home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
C Programming Starter Kit 2.0
/
SamsPublishing-CProgrammingStarterKit-v2.0-Win31.iso
/
bc45
/
clobss.pak
/
BTREEINN.CPO
< prev
next >
Wrap
Text File
|
1997-07-23
|
23KB
|
709 lines
/*------------------------------------------------------------------------*/
/* */
/* BTREEINN.CPP */
/* */
/* Copyright Borland International 1991, 1993 */
/* All Rights Reserved */
/* */
/*------------------------------------------------------------------------*/
#if !defined( __STDLIB_H )
#include <stdlib.h>
#endif // __STDLIB_H
#if !defined( __IOSTREAM_H )
#include <iostream.h>
#endif // __IOSTREAM_H
#if !defined( CHECKS_H )
#include <checks.h>
#endif // CHECKS_H
#if !defined( __BTREE_H )
#include "classlib\obsolete\btree.h"
#endif // __BTREE_H
//====== InnerNode functions ======
InnerNode::InnerNode(InnerNode* P, Btree* T) : Node(0,P,T)
{
item = new Item[maxIndex()+1];
if( item == 0 )
ClassLib_error( __ENOMEMIA );
}
InnerNode::InnerNode(InnerNode* Parent, Btree* Tree, Node* oldroot)
: Node(0, Parent, Tree)
{
// called only by Btree to initialize the InnerNode that is
// about to become the root.
item = new Item[maxIndex()+1];
if( item == 0 )
ClassLib_error( __ENOMEMIA );
append( 0, oldroot );
}
InnerNode::~InnerNode()
{
if( last > 0 )
delete item[0].tree;
for( int i = 1; i <= last; i++ )
{
delete item[i].tree;
if( tree->ownsElements() )
delete item[i].key;
}
delete [] item;
}
// for quick (human reader) lookup, functions are in alphabetical order
void InnerNode::add( Sortable *obj, int index )
{
// this is called only from Btree::add()
PRECONDITION( index >= 1 );
LeafNode* ln = getTree(index-1)->lastLeafNode();
ln->add( obj, ln->last+1 );
}
void InnerNode::addElt( Item& itm, int at )
{
PRECONDITION( 0 <= at && at <= last+1 );
PRECONDITION( last < maxIndex() );
for( int i = last+1; i > at ; i-- )
getItem(i) = getItem(i-1);
setItem( at, itm );
last++;
}
void InnerNode::addElt( int at, Sortable* k, Node* t)
{
Item newitem( k, t );
addElt( newitem, at );
}
void InnerNode::add( Item& itm, int at )
{
addElt( itm, at );
if( isFull() )
informParent();
}
void InnerNode::add( int at, Sortable* k, Node* t)
{
Item newitem( k, t );
add( newitem, at );
}
void InnerNode::appendFrom( InnerNode* src, int start, int stop )
{
// this should never create a full node
// that is, it is not used anywhere where THIS could possibly be
// near full.
if( start > stop )
return;
PRECONDITION( 0 <= start && start <= src->last );
PRECONDITION( 0 <= stop && stop <= src->last );
PRECONDITION( last + stop - start + 1 < maxIndex() ); // full-node check
for( int i = start; i <= stop; i++ )
setItem( ++last, src->getItem(i) );
}
void InnerNode::append( Sortable* D, Node* N )
{
// never called from anywhere where it might fill up THIS
PRECONDITION( last < maxIndex() );
setItem( ++last, D, N );
}
void InnerNode::append( Item& itm )
{
PRECONDITION( last < maxIndex() );
setItem( ++last, itm );
}
void InnerNode::balanceWithLeft( InnerNode* leftsib, int pidx )
{
// THIS has more than LEFTSIB; move some item from THIS to LEFTSIB.
// PIDX is the index of the parent item that will change when keys
// are moved.
PRECONDITION( Vsize() >= leftsib->Psize() );
PRECONDITION( parent->getTree(pidx) == this );
int newThisSize = (Vsize() + leftsib->Psize())/2;
int noFromThis = Psize() - newThisSize;
pushLeft( noFromThis, leftsib, pidx );
}
void InnerNode::balanceWithRight( InnerNode* rightsib, int pidx )
{
// THIS has more than RIGHTSIB; move some items from THIS to RIGHTSIB.
// PIDX is the index of the parent item that will change when keys
// are moved.
PRECONDITION( Psize() >= rightsib->Vsize() );
PRECONDITION( parent->getTree(pidx) == rightsib );
int newThisSize = (Psize() + rightsib->Vsize())/2;
int noFromThis = Psize() - newThisSize;
pushRight( noFromThis, rightsib, pidx );
}
void InnerNode::balanceWith( InnerNode* rightsib, int pindx )
{
// PINDX is the index of the parent item whose key will change when
// keys are shifted from one InnerNode to the other.
if( Psize() < rightsib->Vsize() )
rightsib->balanceWithLeft( this, pindx );
else
balanceWithRight( rightsib, pindx );
}
void InnerNode::decrNofKeys( Node *that )
{
// THAT is a child of THIS that has just shrunk by 1
int i = indexOf( that );
item[i].nofKeysInTree--;
if( parent != 0 )
parent->decrNofKeys( this );
else
tree->decrNofKeys();
}
long InnerNode::findRank( Sortable* what ) const
{
// recursively look for WHAT starting in the current node
if ( *what < *getKey(1) )
return getTree(0)->findRank(what);
long sum = getNofKeys(0);
for( int i = 1; i < last; i++ )
{
if( *what == *getKey(i) )
return sum;
sum++;
if( *what < *getKey(i+1) )
return sum + getTree(i)->findRank(what);
sum += getNofKeys(i);
}
if( *what == *getKey(last) )
return sum;
sum++;
// *what > getKey(last), so recurse on last item.tree
return sum + getTree(last)->findRank(what);
}
long InnerNode::findRank_bu( const Node *that ) const
{
// findRank_bu is findRank in reverse.
// whereas findRank looks for the object and computes the rank
// along the way while walking DOWN the tree, findRank_bu already
// knows where the object is and has to walk UP the tree from the
// object to compute the rank.
int L = indexOf( that );
long sum = 0;
for( int i = 0; i < L; i++ )
sum += getNofKeys(i);
return sum + L + (parent == 0 ? 0 : parent->findRank_bu( this ));
}
LeafNode*InnerNode::firstLeafNode()
{
return getTree(0)->firstLeafNode();
}
Object& InnerNode::found(Sortable* what, Node** which, int* where )
{
// recursively look for WHAT starting in the current node
for( int i = 1 ; i <= last; i++ )
{
if( *getKey(i) == *what )
{
// then could go in either item[i].tree or item[i-1].tree
// should go in one with the most room, but that's kinda
// hard to calculate, so we'll stick it in item[i].tree
*which = this;
*where = i;
return *getKey(i);
}
if( *getKey(i) > *what )
return getTree(i-1)->found(what, which, where);
}
// *what > *(*this)[last].key, so recurse on last item.tree
return getTree(last)->found( what, which, where );
}
void InnerNode::incrNofKeys( Node *that )
{
// THAT is a child of THIS that has just grown by 1
int i = indexOf( that );
item[i].nofKeysInTree++;
if( parent != 0 )
parent->incrNofKeys( this );
else
tree->incrNofKeys();
}
#pragma warn -rvl
int InnerNode::indexOf( const Node *that ) const
{
// returns a number in the range 0 to this->last
// 0 is returned if THAT == tree[0]
for( int i = 0; i <= last; i++ )
if( getTree(i) == that )
return i;
CHECK( 0 );
}
#pragma warn .rvl
void InnerNode::informParent()
{
if( parent == 0 )
{
// then this is the root of the tree and nees to be split
// inform the btree.
PRECONDITION( tree->root == this );
tree->rootIsFull();
}
else
parent->isFull( this );
}
void InnerNode::isFull(Node *that)
{
// the child node THAT is full. We will either redistribute elements
// or create a new node and then redistribute.
// In an attempt to minimize the number of splits, we adopt the following
// strategy:
// * redistribute if possible
// * if not possible, then split with a sibling
if( that->isLeaf )
{
LeafNode *leaf = (LeafNode *)that;
LeafNode *left, *right;
// split LEAF only if both sibling nodes are full.
int leafidx = indexOf(leaf);
int hasRightSib = (leafidx < last)
&& ((right=(LeafNode*)getTree(leafidx+1))
!= 0);
int hasLeftSib = (leafidx > 0)
&& ((left=(LeafNode*)getTree(leafidx-1))
!= 0);
int rightSibFull = (hasRightSib && right->isAlmostFull());
int leftSibFull = (hasLeftSib && left->isAlmostFull());
if( rightSibFull )
{
if( leftSibFull )
{
// both full, so pick one to split with
left->splitWith( leaf, leafidx );
}
else if( hasLeftSib )
{
// left sib not full, so balance with it
leaf->balanceWithLeft( left, leafidx );
}
else
{
// there is no left sibling, so split with right
leaf->splitWith( right, leafidx+1 );
}
}
else if( hasRightSib )
{
// right sib not full, so balance with it
leaf->balanceWithRight( right, leafidx+1 );
}
else if( leftSibFull )
{
// no right sib, and left sib is full, so split with it
left->splitWith( leaf, leafidx );
}
else if( hasLeftSib )
{
// left sib not full so balance with it
leaf->balanceWithLeft( left, leafidx );
}
else
{
// neither a left or right sib; should never happen
CHECK(0);
}
}
else {
InnerNode *inner = (InnerNode *)that;
// split INNER only if both sibling nodes are full.
int inneridx = indexOf(inner);
InnerNode *left, *right;
int hasRightSib = (inneridx < last)
&& ((right=(InnerNode*)getTree(inneridx+1))
!= 0);
int hasLeftSib = (inneridx > 0)
&& ((left=(InnerNode*)getTree(inneridx-1))
!= 0);
int rightSibFull = (hasRightSib && right->isAlmostFull());
int leftSibFull = (hasLeftSib && left->isAlmostFull());
if( rightSibFull )
{
if( leftSibFull )
{
left->splitWith( inner, inneridx );
}
else if( hasLeftSib )
{
inner->balanceWithLeft( left, inneridx );
}
else
{
// there is no left sibling
inner->splitWith(right, inneridx+1);
}
}
else if( hasRightSib )
{
inner->balanceWithRight( right, inneridx+1 );
}
else if( leftSibFull )
{
left->splitWith( inner, inneridx );
}
else if( hasLeftSib )
{
inner->balanceWithLeft( left, inneridx );
}
else {
CHECK(0);
}
}
}
void InnerNode::isLow( Node *that )
{
// the child node THAT is <= half full. We will either redistribute
// elements between children, or THAT will be merged with another child.
// In an attempt to minimize the number of mergers, we adopt the following
// strategy:
// * redistribute if possible
// * if not possible, then merge with a sibling
if( that->isLeaf )
{
LeafNode *leaf = (LeafNode *)that;
LeafNode *left, *right;
// split LEAF only if both sibling nodes are full.
int leafidx = indexOf(leaf);
int hasRightSib = (leafidx < last)
&& ((right=(LeafNode*)getTree(leafidx+1))
!= 0);
int hasLeftSib = (leafidx > 0)
&& ((left=(LeafNode*)getTree(leafidx-1))
!= 0);
if( hasRightSib
&& (leaf->Psize() + right->Vsize()) >= leaf->maxPsize())
{
// then cannot merge,
// and balancing this and rightsib will leave them both
// more than half full
leaf->balanceWith( right, leafidx+1 );
}
else if( hasLeftSib
&& (leaf->Vsize() + left->Psize()) >= leaf->maxPsize())
{
// ditto
left->balanceWith( leaf, leafidx );
}
else if( hasLeftSib )
{
// then they should be merged
left->mergeWithRight( leaf, leafidx );
}
else if( hasRightSib )
{
leaf->mergeWithRight( right, leafidx+1 );
}
else
{
CHECK(0); // should never happen
}
}
else
{
InnerNode *inner = (InnerNode *)that;
//
int inneridx = indexOf(inner);
InnerNode *left, *right;
int hasRightSib = (inneridx < last)
&& ((right=(InnerNode*)getTree(inneridx+1))
!= 0);
int hasLeftSib = (inneridx > 0)
&& ((left=(InnerNode*)getTree(inneridx-1))
!= 0);
if( hasRightSib
&& (inner->Psize() + right->Vsize()) >= inner->maxPsize())
{
// cannot merge
inner->balanceWith( right, inneridx+1 );
}
else if( hasLeftSib
&& (inner->Vsize() + left->Psize()) >= inner->maxPsize())
{
// cannot merge
left->balanceWith( inner, inneridx );
}
else if( hasLeftSib )
{
left->mergeWithRight( inner, inneridx );
}
else if( hasRightSib )
{
inner->mergeWithRight( right, inneridx+1 );
}
else
{
CHECK(0);
}
}
}
LeafNode*InnerNode::lastLeafNode()
{
return getTree(last)->lastLeafNode();
}
void InnerNode::mergeWithRight( InnerNode* rightsib, int pidx )
{
PRECONDITION( Psize() + rightsib->Vsize() < maxIndex() );
if( rightsib->Psize() > 0 )
rightsib->pushLeft( rightsib->Psize(), this, pidx );
rightsib->setKey( 0, parent->getKey( pidx ) );
appendFrom( rightsib, 0, 0 );
parent->incNofKeys( pidx-1, rightsib->getNofKeys(0)+1 );
parent->removeItem( pidx );
delete rightsib;
}
long InnerNode::nofKeys() const
{
long sum = 0;
for( int i = 0; i <= last; i++)
sum += getNofKeys(i);
return sum + Psize();
}
Object& InnerNode::operator[]( long idx ) const
{
for( int j=0; j <= last; j++ )
{
long R;
if( idx < (R = getNofKeys(j)) )
return (*getTree(j))[idx];
if( idx == R )
{
if( j == last )
return NOOBJECT;
else
return *getKey(j+1);
}
idx -= R+1; // +1 because of the key in the node
}
return NOOBJECT;
}
void InnerNode::printOn(ostream& out) const
{
out << " [ " << "/" << getNofKeys(0) << *getTree(0);
for( int i = 1; i <= last; i++ )
{
if( i > 1 )
CHECK( *getKey(i-1) <= *getKey(i) );
out << *getKey(i) << "/" << getNofKeys(i) << *getTree(i);
}
out << " ] ";
}
void InnerNode::pushLeft( int noFromThis, InnerNode* leftsib, int pidx )
{
// noFromThis==1 => moves the parent item into the leftsib,
// and the first item in this's array into the parent item
PRECONDITION( parent->getTree(pidx) == this );
PRECONDITION( noFromThis > 0 && noFromThis <= Psize() );
PRECONDITION( noFromThis + leftsib->Psize() < maxPsize() );
setKey( 0, parent->getKey(pidx) ); // makes appendFrom's job easier
leftsib->appendFrom( this, 0, noFromThis-1 );
shiftLeft( noFromThis );
parent->setKey( pidx, getKey(0) );
parent->setNofKeys( pidx-1, leftsib->nofKeys() );
parent->setNofKeys( pidx, nofKeys() );
}
void InnerNode::pushRight(int noFromThis, InnerNode* rightsib, int pidx)
{
PRECONDITION( noFromThis > 0 && noFromThis <= Psize() );
PRECONDITION( noFromThis + rightsib->Psize() < rightsib->maxPsize() );
PRECONDITION( parent->getTree(pidx) == rightsib );
//
// The operation is three steps:
// Step I. Make room for the incoming keys in RIGHTSIB.
// Step II. Move the items from THIS into RIGHTSIB.
// Step III.Update the length of THIS.
//
// Step I.: make space for noFromThis items
//
int start = last - noFromThis + 1;
int tgt, src;
tgt = rightsib->last + noFromThis;
src = rightsib->last;
rightsib->last = tgt;
rightsib->setKey( 0, parent->getKey( pidx ) ); incNofKeys(0);
while( src >= 0 )
{
// do this kind of assignment on InnerNode Items only when
// the parent fields
// of the moved items do not change, as they don't here.
// Otherwise, use setItem so the parents are updated appropriately.
rightsib->getItem(tgt--) = rightsib->getItem(src--);
}
// Step II.Move the items from THIS into RIGHTSIB
for( int i = last; i >= start; i-- )
{
// this is the kind of assignment to use when parents change
rightsib->setItem(tgt--, getItem(i));
}
parent->setKey( pidx, rightsib->getKey(0) );
decNofKeys(0);
CHECK( tgt == -1 );
// Step III.
last -= noFromThis;
// Step VI. update nofKeys
parent->setNofKeys( pidx-1, nofKeys() );
parent->setNofKeys( pidx, rightsib->nofKeys() );
}
void InnerNode::remove( int index )
{
PRECONDITION( index >= 1 && index <= last );
LeafNode* lf = getTree(index)->firstLeafNode();
setKey( index, lf->item[0] );
lf->removeItem(0);
}
void InnerNode::removeItem( int index )
{
PRECONDITION( index >= 1 && index <= last );
for( int to = index; to < last; to++ )
item[to] = item[to+1];
last--;
if( isLow() )
{
if( parent == 0 )
{
// then this is the root; when only one child, make the child
// the root
if( Psize() == 0 )
tree->rootIsEmpty();
}
else
parent->isLow( this );
}
}
void InnerNode::shiftLeft( int cnt )
{
if( cnt <= 0 )
return;
for( int i = cnt; i <= last; i++ )
getItem(i-cnt) = getItem(i);
last -= cnt;
}
void InnerNode::split()
{
// this function is called only when THIS is the only descendent
// of the root node, and THIS needs to be split.
// assumes that idx of THIS in Parent is 0.
InnerNode* newnode = new InnerNode( parent );
CHECK( newnode != 0 );
parent->append( getKey(last), newnode );
newnode->appendFrom( this, last, last );
last--;
parent->incNofKeys( 1, newnode->getNofKeys(0) );
parent->decNofKeys( 0, newnode->getNofKeys(0) );
balanceWithRight( newnode, 1 );
}
void
InnerNode::splitWith( InnerNode *rightsib, int keyidx )
{
// THIS and SIB are too full; create a NEWnODE, and balance
// the number of keys between the three of them.
//
// picture: (also see Knuth Vol 3 pg 478)
// keyidx keyidx+1
// +--+--+--+--+--+--...
// | | | | | |
// parent--->| | | |
// | | | |
// +*-+*-+*-+--+--+--...
// | | |
// +----+ | +-----+
// | +-----+ |
// V | V
// +----------+ | +----------+
// | | | | |
// this->| | | | |<--sib
// +----------+ | +----------+
// V
// data
//
// keyidx is the index of where the sibling is, and where the
// newly created node will be recorded (sibling will be moved to
// keyidx+1)
//
PRECONDITION( keyidx > 0 && keyidx <= parent->last );
// I would like to be able to prove that the following assertion
// is ALWAYS true, but it is beyond my time limits. If this assertion
// ever comes up False, then the code to make it so must be inserted
// here.
// assert(parent->getKey(keyidx) == rightsib->getKey(0));
// During debugging, this came up False, so
rightsib->setKey(0,parent->getKey(keyidx));
int nofKeys = Psize() + rightsib->Vsize();
int newSizeThis = nofKeys / 3;
int newSizeNew = (nofKeys - newSizeThis) / 2;
int newSizeSib = (nofKeys - newSizeThis - newSizeNew);
int noFromThis = Psize() - newSizeThis;
int noFromSib = rightsib->Vsize() - newSizeSib;
// because of their smaller size, this InnerNode may not have to
// give up any elements to the new node. I.e., noFromThis == 0.
// This will not happen for LeafNodes.
// We handle this by pulling an item from the rightsib.
CHECK( noFromThis >= 0 );
CHECK( noFromSib >= 1 );
InnerNode* newNode = new InnerNode(parent);
CHECK( newNode != 0 );
if( noFromThis > 0 )
{
newNode->append( getItem(last) );
parent->addElt( keyidx, getKey(last--), newNode );
if( noFromThis > 2 )
this->pushRight( noFromThis-1, newNode, keyidx );
rightsib->pushLeft( noFromSib, newNode, keyidx+1 );
}
else
{
// pull an element from the rightsib
newNode->append( rightsib->getItem(0) );
parent->addElt( keyidx+1, rightsib->getKey(1), rightsib);
rightsib->shiftLeft(1);
parent->setTree( keyidx, newNode );
rightsib->pushLeft( noFromSib-1, newNode, keyidx+1 );
}
parent->setNofKeys( keyidx-1, this->nofKeys() );
parent->setNofKeys( keyidx, newNode->nofKeys() );
parent->setNofKeys( keyidx+1, rightsib->nofKeys() );
if( parent->isFull() )
parent->informParent();
}