the entry for ESC, ASCII code 27, is another sparse
keymap.
(current-local-map)
=> (keymap
(10 . eval-print-last-sexp)
(9 . lisp-indent-line)
(127 . backward-delete-char-untabify)
(27 keymap
(24 . eval-defun)
(17 . indent-sexp)))
-- Function: use-global-map KEYMAP
This function makes KEYMAP the new current global keymap. The
KEYMAP map must be a full keymap (a vector of length 128). It
returns `nil'.
It is very unusual to change the global keymap.
-- Function: use-local-map KEYMAP
This function makes KEYMAP the new current local keymap of the
current buffer. If KEYMAP is `nil', then there will be no local
keymap. It returns `nil'. Most major modes use this function.
-- Function: key-binding KEY
This function returns the definition for KEY in the current
keymaps trying the current buffer's local map and then the global
map. The result is `nil' if KEY is undefined in the keymaps.
An error is signaled if KEY is not a string.
(key-binding "\C-x\C-f")
=> find-file
-- Function: local-key-binding KEY
This function returns the definition for KEY in the current local
keymap, or `nil' if it is undefined there.
-- Function: global-key-binding KEY
This function returns the definition for command KEY in the
current global keymap, or `nil' if it is undefined there.
File: elisp, Node: Changing Key Bindings, Next: Key Binding Commands, Prev: Global and Local Keymaps, Up: Keymaps
Changing Key Bindings
=====================
The way to rebind a key is to change its entry in a keymap. You can
change the global keymap, so that the change is effective in all buffers
(except those that override the global definition with a local one). Or
you can change the current buffer's local map, which usually affects all
buffers using the same major mode. The `global-set-key' and
`local-set-key' functions are convenient interfaces for these
operations. Or you can change bindings in any map by specifying it
explicitly in `define-key'.
People often use `global-set-key' in their `.emacs' file for simple
customization. For example,
(global-set-key "\C-x\C-\\" 'next-line)
redefines `C-x C-\' to move down a line.
In writing the string for the key sequence to rebind, it is useful to
use the special escape sequences for control and meta characters (*note
String Type::.). In a string, the syntax `\C-' means that the
following character is a control character and `\M-' means that the
following character is a META character. Thus, the string `"\M-x"' is
read as containing a single `M-x', `"\C-f"' is read as containing a
single `C-f', and `"\M-\C-x"' and `"\C-\M-x"' are both read as
containing a single `C-M-x'.
For the functions below, an error is signaled if KEYMAP is not a
keymap or if KEY is not a string representing a key sequence.
-- Function: define-key KEYMAP KEY DEFINITION
This function sets the binding for KEY in KEYMAP. (If KEY is more
than one character long, the change is actually made in another
keymap reached from KEYMAP.) The argument DEFINITION can be any
Lisp object, but only certain types are meaningful. (For a list
of meaningful types, see *Note Key Lookup::.) The value returned
by `define-key' is DEFINITION.
Every prefix of KEY must be a prefix key (i.e., bound to a keymap)
or undefined; otherwise an error is signaled (with data `(error
"Key sequence KEY uses invalid prefix characters")'). If some
prefix of KEY is undefined, then `define-key' defines it as a
prefix key so that the rest of KEY may be defined as specified.
In the following example, a sparse keymap is created and a number
of bindings are added to it.
(setq map (make-sparse-keymap))
=> (keymap)
(define-key map "\C-f" 'forward-char)
=> forward-char
map
=> (keymap (6 . forward-char))
;; Build sparse submap for `C-x' and bind `f' in that.
(define-key map "\C-xf" 'forward-word)
=> forward-word
map
=> (keymap
(24 keymap ; `C-x'
(102 . forward-word)) ; `f'
(6 . forward-char)) ; `C-f'
;; Bind `C-p' to the `ctl-x-map'.
(define-key map "\C-p" ctl-x-map)
=> [nil ... find-file ... backward-kill-sentence] ; `ctl-x-map'
;; Bind `C-f' to `foo' in the `ctl-x-map'.
(define-key map "\C-p\C-f" 'foo)
=> 'foo
map
=> (keymap ; Note `foo' in `ctl-x-map'.
(16 . [nil ... foo ... backward-kill-sentence])
(24 keymap
(102 . forward-word))
(6 . forward-char))
Note that storing a new binding for `C-p C-f' actually works by
changing an entry in `ctl-x-map', and this has the effect of
changing the bindings of both `C-p C-f' and `C-x C-f' in the
default global map.
-- Function: substitute-key-definition OLDDEF NEWDEF KEYMAP
This function replaces OLDDEF with NEWDEF for any keys in KEYMAP
that were bound to OLDDEF. In other words, OLDDEF is replaced
with NEWDEF wherever it appears. It returns `nil'.
Prefix keymaps that appear within KEYMAP are not checked
recursively for keys bound to OLDDEF; they are not changed at all.
Perhaps it would be better to check nested keymaps recursively.
(setq map '(keymap
(?1 . olddef-1)
(?2 . olddef-2)
(?3 . olddef-1)))
=> (keymap (49 . olddef-1) (50 . olddef-2) (51 . olddef-1))
(substitute-key-definition 'olddef-1 'newdef map)
=> nil
map
=> (keymap (49 . newdef) (50 . olddef-2) (51 . newdef))
;; The following will redefine `C-x C-f', if you do it in an
;; Emacs with standard bindings.
(substitute-key-definition
'find-file 'find-file-read-only (current-global-map))
-- Function: suppress-keymap KEYMAP &optional NODIGITS
This function changes the contents of the full keymap KEYMAP by
replacing the self-insertion commands for numbers with the
`digit-argument' function, unless NODIGITS is non-`nil', and by
replacing the functions for the rest of the printing characters
with `undefined'. This means that ordinary insertion of text is
impossible in a buffer with a local keymap on which
`suppress-keymap' has been called.
`suppress-keymap' returns `nil'.
The `suppress-keymap' function does not make it impossible to
modify a buffer, as it does not suppress commands such as `yank'
and `quote-insert'. To prevent any modification of a buffer, make
it read-only (*note Read Only Buffers::.).
Since this function modifies KEYMAP, you would normally use it on
a newly created keymap. Operating on an existing keymap that is
used for some other purpose is likely to cause trouble; for
example, suppressing `global-map' would make it impossible to use
most of Emacs.
Most often, `suppress-keymap' is used for initializing local
keymaps of modes such as Rmail and Dired where insertion of text
is not desirable and the buffer is read-only. Here is an example
taken from the file `emacs/lisp/dired.el', showing how the local
keymap for Dired mode is set up:
...
(setq dired-mode-map (make-keymap))
(suppress-keymap dired-mode-map)
(define-key dired-mode-map "r" 'dired-rename-file)
(define-key dired-mode-map "\C-d" 'dired-flag-file-deleted)
(define-key dired-mode-map "d" 'dired-flag-file-deleted)
(define-key dired-mode-map "v" 'dired-view-file)
(define-key dired-mode-map "e" 'dired-find-file)
(define-key dired-mode-map "f" 'dired-find-file)
...
File: elisp, Node: Key Binding Commands, Next: Scanning Keymaps, Prev: Changing Key Bindings, Up: Keymaps
Commands for Binding Keys
=========================
This section describes some convenient interactive interfaces for
changing key bindings. They work by calling `define-key'.
-- Command: global-set-key KEY DEFINITION
This function sets the binding of KEY in the current global map to
DEFINITION.
(global-set-key KEY DEFINITION)
==
(define-key (current-global-map) KEY DEFINITION)
-- Command: global-unset-key KEY
This function removes the binding of KEY from the current global
map.
One use of this function is in preparation for defining a longer
key which uses it implicitly as a prefix--which would not be
allowed otherwise. For example:
(global-unset-key "\C-l")
=> nil
(global-set-key "\C-l\C-l" 'redraw-display)
=> nil
This function is implemented simply using `define-key':
(global-unset-key KEY)
==
(define-key (current-global-map) KEY nil)
-- Command: local-set-key KEY DEFINITION
This function sets the binding of KEY in the current local keymap
to DEFINITION.
(local-set-key KEY DEFINITION)
==
(define-key (current-local-map) KEY DEFINITION)
-- Command: local-unset-key KEY
This function removes the binding of KEY from the current local
map.
(local-unset-key KEY)
==
(define-key (current-local-map) KEY nil)
File: elisp, Node: Scanning Keymaps, Prev: Key Binding Commands, Up: Keymaps
Scanning Keymaps
================
This section describes functions used to scan all the current keymaps
for the sake of printing help information.
-- Function: accessible-keymaps KEYMAP
This function returns a list of all the keymaps that can be
accessed (via prefix keys) from KEYMAP. The list returned is an
association list with elements of the form `(KEY . MAP)', where
KEY is a prefix whose definition in KEYMAP is MAP.
The elements of the alist are ordered so that the KEY increases in
length. The first element is always `("" . KEYMAP)', because the
specified keymap is accessible from itself with a prefix of no
characters.
In the example below, the returned alist indicates that the key
ESC, which is displayed as `"^["', is a prefix key whose
definition is the sparse keymap `(keymap (83 . center-paragraph)
(115 . foo))'.
(accessible-keymaps (current-local-map))
=>(("" keymap
(27 keymap ; Note this keymap for ESC is repeated below.
(83 . center-paragraph)
(115 . center-line))
(9 . tab-to-tab-stop))
("^[" keymap
(83 . center-paragraph)
(115 . foo)))
In the following example, `C-h' is a prefix key that uses a sparse
keymap starting `(118 . describe-variable) ...'. Another prefix,
`C-x 4', uses the full keymap beginning `[nil ...]' (which happens
to be `ctl-x-4-map').
(accessible-keymaps (current-global-map))
=> (("" . [set-mark-command beginning-of-line ...
delete-backward-char])
("^C" keymap (13 . x-flush-mouse-queue))
("^H" keymap (118 . describe-variable) ... (8 . help-for-help))
("^X" . [x-flush-mouse-queue ... backward-kill-sentence])
("^[" . [mark-sexp backward-sexp ... backward-kill-word])
("^X4" . [nil ... find-file-other-window nil ... nil nil]))
-- Function: where-is-internal COMMAND &optional KEYMAP FIRSTONLY
This function returns a list of key sequences (of any length) that
are bound to COMMAND in KEYMAP and the global keymap. The
argument COMMAND can be any object; it is compared with all keymap
entries using `eq'. If KEYMAP is not supplied, then the global
map alone is used.
If FIRSTONLY is non-`nil', then the value is a single string
representing the first key sequence found, rather than a list of
all possible key sequences.
This function is used by `where-is' (*note Help: (emacs)Help.).
(where-is-internal 'describe-function)
=> ("\^hf" "\^hd")
-- Command: describe-bindings
This function creates a listing of all defined keys, and their
definitions. The listing is put in a buffer named `*Help*', which
is then displayed in a window.
A meta character is shown as ESC followed by the corresponding
non-meta character. Control characters are indicated with `C-'.
When several consecutive characters have the same definition, they
are shown together, as `FIRSTCHAR..LASTCHAR'. In this instance,
you need to know the ASCII codes to understand which characters
this means. For example, in the default global map, the
characters `SPC .. ~' are described by a single line. SPC is ASCII
32, `~' is ASCII 126, and the characters between them include all
the normal printing characters, (e.g., letters, digits,
punctuation, etc.); all these characters are bound to
`self-insert-command'.
File: elisp, Node: Modes, Next: Documentation, Prev: Keymaps, Up: Top
Major and Minor Modes
*********************
A "mode" is a set of definitions that customize Emacs and can be
turned on and off while you edit. There are two varieties of modes:
"major modes", which are mutually exclusive and used for editing
particular kinds of text, and "minor modes", which provide features that
may be enabled individually.
This chapter covers both major and minor modes, the way they are
indicated in the mode line, and how they run hooks supplied by the user.
Related topics such as keymaps and syntax tables are covered in separate
chapters. (*Note Keymaps::, and *Note Syntax Tables::.)
* Menu:
* Major Modes:: Defining major modes.
* Minor Modes:: Defining minor modes.
* Mode Line Format:: Customizing the text that appears in the mode line.
* Hooks:: How to use hooks; how to write code that provides hooks.
File: elisp, Node: Major Modes, Next: Minor Modes, Prev: Modes, Up: Modes
Major Modes
===========
Major modes specialize Emacs for editing particular kinds of text.
Each buffer has only one major mode at a time.
The least specialized major mode is called "Fundamental mode". This
mode has no mode-specific definitions or variable settings, so each
Emacs command behaves in its default manner, and each option is in its
default state. All other major modes redefine various keys and options.
For example, Lisp Interaction mode provides special key bindings for
LFD (`eval-print-last-sexp'), TAB (`lisp-indent-line'), and other keys.
When you need to write several editing commands to help you perform a
specialized editing task, creating a new major mode is usually a good
idea. In practice, writing a major mode is easy (in sharp contrast to
writing a minor mode, which is often difficult).
If the new mode is similar to an old one, it is often unwise to
modify the old one to serve two purposes, since it may become harder to
use and maintain. Instead, copy and rename an existing major mode
definition and alter it for its new function. For example, Rmail Edit
mode, which is in `emacs/lisp/rmailedit.el', is a major mode that is
very similar to Text mode except that it provides three additional
commands. Its definition is distinct from that of Text mode, but was
derived from it.
Rmail Edit mode is an example of a case where one piece of text is
put temporarily into a different major mode so it can be edited in a
different way (with ordinary Emacs commands rather than Rmail). In such
cases, the temporary major mode usually has a command to switch back to
the buffer's usual mode (Rmail mode, in this case). You might be
tempted to present the temporary redefinitions inside a recursive edit
and restore the usual ones when the user exits; but this is a bad idea
because it constrains the user's options when it is done in more than
one buffer: recursive edits must be exited most-recently-entered first.
Using alternative major modes avoids this limitation. *Note Recursive
Editing::.
The standard GNU Emacs Lisp library directory contains the code for
several major modes, in files including `text-mode.el', `texinfo.el',
`lisp-mode.el', `c-mode.el', and `rmail.el'. You can look at these
libraries to see how modes are written. Text mode is perhaps the
simplest major mode aside from Fundamental mode. Rmail mode is a
rather complicated, full-featured mode.
* Menu:
* Major Mode Conventions:: Coding conventions for keymaps, etc.
* Example Major Modes:: Text mode and Lisp modes.
* Auto Major Mode:: How Emacs chooses the major mode automatically.
* Mode Help:: Finding out how to use a mode.
File: elisp, Node: Major Mode Conventions, Next: Example Major Modes, Prev: Major Modes, Up: Major Modes
Major Mode Conventions
----------------------
The code for existing major modes follows various coding conventions,
including conventions for local keymap and syntax table initialization,
global names, and hooks. Please keep these conventions in mind when you
create a new major mode:
* Define a command whose name ends in `-mode', with no arguments,
that switches to the new mode in the current buffer. This command
should set up the keymap, syntax table, and local variables in an
existing buffer without changing the buffer's text.
* Write a documentation string for this command which describes the
special commands available in this mode. `C-h m'
(`describe-mode') will print this.
The documentation string may include the special documentation
substrings, `\[COMMAND]', `\{KEYMAP}', and `\<KEYMAP>', that
enable the documentation to adapt automatically to the user's own
key bindings. The `describe-mode' function replaces these special
documentation substrings with their current meanings. *Note
Accessing Documentation::.
* The major mode command should set the variable `major-mode' to the
major mode command symbol. This is how `describe-mode' discovers
which documentation to print.
* The major mode command should set the variable `mode-name' to the
"pretty" name of the mode, as a string. This appears in the mode
line.
* Since all global names are in the same name space, all the global
variables, constants, and functions that are part of the mode
should have names that start with the major mode name (or with an
abbreviation of it if the name is long).
* The major mode should usually have its own keymap, which is used
as the local keymap in all buffers in that mode. The major mode
function should call `use-local-map' to install this local map.
*Note Global and Local Keymaps::, for more information.
This keymap should be kept in a global variable named
`MODENAME-mode-map'. This variable is usually set up when the
library that defines the mode is loaded. Use `defvar' to set the
variable, so that it is not reinitialized if it already has a
value. (Such reinitialization could discard customizations made by
the user.)
* The mode may have its own syntax table or may share one with other
related modes. If it has its own syntax table, it should store
this in a variable named `MODENAME-mode-syntax-table'. The reasons
for this are the same as for using a keymap variable. *Note
Syntax Tables::.
* The mode may have its own abbrev table or may share one with other
related modes. If it has its own abbrev table, it should store
this in a variable named `MODENAME-mode-abbrev-table'. *Note
Abbrev Tables::.
* To give a variable a buffer-local binding, use
`make-local-variable' in the major mode command, not
`make-variable-buffer-local'. The latter function would make the
variable local to every buffer in which it is subsequently set,
which would affect buffers that do not use this mode. It is
undesirable for a mode to have such global effects. *Note
Buffer-Local Variables::.
* If hooks are appropriate for the mode, the major mode command
should run the hooks after completing all other initialization so
the user may further customize any of the settings. *Note Hooks::.
* If this mode is appropriate only for specially-prepared text, then
the major mode command symbol should have a property named
`mode-class' with value `special', put on as follows:
(put 'funny-mode 'mode-class 'special)
This tells Emacs that new buffers created while the current buffer
has Funny mode should not inherit Funny mode. Modes such as
Dired, Rmail, and Buffer List use this feature.
* If it is desirable that Emacs use the new mode by default after
visiting files with certain recognizable names, add an element to
`auto-mode-alist' to select the mode for those file names. If you
define the mode command to autoload, you should add this element
at the same time. Otherwise, it is sufficient to add the element
in the file that contains the mode definition. *Note Auto Major
Mode::.
* In the documentation, you should provide a sample `autoload' form
and a sample `auto-mode-alist' addition that users can include in
their `.emacs' files.
* The top level forms in the file defining the mode should be
written so that they may be evaluated more than once without
adverse consequences. Even if you never load the file more than
once, someone else will.
File: elisp, Node: Example Major Modes, Next: Auto Major Mode, Prev: Major Mode Conventions, Up: Major Modes
Major Mode Examples
-------------------
Text mode is perhaps the simplest mode besides Fundamental mode.
Here are excerpts from `text-mode.el' that illustrate many of the
conventions listed above:
;; Create mode-specific tables.
(defvar text-mode-syntax-table nil
"Syntax table used while in text mode.")
(if text-mode-syntax-table
() ; Do not change the table if it is already set up.
(setq text-mode-syntax-table (make-syntax-table))
(set-syntax-table text-mode-syntax-table)
(modify-syntax-entry ?\" ". " text-mode-syntax-table)
(modify-syntax-entry ?\\ ". " text-mode-syntax-table)
(modify-syntax-entry ?' "w " text-mode-syntax-table))
(defvar text-mode-abbrev-table nil
"Abbrev table used while in text mode.")
(define-abbrev-table 'text-mode-abbrev-table ())
(defvar text-mode-map nil "") ; Create a mode-specific keymap.
(if text-mode-map
() ; Do not change the keymap if it is already set up.
(setq text-mode-map (make-sparse-keymap))
(define-key text-mode-map "\t" 'tab-to-tab-stop)
(define-key text-mode-map "\es" 'center-line)
(define-key text-mode-map "\eS" 'center-paragraph))
Here is the complete major mode function definition for Text mode:
(defun text-mode ()
"Major mode for editing text intended for humans to read.
Special commands: \\{text-mode-map}
Turning on text-mode calls the value of the variable text-mode-hook,
if that value is non-nil."
(interactive)
(kill-all-local-variables)
(use-local-map text-mode-map) ; This provides the local keymap.
(setq mode-name "Text") ; This name goes into the mode line.
(setq major-mode 'text-mode) ; This is how `describe-mode'
; finds the doc string to print.
(setq local-abbrev-table text-mode-abbrev-table)
(set-syntax-table text-mode-syntax-table)
(run-hooks 'text-mode-hook)) ; Finally, this permits the user to
; customize the mode with a hook.
The three Lisp modes (Lisp mode, Emacs Lisp mode, and Lisp
Interaction mode) have more features than Text mode and the code is
correspondingly more complicated. Here are excerpts from
`lisp-mode.el' that illustrate how these modes are written.
;; Create mode-specific table variables.
(defvar lisp-mode-syntax-table nil "")
(defvar emacs-lisp-mode-syntax-table nil "")
(defvar lisp-mode-abbrev-table nil "")
(if (not emacs-lisp-mode-syntax-table) ; Do not change the table
; if it is already set.
(let ((i 0))
(setq emacs-lisp-mode-syntax-table (make-syntax-table))
;; Set syntax of chars up to 0 to class of chars that are
;; part of symbol names but not words.
;; (The number 0 is `48' in the ASCII character set.)
(while (< i ?0)
(modify-syntax-entry i "_ " emacs-lisp-mode-syntax-table)
(setq i (1+ i)))
...
;; Set the syntax for other characters.
(modify-syntax-entry ? " " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\t " " emacs-lisp-mode-syntax-table)
...
(modify-syntax-entry ?\( "() " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\) ")( " emacs-lisp-mode-syntax-table)
...))
;; Create an abbrev table for lisp-mode.
(define-abbrev-table 'lisp-mode-abbrev-table ())
Much code is shared among the three Lisp modes; the code is all in
one library. The following function sets various variables; it is
called by each of the major Lisp mode functions:
(defun lisp-mode-variables (lisp-syntax)
;; The `lisp-syntax' argument is `nil' in Emacs Lisp mode,
;; and `t' in the other two Lisp modes.
(cond (lisp-syntax
(if (not lisp-mode-syntax-table)
;; The Emacs Lisp mode syntax table always exists, but
;; the Lisp Mode syntax table is created the first time a
;; mode that needs it is called. This is to save space.
(progn (setq lisp-mode-syntax-table
(copy-syntax-table emacs-lisp-mode-syntax-table))
;; Change some entries for Lisp mode.
(modify-syntax-entry ?\| "\" "
lisp-mode-syntax-table)
(modify-syntax-entry ?\[ "_ "
lisp-mode-syntax-table)
(modify-syntax-entry ?\] "_ "
lisp-mode-syntax-table)))
(set-syntax-table lisp-mode-syntax-table)))
(setq local-abbrev-table lisp-mode-abbrev-table)
...)
Functions such as `forward-word' use the value of the
`paragraph-start' variable. Since Lisp code is different from ordinary
text, the `paragraph-start' variable needs to be set specially to
handle Lisp. Also, comments are indented in a special fashion in Lisp
and the Lisp modes need their own mode-specific `comment-indent-hook'.
The code to set these variables is the rest of `lisp-mode-variables'.
(make-local-variable 'paragraph-start)
(setq paragraph-start (concat "^$\\|" page-delimiter))
...
(make-local-variable 'comment-indent-hook)
(setq comment-indent-hook 'lisp-comment-indent))
Each of the different Lisp modes has a slightly different keymap.
For example, Lisp mode binds `C-c C-l' to `run-lisp', but the other
Lisp modes do not. However, all Lisp modes have some commands in
common. The following function adds these common commands to a given
keymap.
(defun lisp-mode-commands (map)
(define-key map "\e\C-q" 'indent-sexp)
(define-key map "\177" 'backward-delete-char-untabify)
(define-key map "\t" 'lisp-indent-line))
Here is an example of using `lisp-mode-commands' to initialize a
keymap, as part of the code for Emacs Lisp mode. First `defvar' is
used to declare a mode-specific keymap variable. Then `boundp' tests
whether the `emacs-lisp-mode-map' variable has a value (is not void).
If the variable does have a value, we do not change it. This lets the
user customize the keymap if he or she so wishes. Otherwise, we
initialize it to a new sparse keymap and install the default key
bindings.
(defvar emacs-lisp-mode-map () "")
(if emacs-lisp-mode-map
()
(setq emacs-lisp-mode-map (make-sparse-keymap))
(define-key emacs-lisp-mode-map "\e\C-x" 'eval-defun)
(lisp-mode-commands emacs-lisp-mode-map))
Finally, here is the complete major mode function definition for
Emacs Lisp mode.
(defun emacs-lisp-mode ()
"Major mode for editing Lisp code to run in Emacs.
Commands:
Delete converts tabs to spaces as it moves back.
Blank lines separate paragraphs. Semicolons start comments.
\\{emacs-lisp-mode-map}
Entry to this mode calls the value of emacs-lisp-mode-hook
if that value is non-nil."
(interactive)
(kill-all-local-variables)
(use-local-map emacs-lisp-mode-map) ; This provides the local keymap.
(set-syntax-table emacs-lisp-mode-syntax-table)
(setq major-mode 'emacs-lisp-mode) ; This is how `describe-mode'
; finds out what to describe.
(setq mode-name "Emacs-Lisp") ; This goes into the mode line.
(lisp-mode-variables nil) ; This define various variables.
(run-hooks 'emacs-lisp-mode-hook)) ; This permits the user to use a
; hook to customize the mode.
File: elisp, Node: Auto Major Mode, Next: Mode Help, Prev: Example Major Modes, Up: Major Modes
How Emacs Chooses a Major Mode Automatically
--------------------------------------------
Based on information in the file name or in the file itself, Emacs
automatically selects a major mode for the new buffer when a file is
visited.
-- Command: fundamental-mode
Fundamental mode is a major mode that is not specialized for
anything in particular. Other major modes are defined in effect
by comparison with this one--their definitions say what to change,
starting from Fundamental mode. The `fundamental-mode' function
does *not* run any hooks, so it is not readily customizable.
-- Command: normal-mode &optional FIND-FILE
This function establishes the proper major mode and local variable
bindings for the current buffer. First it calls `set-auto-mode',
then it runs `hack-local-variables' to parse, and bind or evaluate
as appropriate, any local variables.
If the FIND-FILE argument to `normal-mode' is non-`nil',
`normal-mode' assumes that the `find-file' function is calling it.
In this case, if `inhibit-local-variables' is non-`nil', it asks
for confirmation before processing a local variables list. If you
run `normal-mode' yourself, the argument FIND-FILE is normally
`nil', so confirmation is not requested.
`normal-mode' uses `condition-case' around the call to the major
mode function, so errors are caught and reported as a `File mode
specification error', followed by the original error message.
-- Function: set-auto-mode
This function selects the major mode that is appropriate for the
current buffer. It may base its decision on the value of the `-*-'
line, on the visited file name (using `auto-mode-alist'), or on the
value of a local variable). However, this function does not look
for the `mode:' local variable near the end of a file; the
`hack-local-variables' function does that. *Note How Major Modes
are Chosen: (emacs)Choosing Modes.
-- User Option: default-major-mode
This variable holds the default major mode for new buffers. The
standard value is `fundamental-mode'.
If the value of `default-major-mode' is `nil', Emacs uses the
(previously) current buffer's major mode for major mode of a new
buffer. However, if the major mode symbol has a `mode-class'
property with value `special', then it is not used for new buffers;
Fundamental mode is used instead. The modes that have this
property are those such as Dired and Rmail that are useful only
with text that has been specially prepared.
-- Variable: initial-major-mode
The value of this variable determines the major mode of the initial
`*scratch*' buffer. The value should be a symbol that is a major
mode command name. The default value is `lisp-interaction-mode'.
-- Variable: auto-mode-alist
This variable contains an association list of file name patterns
(regular expressions; *note Regular Expressions::.) and
corresponding major mode functions. Usually, the file name
patterns test for suffixes, such as `.el' and `.c', but this need
not be the case. Each element of the alist looks like `(REGEXP .
MODE-FUNCTION)'.
For example,
(("^/tmp/fol/" . text-mode)
("\\.texinfo$" . texinfo-mode)
("\\.texi$" . texinfo-mode)
("\\.el$" . emacs-lisp-mode)
("\\.c$" . c-mode)
("\\.h$" . c-mode)
...)
When you visit a file whose *full* path name matches a REGEXP,
`set-auto-mode' calls the corresponding MODE-FUNCTION. This
feature enables Emacs to select the proper major mode for most
files.
Here is an example of how to prepend several pattern pairs to an
existing `auto-mode-alist'. (You might use this sort of
expression in your `.emacs' file.)
(setq auto-mode-alist
(append
'(("/\\.[^/]*$" . fundamental-mode) ; Filename starts with a dot.
("[^\\./]*$" . fundamental-mode) ; Filename has no dot.
("\\.C$" . c++-mode))
auto-mode-alist))
-- Function: hack-local-variables &optional FORCE
This function parses, and binds or evaluates as appropriate, any
local variables for the current buffer.
If the variable `inhibit-local-variables' is non-`nil', and FORCE
is `nil', then the user is asked for confirmation if the buffer
does contain local variable specifications. A non-`nil' value of
FORCE is passed by `normal-mode' when it is called explicitly by
the user.
*Note Local Variables in Files: (emacs)File variables, for the
syntax of the local variables section of a file.
-- User Option: inhibit-local-variables
When this variable is non-`nil', `hack-local-variables' asks the
user for confirmation before obeying a file's local-variables list.
File: elisp, Node: Mode Help, Prev: Auto Major Mode, Up: Major Modes
Getting Help about a Major Mode
-------------------------------
The `describe-mode' function is used to provide information about
major modes. It is normally called with `C-h m'. The `describe-mode'
function uses the value of `major-mode', which is why every major mode
function needs to set the `major-mode' variable.
-- Command: describe-mode
This function displays the documentation of the current major mode.
The `describe-mode' function calls the `documentation' function
using the value of `major-mode' as an argument. Thus, it displays
the documentation string of the major mode function. (*Note
Accessing Documentation::.)
-- Variable: major-mode
This variable holds the symbol for the current buffer's major
mode. This symbol should be the name of the function that is
called to initialize the mode. The `describe-mode' function uses
the documentation string of this symbol as the documentation of
the major mode.