home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Singles (French)
/
Singles-FrenchVersion-Win95.iso
/
data1.cab
/
Character
/
mikeSchniepi.ams
< prev
next >
Wrap
Text File
|
2004-03-05
|
115KB
|
6,881 lines
Wonderlib::MVFMesh object
{
boneName
{
0 = Pelvis
}
boneWeight
{
0
{
0 = 0 1
}
1
{
0 = 0 1
}
2
{
0 = 0 1
}
3
{
0 = 0 1
}
4
{
0 = 0 1
}
5
{
0 = 0 1
}
6
{
0 = 0 1
}
7
{
0 = 0 1
}
8
{
0 = 0 1
}
9
{
0 = 0 1
}
10
{
0 = 0 1
}
11
{
0 = 0 1
}
12
{
0 = 0 1
}
13
{
0 = 0 1
}
14
{
0 = 0 1
}
15
{
0 = 0 1
}
16
{
0 = 0 1
}
17
{
0 = 0 1
}
18
{
0 = 0 1
}
19
{
0 = 0 1
}
20
{
0 = 0 1
}
21
{
0 = 0 1
}
22
{
0 = 0 1
}
23
{
0 = 0 1
}
24
{
0 = 0 1
}
25
{
0 = 0 1
}
26
{
0 = 0 1
}
27
{
0 = 0 1
}
28
{
0 = 0 1
}
29
{
0 = 0 1
}
30
{
0 = 0 1
}
31
{
0 = 0 1
}
32
{
0 = 0 1
}
33
{
0 = 0 1
}
34
{
0 = 0 1
}
35
{
0 = 0 1
}
36
{
0 = 0 1
}
37
{
0 = 0 1
}
38
{
0 = 0 1
}
39
{
0 = 0 1
}
40
{
0 = 0 1
}
41
{
0 = 0 1
}
42
{
0 = 0 1
}
43
{
0 = 0 1
}
44
{
0 = 0 1
}
45
{
0 = 0 1
}
46
{
0 = 0 1
}
47
{
0 = 0 1
}
48
{
0 = 0 1
}
49
{
0 = 0 1
}
50
{
0 = 0 1
}
51
{
0 = 0 1
}
52
{
0 = 0 1
}
53
{
0 = 0 1
}
54
{
0 = 0 1
}
55
{
0 = 0 1
}
56
{
0 = 0 1
}
57
{
0 = 0 1
}
58
{
0 = 0 1
}
59
{
0 = 0 1
}
60
{
0 = 0 1
}
61
{
0 = 0 1
}
62
{
0 = 0 1
}
63
{
0 = 0 1
}
64
{
0 = 0 1
}
65
{
0 = 0 1
}
66
{
0 = 0 1
}
67
{
0 = 0 1
}
68
{
0 = 0 1
}
69
{
0 = 0 1
}
70
{
0 = 0 1
}
71
{
0 = 0 1
}
72
{
0 = 0 1
}
73
{
0 = 0 1
}
74
{
0 = 0 1
}
75
{
0 = 0 1
}
76
{
0 = 0 1
}
77
{
0 = 0 1
}
78
{
0 = 0 1
}
79
{
0 = 0 1
}
80
{
0 = 0 1
}
81
{
0 = 0 1
}
82
{
0 = 0 1
}
83
{
0 = 0 1
}
84
{
0 = 0 1
}
85
{
0 = 0 1
}
86
{
0 = 0 1
}
87
{
0 = 0 1
}
88
{
0 = 0 1
}
89
{
0 = 0 1
}
90
{
0 = 0 1
}
91
{
0 = 0 1
}
92
{
0 = 0 1
}
93
{
0 = 0 1
}
94
{
0 = 0 1
}
95
{
0 = 0 1
}
96
{
0 = 0 1
}
97
{
0 = 0 1
}
98
{
0 = 0 1
}
99
{
0 = 0 1
}
100
{
0 = 0 1
}
101
{
0 = 0 1
}
102
{
0 = 0 1
}
103
{
0 = 0 1
}
104
{
0 = 0 1
}
105
{
0 = 0 1
}
106
{
0 = 0 1
}
107
{
0 = 0 1
}
108
{
0 = 0 1
}
109
{
0 = 0 1
}
110
{
0 = 0 1
}
111
{
0 = 0 1
}
112
{
0 = 0 1
}
113
{
0 = 0 1
}
114
{
0 = 0 1
}
115
{
0 = 0 1
}
116
{
0 = 0 1
}
117
{
0 = 0 1
}
118
{
0 = 0 1
}
119
{
0 = 0 1
}
120
{
0 = 0 1
}
121
{
0 = 0 1
}
122
{
0 = 0 1
}
123
{
0 = 0 1
}
124
{
0 = 0 1
}
125
{
0 = 0 1
}
126
{
0 = 0 1
}
127
{
0 = 0 1
}
128
{
0 = 0 1
}
129
{
0 = 0 1
}
130
{
0 = 0 1
}
131
{
0 = 0 1
}
132
{
0 = 0 1
}
133
{
0 = 0 1
}
134
{
0 = 0 1
}
135
{
0 = 0 1
}
136
{
0 = 0 1
}
137
{
0 = 0 1
}
138
{
0 = 0 1
}
139
{
0 = 0 1
}
140
{
0 = 0 1
}
141
{
0 = 0 1
}
142
{
0 = 0 1
}
143
{
0 = 0 1
}
144
{
0 = 0 1
}
145
{
0 = 0 1
}
146
{
0 = 0 1
}
147
{
0 = 0 1
}
148
{
0 = 0 1
}
149
{
0 = 0 1
}
150
{
0 = 0 1
}
151
{
0 = 0 1
}
152
{
0 = 0 1
}
153
{
0 = 0 1
}
154
{
0 = 0 1
}
155
{
0 = 0 1
}
156
{
0 = 0 1
}
157
{
0 = 0 1
}
158
{
0 = 0 1
}
159
{
0 = 0 1
}
160
{
0 = 0 1
}
161
{
0 = 0 1
}
162
{
0 = 0 1
}
163
{
0 = 0 1
}
164
{
0 = 0 1
}
165
{
0 = 0 1
}
166
{
0 = 0 1
}
167
{
0 = 0 1
}
168
{
0 = 0 1
}
169
{
0 = 0 1
}
170
{
0 = 0 1
}
171
{
0 = 0 1
}
172
{
0 = 0 1
}
173
{
0 = 0 1
}
174
{
0 = 0 1
}
175
{
0 = 0 1
}
176
{
0 = 0 1
}
177
{
0 = 0 1
}
178
{
0 = 0 1
}
179
{
0 = 0 1
}
180
{
0 = 0 1
}
181
{
0 = 0 1
}
182
{
0 = 0 1
}
183
{
0 = 0 1
}
184
{
0 = 0 1
}
185
{
0 = 0 1
}
186
{
0 = 0 1
}
187
{
0 = 0 1
}
188
{
0 = 0 1
}
189
{
0 = 0 1
}
190
{
0 = 0 1
}
191
{
0 = 0 1
}
192
{
0 = 0 1
}
193
{
0 = 0 1
}
194
{
0 = 0 1
}
195
{
0 = 0 1
}
196
{
0 = 0 1
}
197
{
0 = 0 1
}
198
{
0 = 0 1
}
199
{
0 = 0 1
}
200
{
0 = 0 1
}
201
{
0 = 0 1
}
202
{
0 = 0 1
}
203
{
0 = 0 1
}
204
{
0 = 0 1
}
205
{
0 = 0 1
}
206
{
0 = 0 1
}
207
{
0 = 0 1
}
208
{
0 = 0 1
}
209
{
0 = 0 1
}
210
{
0 = 0 1
}
211
{
0 = 0 1
}
212
{
0 = 0 1
}
213
{
0 = 0 1
}
214
{
0 = 0 1
}
215
{
0 = 0 1
}
216
{
0 = 0 1
}
217
{
0 = 0 1
}
218
{
0 = 0 1
}
219
{
0 = 0 1
}
220
{
0 = 0 1
}
221
{
0 = 0 1
}
222
{
0 = 0 1
}
223
{
0 = 0 1
}
224
{
0 = 0 1
}
225
{
0 = 0 1
}
226
{
0 = 0 1
}
227
{
0 = 0 1
}
228
{
0 = 0 1
}
229
{
0 = 0 1
}
230
{
0 = 0 1
}
231
{
0 = 0 1
}
232
{
0 = 0 1
}
233
{
0 = 0 1
}
234
{
0 = 0 1
}
235
{
0 = 0 1
}
236
{
0 = 0 1
}
237
{
0 = 0 1
}
238
{
0 = 0 1
}
239
{
0 = 0 1
}
240
{
0 = 0 1
}
241
{
0 = 0 1
}
242
{
0 = 0 1
}
243
{
0 = 0 1
}
244
{
0 = 0 1
}
245
{
0 = 0 1
}
246
{
0 = 0 1
}
247
{
0 = 0 1
}
248
{
0 = 0 1
}
249
{
0 = 0 1
}
250
{
0 = 0 1
}
251
{
0 = 0 1
}
252
{
0 = 0 1
}
253
{
0 = 0 1
}
254
{
0 = 0 1
}
255
{
0 = 0 1
}
256
{
0 = 0 1
}
257
{
0 = 0 1
}
258
{
0 = 0 1
}
259
{
0 = 0 1
}
260
{
0 = 0 1
}
261
{
0 = 0 1
}
262
{
0 = 0 1
}
263
{
0 = 0 1
}
264
{
0 = 0 1
}
265
{
0 = 0 1
}
266
{
0 = 0 1
}
267
{
0 = 0 1
}
268
{
0 = 0 1
}
269
{
0 = 0 1
}
270
{
0 = 0 1
}
271
{
0 = 0 1
}
272
{
0 = 0 1
}
273
{
0 = 0 1
}
274
{
0 = 0 1
}
275
{
0 = 0 1
}
276
{
0 = 0 1
}
}
material
{
Wonderlib::Material 0
{
ambient = 0 0 0 1
bumpmap =
diffuse = 1 1 1 1
dstBlend = 5
name = phong82
power = 8
specular = 0 0 0 0
srcBlend = 4
texture = MikeHairPubick
type = 13
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
Wonderlib::Material 1
{
ambient = 0 0 0 1
bumpmap =
diffuse = 1 1 1 1
dstBlend = 5
name = SkinHipMat
power = 12
specular = 0.12 0.12 0.12 0
srcBlend = 4
texture = detailSkinMike
type = 257
uOffset = 0
uRepeat = 4
vOffset = 0
vRepeat = 4
}
Wonderlib::Material 2
{
ambient = 0 0 0 1
bumpmap =
diffuse = 0.88 0.833542 0.82544 1
dstBlend = 5
name = SkinHipMat1
power = 12
specular = 0.12 0.12 0.12 0
srcBlend = 4
texture = detailSkinMike
type = 257
uOffset = 0
uRepeat = 4
vOffset = 0
vRepeat = 4
}
}
normalVertex
{
0 = -0.623569 0.635769 0.454927
1 = -0.919041 0.302711 0.252447
2 = -0.99229 0.0439283 0.115895
3 = 0.0219779 0.754433 0.656009
4 = 0.534038 0.684769 0.495877
5 = 0.873531 0.324627 0.362714
6 = 0.991251 -0.111822 0.0701218
7 = -0.556019 0.780492 0.28579
8 = -0.861378 0.506926 0.0324769
9 = -0.981797 0.177928 0.0664486
10 = 0.00361266 0.857383 0.514667
11 = 0.510151 0.805558 0.301367
12 = 0.836717 0.542992 0.0711595
13 = 0.996949 0.0769277 0.0131913
14 = -0.580904 0.774578 -0.250159
15 = -0.389815 0.897028 -0.208289
16 = -0.256796 0.941652 -0.217597
17 = -0.77319 0.0739684 0.629846
18 = -0.628819 0.768114 -0.120779
19 = -0.782107 0.606303 -0.143895
20 = -0.373618 0.915425 -0.149687
21 = -0.254986 0.951132 -0.174156
22 = 0.374223 0.91883 -0.125337
23 = 0.238385 0.959437 -0.150511
24 = 0.564582 0.795474 -0.220155
25 = 0.750011 0.119049 0.650623
26 = 0.645903 0.757446 -0.0953189
27 = -5.76272e-005 0.974251 0.225465
28 = 0.79726 0.585372 -0.147365
29 = 0.350442 0.917959 -0.185855
30 = 0.00676 0.999324 0.0361363
31 = 0.194534 0.961217 -0.195498
32 = 0.0182142 0.996815 -0.077643
33 = -0.996259 0.0510981 -0.0696937
34 = -0.876498 0.481373 0.00562309
35 = -0.573502 0.818963 0.0198916
36 = 0.0451954 0.998437 -0.032883
37 = 0.560614 0.828048 0.00690889
38 = 0.832155 0.554314 -0.0159071
39 = 0.992919 0.0450004 -0.109942
40 = 0.246858 0.884723 -0.395382
41 = 0.20621 0.837198 -0.506535
42 = -0.108621 0.82479 -0.554908
43 = -0.0524791 0.926701 -0.372118
44 = -0.0709278 0.857465 -0.50963
45 = -0.0704422 0.886376 -0.457576
46 = 0.180095 0.833485 -0.522369
47 = 0.199156 0.941195 -0.272926
48 = 0.29816 0.928395 0.221772
49 = 0.993334 0.112131 -0.0267311
50 = 0.984267 0.164375 0.064795
51 = -0.977696 0.205478 -0.0434737
52 = -0.638244 0.764968 -0.0864221
53 = -0.251266 0.946384 0.203033
54 = -0.238075 0.558405 -0.794673
55 = -0.278476 0.88542 -0.372132
56 = -0.206688 0.955232 -0.21169
57 = 0.346034 0.917076 -0.19807
58 = 0.12225 0.91399 -0.386881
59 = -0.211483 0.908163 -0.361269
60 = 0.310716 0.94049 -0.137597
61 = 0.294361 0.95532 -0.0267416
62 = 0.342997 0.876081 -0.338874
63 = 0.462965 0.884478 -0.0579932
64 = -0.03749 0.788005 -0.614527
65 = -0.112692 0.914276 -0.389101
66 = -0.33968 0.684118 -0.645446
67 = 0.801073 -0.588673 -0.108382
68 = 0.456589 -0.881855 -0.117719
69 = -0.488171 -0.863572 -0.126225
70 = -0.832177 -0.553407 0.0349681
71 = -0.453678 0.87731 -0.156538
72 = -0.303395 0.941139 0.14903
73 = 0.512502 0.849738 0.123643
74 = -0.0134273 0.16298 -0.986538
75 = 0.978173 0.207532 -0.0103756
76 = -0.979248 0.201166 0.024601
77 = -0.342892 0.926104 -0.15734
78 = 0.30307 0.939711 -0.158405
79 = -0.302713 0.93375 -0.190987
80 = 0.306463 0.94328 -0.127682
81 = -0.362362 -0.915258 -0.176059
82 = -0.0360379 -0.985024 -0.168609
83 = 0.41512 -0.89837 -0.143548
84 = 0.012698 -0.98614 -0.165428
85 = 0.0578297 0.968231 -0.24328
86 = 0.478964 0.0859287 -0.873619
87 = 0.481849 0.281132 -0.829932
88 = 0.435496 0.391533 -0.810583
89 = 0.284635 0.512797 -0.809952
90 = 0.0119511 0.596437 -0.802571
91 = -0.314231 0.496261 -0.809311
92 = -0.449301 0.362489 -0.816536
93 = -0.490549 0.280558 -0.825014
94 = -0.487808 0.1099 -0.866005
95 = -0.285969 -0.100752 -0.952927
96 = 0.156679 -0.333154 -0.929764
97 = -0.0221124 -0.430998 -0.902082
98 = -0.339823 -0.322299 -0.88354
99 = 0.109855 -0.143946 -0.983469
100 = 0.853734 0.481974 0.197075
101 = 0.583567 0.775656 0.240433
102 = 0.0689981 0.988827 0.132139
103 = -0.582928 0.784912 0.210022
104 = -0.86701 0.480681 0.1313
105 = 0.728777 -0.170271 -0.663244
106 = 0.741259 0.203267 -0.639701
107 = 0.645289 0.505792 -0.572517
108 = 0.360502 0.784961 -0.50386
109 = 0.00138071 0.884676 -0.466204
110 = -0.342557 0.808528 -0.478474
111 = -0.644256 0.537657 -0.543929
112 = -0.776812 0.203813 -0.595838
113 = -0.780811 -0.0724784 -0.620549
114 = -0.60602 -0.339682 -0.719274
115 = -0.185173 -0.648044 -0.738749
116 = -0.0844291 -0.653238 -0.75243
117 = -0.0380628 -0.67412 -0.73764
118 = 0.471553 -0.531143 -0.703935
119 = 0.87219 -0.29698 -0.388699
120 = 0.990104 0.081338 -0.114361
121 = 0.859778 0.500403 0.101871
122 = 0.546154 0.805092 0.231392
123 = 0.0362431 0.972127 0.231638
124 = -0.507688 0.840541 0.18906
125 = -0.841965 0.53779 0.0433176
126 = -0.986483 0.148893 -0.068426
127 = -0.919448 -0.332934 -0.209215
128 = -0.665929 -0.61872 -0.416801
129 = -0.233717 -0.881701 -0.409855
130 = -0.100897 -0.917506 -0.384712
131 = 0.00431821 -0.934068 -0.357069
132 = 0.497671 -0.828063 -0.258139
133 = 0.798604 -0.599571 -0.0524034
134 = 0.995108 -0.0938839 0.0307663
135 = 0.891192 0.437346 0.120441
136 = 0.587293 0.788505 0.182611
137 = 0.0378827 0.972418 0.230148
138 = -0.616325 0.756403 0.219084
139 = -0.927974 0.340567 0.151257
140 = -0.981894 -0.188419 0.0195397
141 = -0.702262 -0.697557 -0.142274
142 = 0.784702 -0.608399 -0.118718
143 = 0.995857 -0.0586269 -0.0695088
144 = 0.90664 0.41747 0.0610066
145 = 0.590905 0.790702 0.160066
146 = -0.0561669 0.960888 0.271183
147 = -0.635257 0.763063 0.119092
148 = -0.939561 0.340335 0.0373685
149 = -0.988002 -0.119515 -0.0978213
150 = -0.771082 -0.595759 -0.22473
151 = -0.402645 -0.871203 -0.280859
152 = -0.0647644 -0.989397 -0.129998
153 = 0.34988 -0.924299 -0.152499
154 = -0.920032 0.0908334 0.381169
155 = -0.838072 0.522473 -0.157028
156 = -0.890718 0.253614 -0.377228
157 = 0.918704 0.381523 -0.102092
158 = 0.933656 0.0493769 -0.354751
159 = -0.261165 -0.647755 -0.715686
160 = 0.198674 -0.681041 -0.704778
161 = 0.521667 -0.481227 -0.704474
162 = 0.711327 -0.0718218 -0.699182
163 = 0.646322 0.302615 -0.700494
164 = 0.445679 0.51624 -0.731346
165 = -0.13886 0.641729 -0.754256
166 = -0.138747 -0.968822 -0.205265
167 = 0.304781 -0.943515 -0.129952
168 = 0.67636 -0.680205 -0.282591
169 = 0.903515 -0.1144 -0.413004
170 = 0.828488 0.343025 -0.442653
171 = 0.630145 0.634542 -0.447519
172 = 0.145128 0.842407 -0.518931
173 = -0.0248568 -0.941544 0.33597
174 = 0.140124 -0.957965 0.250335
175 = 0.590962 -0.805789 0.038318
176 = 0.979734 -0.17076 -0.104698
177 = 0.918377 0.380819 -0.107522
178 = 0.655638 0.744402 -0.126511
179 = 0.209856 0.971889 -0.106736
180 = 0.0462837 -0.986192 0.159009
181 = 0.570712 -0.809508 0.137788
182 = 0.987097 -0.159764 0.0107393
183 = 0.929798 0.367387 0.0224121
184 = 0.620535 0.777571 0.101587
185 = 0.185516 0.970618 0.153248
186 = 0.64034 -0.546099 0.54013
187 = 0.981577 -0.185617 0.0453156
188 = 0.841739 0.532609 -0.0883337
189 = 0.462653 0.885858 -0.0347501
190 = 0.879286 0.303717 -0.366895
191 = 0.28483 -0.93985 0.188557
192 = 0.813543 0.412979 -0.409385
193 = 0.75475 0.583462 -0.299874
194 = 0.708291 0.610142 -0.355036
195 = 0.536297 0.815258 -0.218494
196 = 0.451536 0.831425 -0.323801
197 = 0.70555 0.645732 -0.29194
198 = 0.593732 0.79812 -0.102402
199 = -0.489814 -0.287632 -0.823013
200 = -0.328081 -0.331563 -0.88455
201 = 0.0630821 -0.375358 -0.924731
202 = 0.29914 -0.224131 -0.927513
203 = 0.39407 -0.0219785 -0.918818
204 = 0.343446 0.178165 -0.922118
205 = 0.205052 0.372034 -0.905287
206 = -0.219731 0.467739 -0.856118
207 = -0.524625 0.431011 -0.734165
208 = -0.2392 0.0808672 -0.967597
209 = 0.399675 0.865917 -0.300745
210 = 0.27169 0.937409 -0.217826
211 = -0.388291 -0.633623 -0.669143
212 = -0.162982 -0.637518 -0.752999
213 = -0.11244 -0.78167 -0.613474
214 = -0.115143 0.629748 -0.768219
215 = 0.109057 0.654693 -0.747987
216 = -0.314635 0.649959 -0.691778
217 = -0.53631 0.489049 -0.687898
218 = -0.643314 -0.299774 -0.704474
219 = -0.695384 0.166385 -0.699111
220 = -0.489798 -0.864254 -0.114729
221 = -0.164015 -0.984043 -0.0689835
222 = -0.246566 -0.965209 -0.087044
223 = -0.0266482 0.8329 -0.552781
224 = -0.0626336 0.833816 -0.548477
225 = -0.43865 0.765963 -0.469986
226 = -0.656144 0.582845 -0.479339
227 = -0.841397 -0.454778 -0.29194
228 = -0.874038 0.17573 -0.452965
229 = -0.434625 -0.859701 0.268357
230 = -0.0388274 -0.935778 0.350444
231 = -0.15097 -0.932775 0.327322
232 = 0.0705259 0.985151 -0.156534
233 = -0.0696804 0.990892 -0.115228
234 = -0.44747 0.880324 -0.157481
235 = -0.740073 0.656217 -0.147209
236 = -0.809966 -0.586275 0.0153898
237 = -0.977891 0.150299 -0.145395
238 = -0.270713 -0.953596 0.131792
239 = -0.0830889 -0.98412 0.156859
240 = 0.0463662 0.990469 0.1297
241 = -0.0848191 0.977042 0.195434
242 = -0.415926 0.884767 0.21022
243 = -0.739458 0.652061 0.167386
244 = -0.810722 -0.580383 0.0767213
245 = -0.972451 0.213888 0.0926822
246 = -0.0210599 -0.952792 0.302893
247 = -0.748564 0.427546 -0.50681
248 = -0.511387 0.859241 -0.0137483
249 = -0.829117 0.555271 -0.0651052
250 = -0.560082 -0.672525 0.483754
251 = -0.955269 -0.25289 0.15332
252 = 0.00431036 -0.797219 0.603675
253 = -0.558516 0.724767 -0.403451
254 = -0.777118 0.533278 -0.334218
255 = -0.252599 -0.957165 0.141521
256 = -0.946513 0.183146 -0.265653
257 = -0.551639 0.832045 -0.0582772
258 = -0.598728 0.742106 -0.301335
259 = -0.493345 0.823652 -0.279658
260 = -0.192549 0.969293 -0.152955
261 = -0.270698 -0.317911 -0.908656
262 = -0.0411546 -0.43002 -0.901881
263 = 0.182556 -0.443074 -0.877701
264 = -0.1121 -0.275578 -0.95472
265 = -0.163099 0.0493334 -0.985375
266 = -0.121441 0.262896 -0.957151
267 = 0.323798 0.346085 -0.880557
268 = 0.0721923 0.463499 -0.883152
269 = -0.177626 0.429444 -0.885453
270 = -0.319748 0.311311 -0.8949
271 = 0.00824993 0.03344 -0.999407
272 = -0.419883 0.115226 -0.900234
273 = -0.388965 -0.135825 -0.911185
274 = -0.0224795 0.978197 0.206459
275 = -0.216236 0.963239 -0.159416
276 = -0.425307 0.856046 -0.293768
}
positionVertex
{
0 = -0.0360211 0.08227 0.914617
1 = -0.0160809 0.0894163 0.916932
2 = -0.00082322 0.0933817 0.908116
3 = -0.016211 0.0540385 0.809114
4 = -0.0166034 0.0582513 0.809114
5 = -0.00896225 0.0570611 0.807422
6 = -0.0152656 0.0601084 0.809114
7 = -0.0120066 0.06264 0.809114
8 = -0.00801683 0.063131 0.809114
9 = -0.00436542 0.0614498 0.809114
10 = -0.00196636 0.0573559 0.809114
11 = -0.00217688 0.0560043 0.808925
12 = -0.00282424 0.0518481 0.809252
13 = -0.00623517 0.0494455 0.809114
14 = -0.0102249 0.0489545 0.809114
15 = -0.0138763 0.0506357 0.809114
16 = -0.0480619 0.0741521 0.9117
17 = -0.0348209 0.0820847 0.904463
18 = -0.0240489 0.0792835 0.887481
19 = -0.0195168 0.08973 0.900844
20 = -0.0354838 0.0622961 0.881315
21 = -0.0132527 0.0454294 0.861187
22 = -0.0308674 0.0691518 0.872981
23 = -0.0231979 0.0756231 0.873239
24 = 0 0.0489548 0.868797
25 = -0.0301214 0.0550951 0.857636
26 = -0.02707 0.0486219 0.857636
27 = -0.02707 0.0629321 0.857636
28 = -0.0187334 0.0702692 0.857636
29 = -0.0123945 0.0733429 0.867082
30 = -0.000773724 0.043665 0.861817
31 = -0.0321009 0.0617695 0.841999
32 = -0.0302747 0.0526912 0.841999
33 = -0.0277682 0.0687832 0.841999
34 = -0.0177493 0.0762723 0.841999
35 = -0.00812961 0.078186 0.843706
36 = 0.00171294 0.0769691 0.843706
37 = -0.00385961 0.0452007 0.841999
38 = -0.0162668 0.0469715 0.841999
39 = -0.0324793 0.0607241 0.831314
40 = -0.0309604 0.0497572 0.831314
41 = -0.0277029 0.0706714 0.831314
42 = -0.0178774 0.0771479 0.831314
43 = -0.00817936 0.0807182 0.831331
44 = 0.00142079 0.0791024 0.831331
45 = -0.011447 0.0411083 0.831314
46 = -0.0043612 0.0419804 0.831314
47 = -0.0226849 0.0462824 0.831314
48 = -0.0289671 0.060177 0.821675
49 = -0.0280883 0.0481944 0.821675
50 = -0.0250948 0.0674134 0.821675
51 = -0.016729 0.0729724 0.821675
52 = -0.0089567 0.0757275 0.820167
53 = 0.000438648 0.0727967 0.820167
54 = -0.0117007 0.0394798 0.821675
55 = -0.00503968 0.0376243 0.821675
56 = -0.021685 0.0411536 0.821675
57 = -0.0234966 0.059325 0.814026
58 = -0.0230346 0.0494862 0.814026
59 = -0.0208092 0.0637736 0.814026
60 = -0.0146102 0.068589 0.814026
61 = -0.00702124 0.069523 0.814026
62 = -0.000536318 0.0665372 0.814026
63 = -0.0113574 0.0416837 0.814026
64 = -0.00398722 0.0443814 0.814026
65 = -0.0183028 0.0448815 0.814026
66 = 0.0160809 0.0894163 0.916932
67 = 0.0360211 0.08227 0.914617
68 = 0.00485566 0.0565343 0.804781
69 = 0.00224784 0.0620451 0.808585
70 = 0.00580107 0.0626041 0.806473
71 = 0.00945249 0.060923 0.80568
72 = 0.0117872 0.0575201 0.80568
73 = 0.0124968 0.0553441 0.80568
74 = 0.0108418 0.0514503 0.80568
75 = 0.00758274 0.0489187 0.80568
76 = 0.00359299 0.0484276 0.806473
77 = -5.84233e-005 0.0501088 0.808585
78 = 0.020533 0.0861777 0.902446
79 = 0.0235562 0.0795084 0.888497
80 = 0.0345861 0.0812749 0.90419
81 = 0.0480619 0.0741521 0.9117
82 = 0.0212892 0.075485 0.873739
83 = 0.0288479 0.0649696 0.872981
84 = 0.0354838 0.0622961 0.881315
85 = 0.0132527 0.0454294 0.861187
86 = 0.00929574 0.0744288 0.864472
87 = 0.0181085 0.0721793 0.858134
88 = 0.0255225 0.0658007 0.857636
89 = 0.0285739 0.0567011 0.857636
90 = 0.0255225 0.0502279 0.857636
91 = 0.0105263 0.0771627 0.843706
92 = 0.0193149 0.07374 0.841999
93 = 0.0265302 0.0632291 0.841999
94 = 0.0283302 0.0539824 0.841999
95 = 0.0238294 0.0458895 0.841999
96 = 0.00874555 0.044701 0.841999
97 = 0.0113439 0.0795598 0.831331
98 = 0.0197032 0.0745351 0.831314
99 = 0.0270422 0.0650477 0.831314
100 = 0.0283727 0.0528714 0.831314
101 = 0.0235903 0.0428859 0.831314
102 = 0.0123026 0.0416682 0.831331
103 = 0.0023709 0.0405815 0.831314
104 = 0.0105665 0.0745692 0.81619
105 = 0.0172799 0.0705251 0.818241
106 = 0.0235159 0.0624108 0.818241
107 = 0.0248605 0.0534184 0.818241
108 = 0.020379 0.0422707 0.818241
109 = 0.0121377 0.0375109 0.818241
110 = 0.00169242 0.0362254 0.818241
111 = 0.00679666 0.0689961 0.810592
112 = 0.0137421 0.0657983 0.810592
113 = 0.0183264 0.0602468 0.810592
114 = 0.01939 0.0542705 0.810592
115 = 0.0159576 0.0450383 0.810592
116 = 0.0100495 0.0420908 0.810592
117 = 0.00246053 0.0411569 0.810592
118 = 0.0181107 0.080235 0.873229
119 = 0.0192427 0.0851648 0.881529
120 = -0.0189267 0.0799728 0.872914
121 = -0.0196511 0.0835774 0.883846
122 = -0.000105377 0.0758155 0.85719
123 = 0.0092669 0.0770481 0.853109
124 = -0.000105377 0.0758759 0.852214
125 = -0.00985761 0.0777248 0.854786
126 = -0.0144993 0.0807129 0.858075
127 = -0.0180023 0.0845824 0.864438
128 = -0.0170006 0.089462 0.87487
129 = -0.0127247 0.0952394 0.887455
130 = -0.00085636 0.10043 0.888103
131 = 0.0118009 0.0974752 0.884549
132 = 0.0172444 0.0917406 0.872723
133 = 0.0184597 0.0855696 0.866177
134 = 0.0157428 0.0808036 0.859278
135 = -0.0149653 0.0830851 0.848534
136 = -0.0185821 0.0886408 0.85254
137 = -0.0167546 0.0965864 0.857763
138 = -0.0118675 0.103523 0.861129
139 = -0.000105377 0.107418 0.8622
140 = 0.0101395 0.103276 0.859678
141 = 0.0165283 0.0965989 0.857407
142 = 0.0183012 0.0878064 0.853572
143 = 0.0166447 0.0829898 0.847705
144 = 0.00990672 0.0851218 0.802239
145 = 0.00301245 0.0840219 0.798442
146 = -0.000639809 0.0845721 0.801598
147 = -0.00559427 0.0846739 0.798653
148 = -0.012892 0.087151 0.803498
149 = -0.0196632 0.090476 0.811387
150 = -0.0203709 0.0993859 0.817721
151 = -0.0178354 0.107297 0.822579
152 = -0.0126534 0.112271 0.825899
153 = -0.000111313 0.115484 0.82724
154 = 0.0123697 0.112281 0.824529
155 = 0.0182143 0.106468 0.820517
156 = 0.0204023 0.0984245 0.814513
157 = 0.0174152 0.0911882 0.804892
158 = 0.00676843 0.0876781 0.79418
159 = 0.00223515 0.0866817 0.79408
160 = -0.000597146 0.0872128 0.794315
161 = -0.00417888 0.0871818 0.79424
162 = -0.00796281 0.089777 0.794576
163 = -0.0111884 0.0930959 0.797797
164 = -0.0118035 0.0978881 0.798945
165 = -0.0105038 0.102666 0.799881
166 = -0.00658831 0.106058 0.801027
167 = -0.000597165 0.107638 0.801452
168 = 0.00676843 0.105361 0.800608
169 = 0.0107189 0.101724 0.799527
170 = 0.0115778 0.0968949 0.798434
171 = 0.0104832 0.0915458 0.796636
172 = -0.0164126 0.103043 0.828095
173 = -0.0124461 0.107453 0.830995
174 = -0.000111314 0.110373 0.833624
175 = 0.0105493 0.106685 0.830064
176 = 0.0158585 0.101728 0.825527
177 = 0.00293962 0.0930589 0.791017
178 = 0.000928698 0.0926437 0.791661
179 = -0.000500443 0.0917263 0.792803
180 = -0.00191651 0.0928476 0.791454
181 = -0.00359503 0.0935189 0.791467
182 = -0.00502589 0.0952338 0.792247
183 = -0.00529872 0.096861 0.792715
184 = -0.00472218 0.0982409 0.79313
185 = -0.00359503 0.0997408 0.793092
186 = -0.000327693 0.100194 0.792781
187 = 0.00293962 0.0993024 0.79293
188 = 0.00469199 0.0978571 0.792986
189 = 0.005073 0.096294 0.792507
190 = 0.00482884 0.0941266 0.791774
191 = 0 0.0928252 0.917211
192 = -0.000105377 0.0811463 0.80912
193 = 0.0109122 0.078946 0.845071
194 = 0.00181536 0.0776267 0.843385
195 = -0.00735327 0.0803895 0.843544
196 = 0.0233453 0.0878807 0.916805
197 = -0.0233453 0.0878807 0.916805
198 = 0.0286562 0.0855299 0.915886
199 = -0.0286562 0.0855299 0.915886
200 = -0.018656 0.0986997 0.824305
201 = 0.01867 0.096649 0.820938
202 = -7.56934e-005 0.0962414 0.791094
203 = 0.0149582 0.0901455 0.9051
204 = -0.0128388 0.0916168 0.904169
205 = -0.0268245 0.0852829 0.907013
206 = -0.0180675 0.089243 0.817267
207 = -0.0126565 0.0850249 0.810241
208 = 0.00981589 0.0847104 0.809777
209 = 0.0172408 0.0897637 0.811292
210 = -0.017092 0.0918635 0.920058
211 = -0.0208779 0.0897612 0.92315
212 = -0.0360211 0.0862481 0.919718
213 = -0.0492546 0.0741141 0.916488
214 = 0.0362605 0.0829046 0.9165
215 = 0.0286562 0.0855394 0.91792
216 = 0.0502191 0.0736738 0.917529
217 = 0.0160329 0.0913474 0.921815
218 = 0 0.0949854 0.922314
219 = 0.0233453 0.0884231 0.921906
220 = -0.0292537 0.0859269 0.92048
221 = -0.00969163 0.0907688 0.917041
222 = -0.0104717 0.095666 0.919853
223 = -0.00880449 0.0926809 0.905217
224 = 0.0503525 0.0731853 0.91222
225 = 0.0511852 0.0761521 0.907516
226 = -0.0501071 0.0807441 0.912619
227 = -0.0501071 0.0819601 0.91772
228 = 0.00971297 0.0926753 0.905619
229 = 0.00969163 0.0907688 0.917041
230 = 0.00943184 0.0930292 0.919931
231 = 0.016775 0.0919282 0.921691
232 = -0.0248469 0.0905872 0.921568
233 = -0.0323948 0.0861708 0.920932
234 = -0.0144681 0.0908564 0.920491
235 = 0.0312512 0.0853951 0.91657
236 = 0.0366467 0.0825137 0.915451
237 = 0.0212744 0.0942786 0.825624
238 = 0.0182796 0.100905 0.83151
239 = 0.0119563 0.107559 0.83737
240 = -0.000123642 0.112602 0.839773
241 = -0.014076 0.108393 0.838586
242 = -0.0188481 0.102015 0.834997
243 = -0.0213074 0.0958927 0.830071
244 = -9.28332e-010 0.0989371 0.956048
245 = 0.0914328 0.0822078 0.978099
246 = -1.02216e-009 0.0978412 0.912645
247 = 0.0632266 0.0746037 0.912645
248 = 0.0219051 0.0786268 0.838935
249 = -1.21438e-009 0.0987368 0.9012
250 = 0.022817 0.0904627 0.881557
251 = 0.0148097 0.0963738 0.898364
252 = 0.0377815 0.0649731 0.834729
253 = 0.0477685 0.0882507 0.964361
254 = 0.0409715 0.0842728 0.912645
255 = -0.0477685 0.09077 0.964361
256 = -0.0409715 0.0853546 0.912645
257 = -0.0224574 0.0786268 0.845698
258 = -0.0204708 0.0904627 0.881557
259 = -0.0148097 0.0963738 0.898364
260 = -0.0914328 0.0828841 0.981765
261 = -0.0632266 0.0746038 0.912645
262 = -0.0332273 0.0676588 0.839869
263 = 0.0200384 0.083676 0.836109
264 = 0.0186234 0.0946634 0.878973
265 = 0.0120901 0.0994864 0.892686
266 = 6.78877e-006 0.101414 0.895001
267 = -0.0206983 0.083676 0.842872
268 = -0.0162637 0.0946634 0.878973
269 = -0.0120766 0.0994864 0.892686
270 = 0.0213475 0.0915106 0.835437
271 = 0.0165992 0.102865 0.876508
272 = 0.00794015 0.107164 0.88435
273 = 6.78891e-006 0.108882 0.886413
274 = -0.0206983 0.0915106 0.8422
275 = -0.0142395 0.102865 0.876508
276 = -0.00921969 0.107164 0.88435
}
textureTriangle
{
0
{
0 = 0 1 2
1 = 1 3 2
2 = 3 4 2
3 = 4 5 2
4 = 5 6 2
5 = 6 288 2
6 = 289 2 288
7 = 303 2 289
8 = 303 10 2
9 = 10 11 2
10 = 11 12 2
11 = 12 0 2
12 = 13 14 15
13 = 14 13 17
14 = 16 17 13
15 = 13 19 16
16 = 18 16 19
17 = 20 19 21
18 = 17 22 24
19 = 22 23 24
20 = 17 16 22
21 = 25 22 16
22 = 25 16 26
23 = 26 16 18
24 = 26 18 27
25 = 27 18 28
26 = 290 24 293
27 = 31 32 22
28 = 32 23 22
29 = 22 25 31
30 = 33 31 25
31 = 34 33 26
32 = 33 25 26
33 = 27 35 26
34 = 35 34 26
35 = 293 24 298
36 = 24 36 298
37 = 24 23 36
38 = 32 36 23
39 = 39 32 38
40 = 38 32 31
41 = 40 38 33
42 = 38 31 33
43 = 33 34 40
44 = 41 40 34
45 = 35 42 34
46 = 42 41 34
47 = 296 43 35
48 = 43 42 35
49 = 36 44 298
50 = 298 44 299
51 = 46 44 36
52 = 36 32 46
53 = 39 46 32
54 = 48 39 47
55 = 47 39 38
56 = 40 49 38
57 = 49 47 38
58 = 41 50 40
59 = 50 49 40
60 = 42 51 41
61 = 51 50 41
62 = 291 51 43
63 = 51 42 43
64 = 299 44 300
65 = 44 52 300
66 = 46 54 44
67 = 54 52 44
68 = 54 46 48
69 = 48 46 39
70 = 47 55 48
71 = 55 56 48
72 = 47 49 55
73 = 57 55 49
74 = 49 50 57
75 = 58 57 50
76 = 50 51 58
77 = 59 58 51
78 = 51 291 59
79 = 60 59 291
80 = 302 300 61
81 = 300 52 61
82 = 54 63 52
83 = 63 61 52
84 = 48 56 54
85 = 56 63 54
86 = 56 55 0
87 = 1 0 55
88 = 55 57 1
89 = 3 1 57
90 = 57 58 3
91 = 4 3 58
92 = 58 59 4
93 = 5 4 59
94 = 59 60 5
95 = 60 6 5
96 = 288 6 60
97 = 302 10 303
98 = 61 11 302
99 = 302 11 10
100 = 61 63 11
101 = 12 11 63
102 = 56 0 63
103 = 0 12 63
104 = 9 8 64
105 = 8 7 64
106 = 7 295 64
107 = 295 65 64
108 = 65 66 64
109 = 66 67 64
110 = 67 68 64
111 = 68 69 64
112 = 69 70 64
113 = 70 71 64
114 = 71 72 64
115 = 72 9 64
116 = 74 75 73
117 = 73 75 76
118 = 77 73 76
119 = 73 78 74
120 = 78 79 74
121 = 78 73 80
122 = 80 73 77
123 = 78 81 79
124 = 81 82 79
125 = 80 83 78
126 = 83 81 78
127 = 80 85 83
128 = 84 83 85
129 = 29 30 85
130 = 88 82 87
131 = 86 87 82
132 = 89 86 81
133 = 86 82 81
134 = 81 83 89
135 = 90 89 83
136 = 91 90 84
137 = 90 83 84
138 = 92 91 85
139 = 91 84 85
140 = 85 30 92
141 = 30 37 92
142 = 93 43 87
143 = 43 296 87
144 = 87 86 93
145 = 94 93 86
146 = 89 95 86
147 = 95 94 86
148 = 95 89 96
149 = 96 89 90
150 = 97 96 91
151 = 96 90 91
152 = 92 98 91
153 = 98 97 91
154 = 99 98 92
155 = 92 37 99
156 = 37 45 99
157 = 292 291 93
158 = 291 43 93
159 = 292 93 100
160 = 100 93 94
161 = 94 95 100
162 = 101 100 95
163 = 95 96 101
164 = 102 101 96
165 = 103 102 97
166 = 102 96 97
167 = 97 98 103
168 = 104 103 98
169 = 105 104 99
170 = 104 98 99
171 = 105 99 53
172 = 45 53 99
173 = 292 294 291
174 = 60 291 294
175 = 100 106 292
176 = 106 294 292
177 = 100 101 106
178 = 107 106 101
179 = 102 108 101
180 = 108 107 101
181 = 102 103 108
182 = 109 108 103
183 = 103 104 109
184 = 110 109 104
185 = 104 105 110
186 = 111 110 105
187 = 53 62 105
188 = 62 111 105
189 = 7 60 295
190 = 60 294 295
191 = 294 65 295
192 = 294 106 65
193 = 66 65 106
194 = 107 67 106
195 = 67 66 106
196 = 108 68 107
197 = 68 67 107
198 = 109 69 108
199 = 69 68 108
200 = 109 110 69
201 = 70 69 110
202 = 111 71 110
203 = 71 70 110
204 = 62 72 111
205 = 72 71 111
206 = 62 9 72
207 = 79 112 74
208 = 82 88 79
209 = 88 112 79
210 = 135 140 163
211 = 88 87 297
212 = 296 297 87
213 = 27 297 35
214 = 296 35 297
215 = 164 137 167
216 = 137 136 167
217 = 168 169 165
218 = 165 169 166
219 = 170 171 168
220 = 168 171 169
221 = 170 172 171
222 = 173 174 170
223 = 170 174 172
224 = 175 176 173
225 = 173 176 174
226 = 175 177 176
227 = 179 180 139
228 = 178 139 180
229 = 181 182 179
230 = 182 183 179
231 = 182 184 185
232 = 184 186 185
233 = 184 164 186
234 = 164 167 186
235 = 190 187 189
236 = 187 188 189
237 = 172 191 171
238 = 171 191 188
239 = 174 192 172
240 = 172 192 191
241 = 176 193 174
242 = 174 193 192
243 = 176 180 193
244 = 180 194 193
245 = 180 179 194
246 = 179 133 194
247 = 179 183 133
248 = 183 195 133
249 = 183 185 195
250 = 185 196 195
251 = 185 186 196
252 = 186 197 196
253 = 201 130 200
254 = 130 199 200
255 = 190 129 187
256 = 187 129 198
257 = 189 188 310
258 = 188 191 310
259 = 205 202 204
260 = 203 204 202
261 = 207 204 206
262 = 203 206 204
263 = 209 207 208
264 = 206 208 207
265 = 211 209 210
266 = 208 210 209
267 = 210 212 211
268 = 212 213 211
269 = 214 213 215
270 = 213 212 215
271 = 216 214 217
272 = 214 215 217
273 = 197 201 217
274 = 201 200 217
275 = 218 219 221
276 = 219 220 221
277 = 222 134 219
278 = 219 134 220
279 = 128 224 223
280 = 224 225 223
281 = 226 227 224
282 = 224 227 225
283 = 229 230 226
284 = 226 230 227
285 = 205 231 229
286 = 229 231 230
287 = 204 232 205
288 = 205 232 231
289 = 207 237 204
290 = 204 237 232
291 = 209 238 207
292 = 207 238 237
293 = 209 211 238
294 = 211 132 238
295 = 211 213 132
296 = 213 240 132
297 = 213 214 240
298 = 214 242 240
299 = 214 216 242
300 = 216 244 242
301 = 216 218 244
302 = 218 221 244
303 = 310 191 309
304 = 191 192 309
305 = 309 192 308
306 = 192 193 308
307 = 308 193 307
308 = 193 194 307
309 = 306 307 133
310 = 194 133 307
311 = 305 306 195
312 = 133 195 306
313 = 221 220 246
314 = 220 245 246
315 = 245 220 131
316 = 220 134 131
317 = 239 247 225
318 = 223 225 247
319 = 227 158 225
320 = 225 158 239
321 = 230 149 227
322 = 227 149 158
323 = 231 148 230
324 = 230 148 149
325 = 232 163 231
326 = 231 163 148
327 = 237 135 232
328 = 232 135 163
329 = 238 138 237
330 = 237 138 135
331 = 238 132 147
332 = 132 146 147
333 = 132 240 146
334 = 240 145 146
335 = 240 242 145
336 = 242 144 145
337 = 242 244 144
338 = 244 143 144
339 = 244 221 143
340 = 221 246 143
341 = 114 115 113
342 = 301 113 115
343 = 116 21 117
344 = 118 117 21
345 = 74 119 120
346 = 28 19 20
347 = 28 18 19
348 = 74 112 119
349 = 129 224 128
350 = 199 222 219
351 = 186 167 197
352 = 167 201 197
353 = 136 130 167
354 = 130 201 167
355 = 169 187 166
356 = 187 198 166
357 = 187 169 188
358 = 169 171 188
359 = 114 121 120
360 = 21 122 118
361 = 122 123 118
362 = 74 120 75
363 = 75 120 121
364 = 122 15 123
365 = 304 305 196
366 = 195 196 305
367 = 217 304 197
368 = 196 197 304
369 = 246 245 162
370 = 162 245 131
371 = 140 247 239
372 = 140 239 158
373 = 140 158 149
374 = 140 149 148
375 = 140 148 163
376 = 138 140 135
377 = 146 162 147
378 = 145 162 146
379 = 144 162 145
380 = 143 162 144
381 = 246 162 143
382 = 115 114 120
383 = 179 142 181
384 = 124 116 125
385 = 176 177 141
386 = 19 122 21
387 = 19 13 122
388 = 13 15 122
389 = 182 185 183
390 = 202 205 189
391 = 229 189 205
392 = 226 190 229
393 = 190 189 229
394 = 129 190 224
395 = 190 226 224
396 = 199 219 200
397 = 218 200 219
398 = 218 216 200
399 = 217 200 216
400 = 249 250 248
401 = 248 250 251
402 = 255 252 254
403 = 252 253 254
404 = 151 257 258
405 = 150 261 262
406 = 266 156 265
407 = 156 157 265
408 = 271 268 241
409 = 268 243 241
410 = 155 273 274
411 = 154 276 278
412 = 276 277 278
413 = 282 283 281
414 = 280 281 283
415 = 284 285 153
416 = 285 286 153
417 = 125 116 117
418 = 152 269 270
419 = 124 125 126
420 = 126 125 127
421 = 178 180 141
422 = 176 141 180
423 = 234 233 235
424 = 236 235 233
425 = 159 228 160
426 = 228 253 160
427 = 301 126 113
428 = 126 127 113
429 = 179 139 142
430 = 267 264 156
431 = 264 157 156
432 = 155 275 273
433 = 272 273 275
434 = 276 154 279
435 = 284 153 287
436 = 241 243 152
437 = 243 269 152
438 = 257 151 256
439 = 256 151 259
440 = 263 236 150
441 = 236 261 150
442 = 304 217 215
443 = 305 304 212
444 = 304 215 212
445 = 306 305 210
446 = 305 212 210
447 = 307 306 208
448 = 306 210 208
449 = 307 208 308
450 = 308 208 206
451 = 308 206 309
452 = 309 206 203
453 = 309 203 310
454 = 310 203 202
455 = 189 310 202
456 = 312 313 311
457 = 311 313 314
458 = 315 316 313
459 = 313 316 314
460 = 316 317 314
461 = 314 317 318
462 = 319 320 312
463 = 312 320 313
464 = 320 321 313
465 = 315 313 321
466 = 323 311 322
467 = 311 314 322
468 = 326 322 325
469 = 322 314 325
470 = 325 314 324
471 = 314 318 324
472 = 328 323 327
473 = 323 322 327
474 = 327 322 329
475 = 326 329 322
476 = 330 331 315
477 = 316 315 331
478 = 317 316 332
479 = 316 331 332
480 = 317 332 318
481 = 318 332 333
482 = 335 326 334
483 = 326 325 334
484 = 324 336 325
485 = 325 336 334
486 = 324 318 336
487 = 318 333 336
488 = 330 337 331
489 = 331 337 338
490 = 332 331 339
491 = 331 338 339
492 = 332 339 333
493 = 333 339 340
494 = 335 334 161
495 = 334 341 161
496 = 336 260 334
497 = 334 260 341
498 = 336 333 260
499 = 333 340 260
}
}
textureVertex
{
0
{
0 = 0.969329 0.890119
1 = 0.921659 0.886817
2 = 0.959689 0.911786
3 = 0.899641 0.888372
4 = 0.862953 0.894105
5 = 0.839604 0.905063
6 = 0.855823 0.921824
7 = -0.0167433 0.941767
8 = -0.100365 0.944421
9 = -0.194487 0.942189
10 = 1.10168 0.924159
11 = 1.06228 0.908733
12 = 1.01708 0.897508
13 = 0.755562 0.568343
14 = 0.821049 0.542983
15 = 0.759902 0.531644
16 = 0.8242 0.684704
17 = 0.88297 0.661101
18 = 0.749433 0.687226
19 = 0.729529 0.636759
20 = 0.698759 0.651775
21 = 0.652631 0.585185
22 = 0.922689 0.741944
23 = 0.982611 0.746247
24 = 1.09521 0.739347
25 = 0.84662 0.738081
26 = 0.741089 0.73537
27 = 0.677089 0.70615
28 = 0.70706 0.69376
29 = -0.244583 0.709762
30 = -0.253208 0.736896
31 = 0.879417 0.788937
32 = 0.954777 0.793293
33 = 0.811114 0.786252
34 = 0.699132 0.783641
35 = 0.600795 0.776316
36 = 1.08158 0.803566
37 = -0.290413 0.813935
38 = 0.887729 0.816357
39 = 0.969317 0.823671
40 = 0.804706 0.813532
41 = 0.706024 0.813512
42 = 0.606575 0.813929
43 = 0.499608 0.815264
44 = 1.13322 0.847847
45 = -0.289094 0.85547
46 = 1.0356 0.83109
47 = 0.889589 0.84055
48 = 0.980707 0.848203
49 = 0.824956 0.839676
50 = 0.735528 0.843283
51 = 0.649405 0.851682
52 = 1.12861 0.87642
53 = -0.287805 0.89294
54 = 1.04824 0.859666
55 = 0.900744 0.863587
56 = 0.984715 0.869434
57 = 0.854937 0.864777
58 = 0.776825 0.870613
59 = 0.684794 0.886586
60 = 0.56676 0.922676
61 = 1.11079 0.894469
62 = -0.273797 0.922676
63 = 1.03984 0.879408
64 = 0.048259 0.908624
65 = 0.173851 0.902
66 = 0.135438 0.893313
67 = 0.0889999 0.888799
68 = 0.0625647 0.887655
69 = 0.00870168 0.891492
70 = -0.0431735 0.899042
71 = -0.0924912 0.909947
72 = -0.150736 0.926239
73 = 0.229527 0.571717
74 = 0.255976 0.639364
75 = 0.273342 0.526714
76 = 0.232161 0.531644
77 = 0.171013 0.542984
78 = 0.145725 0.690531
79 = 0.252525 0.689878
80 = 0.109093 0.661101
81 = 0.175675 0.735862
82 = 0.274451 0.732862
83 = 0.0788668 0.738932
84 = 0.0130222 0.743467
85 = -0.103152 0.739347
86 = 0.28423 0.780684
87 = 0.387344 0.774852
88 = 0.360269 0.713727
89 = 0.154479 0.782696
90 = 0.0642952 0.786613
91 = -0.0207647 0.793334
92 = -0.162749 0.803162
93 = 0.384355 0.811482
94 = 0.283765 0.809734
95 = 0.170684 0.810012
96 = 0.0643318 0.814171
97 = -0.0296439 0.822508
98 = -0.127701 0.832726
99 = -0.221154 0.846632
100 = 0.26087 0.846723
101 = 0.156632 0.843613
102 = 0.0741092 0.84543
103 = -0.0317872 0.853935
104 = -0.111661 0.865929
105 = -0.206202 0.884081
106 = 0.219627 0.872669
107 = 0.136193 0.86694
108 = 0.0719339 0.866909
109 = -0.0260898 0.873623
110 = -0.0881172 0.884153
111 = -0.166716 0.900565
112 = 0.292086 0.692534
113 = 0.411814 0.522222
114 = 0.359598 0.522646
115 = 0.366843 0.578921
116 = 0.601306 0.572262
117 = 0.632464 0.522646
118 = 0.682547 0.52314
119 = 0.286182 0.648963
120 = 0.313867 0.61082
121 = 0.309516 0.52314
122 = 0.706314 0.56121
123 = 0.71872 0.526714
124 = 0.56815 0.568188
125 = 0.580248 0.522222
126 = 0.499336 0.565654
127 = 0.496032 0.521564
128 = 0.436625 0.380214
129 = 0.438023 0.363952
130 = 0.164482 0.293911
131 = 0.157966 0.400278
132 = 0.269328 0.380637
133 = 0.269715 0.267723
134 = 0.158263 0.395735
135 = 0.356134 0.395119
136 = 0.159662 0.275582
137 = 0.159642 0.26556
138 = 0.339514 0.400661
139 = 0.258885 0.173842
140 = 0.397304 0.40621
141 = 0.338108 0.174651
142 = 0.243734 0.174042
143 = 0.203992 0.393052
144 = 0.216669 0.392834
145 = 0.226748 0.393423
146 = 0.236993 0.396698
147 = 0.253459 0.403147
148 = 0.377329 0.392939
149 = 0.38774 0.393583
150 = 0.958968 0.937128
151 = 0.955545 0.937128
152 = 0.965366 0.937128
153 = 0.955063 0.937128
154 = 0.952015 0.937128
155 = 0.954086 0.937128
156 = 0.947651 0.937128
157 = 0.948091 0.972453
158 = 0.403917 0.396163
159 = 0.93317 0.937128
160 = 0.969133 0.937128
161 = 0.615166 1
162 = 0.201454 0.405219
163 = 0.367649 0.393484
164 = 0.18183 0.250462
165 = 0.43796 0.265558
166 = 0.43798 0.27558
167 = 0.183429 0.273344
168 = 0.411504 0.244852
169 = 0.412948 0.269417
170 = 0.391085 0.23534
171 = 0.393894 0.264893
172 = 0.378298 0.253825
173 = 0.380025 0.214569
174 = 0.365663 0.234339
175 = 0.360442 0.182455
176 = 0.340842 0.211693
177 = 0.349109 0.176402
178 = 0.303938 0.169058
179 = 0.263544 0.218109
180 = 0.302484 0.212722
181 = 0.230848 0.178053
182 = 0.220824 0.219758
183 = 0.237524 0.23906
184 = 0.207057 0.234797
185 = 0.221802 0.250238
186 = 0.205806 0.262318
187 = 0.417294 0.293336
188 = 0.392173 0.284621
189 = 0.387719 0.343588
190 = 0.404475 0.357249
191 = 0.37531 0.27808
192 = 0.355473 0.270149
193 = 0.332152 0.265649
194 = 0.299204 0.26455
195 = 0.244703 0.270073
196 = 0.226846 0.275726
197 = 0.208899 0.285462
198 = 0.442801 0.293909
199 = 0.159704 0.363954
200 = 0.187752 0.358283
201 = 0.187969 0.289639
202 = 0.362882 0.332323
203 = 0.349564 0.326003
204 = 0.344542 0.336675
205 = 0.363832 0.343171
206 = 0.332982 0.321971
207 = 0.328524 0.332609
208 = 0.298627 0.317847
209 = 0.299823 0.331833
210 = 0.26741 0.322752
211 = 0.270472 0.335145
212 = 0.246938 0.329569
213 = 0.25174 0.339889
214 = 0.233688 0.348239
215 = 0.230896 0.337026
216 = 0.212848 0.362886
217 = 0.210442 0.353713
218 = 0.189811 0.370579
219 = 0.171241 0.381537
220 = 0.171508 0.390504
221 = 0.189915 0.385242
222 = 0.158305 0.380216
223 = 0.436582 0.395733
224 = 0.42033 0.380629
225 = 0.420443 0.38957
226 = 0.398951 0.367928
227 = 0.402649 0.385613
228 = 0.93317 0.972453
229 = 0.385027 0.352725
230 = 0.383744 0.378931
231 = 0.36683 0.377843
232 = 0.349213 0.378373
233 = 0.93317 0.937128
234 = 0.969133 0.937128
235 = 0.969133 0.972453
236 = 0.93317 0.972453
237 = 0.330129 0.381078
238 = 0.305065 0.3882
239 = 0.41589 0.39882
240 = 0.248096 0.377931
241 = 0.951485 0.937128
242 = 0.228213 0.377661
243 = 0.950012 0.972453
244 = 0.208461 0.379799
245 = 0.176892 0.398966
246 = 0.19125 0.396047
247 = 0.436285 0.400276
248 = 0.93317 0.972453
249 = 0.969133 0.972453
250 = 0.969133 0.937128
251 = 0.93317 0.937128
252 = 0.93317 0.972453
253 = 0.969133 0.972453
254 = 0.969133 0.937128
255 = 0.93317 0.937128
256 = 0.93317 0.972453
257 = 0.969133 0.972453
258 = 0.969133 0.937128
259 = 0.93317 0.937128
260 = 0.567855 0.675636
261 = 0.969133 0.972453
262 = 0.969133 0.937128
263 = 0.93317 0.937128
264 = 0.93317 0.972453
265 = 0.969133 0.972453
266 = 0.969133 0.937128
267 = 0.93317 0.937128
268 = 0.93317 0.972453
269 = 0.969133 0.972453
270 = 0.969133 0.937128
271 = 0.93317 0.937128
272 = 0.93317 0.972453
273 = 0.969133 0.972453
274 = 0.969133 0.937128
275 = 0.93317 0.937128
276 = 0.93317 0.972453
277 = 0.969133 0.972453
278 = 0.969133 0.937128
279 = 0.93317 0.937128
280 = 0.93317 0.972453
281 = 0.969133 0.972453
282 = 0.969133 0.937128
283 = 0.93317 0.937128
284 = 0.93317 0.972453
285 = 0.969133 0.972453
286 = 0.969133 0.937128
287 = 0.93317 0.937128
288 = 0.991044 0.941767
289 = 1.06903 0.945379
290 = 1.23665 0.709762
291 = 0.519939 0.863117
292 = 0.34966 0.857582
293 = 1.22802 0.736896
294 = 0.335428 0.887674
295 = 0.218558 0.916695
296 = 0.491333 0.772313
297 = 0.517447 0.72713
298 = 1.19082 0.813935
299 = 1.19214 0.85547
300 = 1.19342 0.89294
301 = 0.41698 0.566624
302 = 1.19119 0.922675
303 = 1.13083 0.943147
304 = 0.230204 0.326558
305 = 0.246508 0.318125
306 = 0.267933 0.310264
307 = 0.298733 0.308031
308 = 0.332793 0.309161
309 = 0.350881 0.313551
310 = 0.365564 0.320614
311 = 0.492872 0
312 = 0.235469 0
313 = 0.175708 0.426492
314 = 0.487793 0.414878
315 = 0.249994 1
316 = 0.245784 0.69308
317 = 0.345887 0.537412
318 = 0.487793 0.5075
319 = -4.81489e-008 0
320 = 0.0141116 0.4543
321 = 0.00840366 1
322 = 0.805659 0.418951
323 = 0.757126 0
324 = 0.618764 0.534559
325 = 0.722418 0.688604
326 = 0.720615 1
327 = 0.986243 0.442663
328 = 1 0
329 = 0.996997 1
330 = 0.282409 1
331 = 0.280855 0.711872
332 = 0.346306 0.581015
333 = 0.487793 0.552751
334 = 0.69272 0.705587
335 = 0.693213 1
336 = 0.608006 0.578645
337 = 0.414157 1
338 = 0.409417 0.814263
339 = 0.430321 0.688037
340 = 0.486535 0.637654
341 = 0.602639 0.810975
}
}
triangle
{
0
{
materialNr = 1
normalVertexNr = 273 272 271
positionVertexNr = 3 4 5
smoothingGroup = 104857600
}
1
{
materialNr = 1
normalVertexNr = 272 270 271
positionVertexNr = 4 6 5
smoothingGroup = 35652096
}
2
{
materialNr = 1
normalVertexNr = 270 269 271
positionVertexNr = 6 7 5
smoothingGroup = 1049120
}
3
{
materialNr = 1
normalVertexNr = 269 268 271
positionVertexNr = 7 8 5
smoothingGroup = 532512
}
4
{
materialNr = 1
normalVertexNr = 268 267 271
positionVertexNr = 8 9 5
smoothingGroup = 274432
}
5
{
materialNr = 1
normalVertexNr = 267 266 271
positionVertexNr = 9 10 5
smoothingGroup = 135424
}
6
{
materialNr = 1
normalVertexNr = 265 271 266
positionVertexNr = 11 5 10
smoothingGroup = 16777536
}
7
{
materialNr = 1
normalVertexNr = 264 271 265
positionVertexNr = 12 5 11
smoothingGroup = 8388676
}
8
{
materialNr = 1
normalVertexNr = 264 263 271
positionVertexNr = 12 13 5
smoothingGroup = 65556
}
9
{
materialNr = 1
normalVertexNr = 263 262 271
positionVertexNr = 13 14 5
smoothingGroup = 32792
}
10
{
materialNr = 1
normalVertexNr = 262 261 271
positionVertexNr = 14 15 5
smoothingGroup = 17416
}
11
{
materialNr = 1
normalVertexNr = 261 273 271
positionVertexNr = 15 3 5
smoothingGroup = 67111936
}
12
{
materialNr = 1
normalVertexNr = 259 260 276
positionVertexNr = 17 16 0
smoothingGroup = 10752
}
13
{
materialNr = 1
normalVertexNr = 260 259 256
positionVertexNr = 16 17 20
smoothingGroup = 33280
}
14
{
materialNr = 1
normalVertexNr = 254 256 259
positionVertexNr = 22 20 17
smoothingGroup = 53248
}
15
{
materialNr = 1
normalVertexNr = 259 258 254
positionVertexNr = 17 18 22
smoothingGroup = 5128
}
16
{
materialNr = 1
normalVertexNr = 253 254 258
positionVertexNr = 23 22 18
smoothingGroup = 11264
}
17
{
materialNr = 1
normalVertexNr = 155 258 257
positionVertexNr = 121 18 19
smoothingGroup = 114688
}
18
{
materialNr = 1
normalVertexNr = 256 251 255
positionVertexNr = 20 25 21
smoothingGroup = 80
}
19
{
materialNr = 1
normalVertexNr = 251 250 255
positionVertexNr = 25 26 21
smoothingGroup = 4161
}
20
{
materialNr = 1
normalVertexNr = 256 254 251
positionVertexNr = 20 22 25
smoothingGroup = 16528
}
21
{
materialNr = 1
normalVertexNr = 249 251 254
positionVertexNr = 27 25 22
smoothingGroup = 386
}
22
{
materialNr = 1
normalVertexNr = 249 254 248
positionVertexNr = 27 22 28
smoothingGroup = 67
}
23
{
materialNr = 1
normalVertexNr = 248 254 253
positionVertexNr = 28 22 23
smoothingGroup = 8705
}
24
{
materialNr = 1
normalVertexNr = 248 253 247
positionVertexNr = 28 23 29
smoothingGroup = 70144
}
25
{
materialNr = 1
normalVertexNr = 247 253 156
positionVertexNr = 29 23 120
smoothingGroup = 65666
}
26
{
materialNr = 1
normalVertexNr = 252 255 246
positionVertexNr = 24 21 30
smoothingGroup = 1280
}
27
{
materialNr = 1
normalVertexNr = 245 244 251
positionVertexNr = 31 32 25
smoothingGroup = 34824
}
28
{
materialNr = 1
normalVertexNr = 244 250 251
positionVertexNr = 32 26 25
smoothingGroup = 4136
}
29
{
materialNr = 1
normalVertexNr = 251 249 245
positionVertexNr = 25 27 31
smoothingGroup = 2308
}
30
{
materialNr = 1
normalVertexNr = 243 245 249
positionVertexNr = 33 31 27
smoothingGroup = 52
}
31
{
materialNr = 1
normalVertexNr = 242 243 248
positionVertexNr = 34 33 28
smoothingGroup = 18440
}
32
{
materialNr = 1
normalVertexNr = 243 249 248
positionVertexNr = 33 27 28
smoothingGroup = 88
}
33
{
materialNr = 1
normalVertexNr = 247 241 248
positionVertexNr = 29 35 28
smoothingGroup = 36868
}
34
{
materialNr = 1
normalVertexNr = 241 242 248
positionVertexNr = 35 34 28
smoothingGroup = 3076
}
35
{
materialNr = 1
normalVertexNr = 246 255 239
positionVertexNr = 30 21 37
smoothingGroup = 16648
}
36
{
materialNr = 1
normalVertexNr = 255 238 239
positionVertexNr = 21 38 37
smoothingGroup = 131084
}
37
{
materialNr = 1
normalVertexNr = 255 250 238
positionVertexNr = 21 26 38
smoothingGroup = 7
}
38
{
materialNr = 1
normalVertexNr = 244 238 250
positionVertexNr = 32 38 26
smoothingGroup = 1058
}
39
{
materialNr = 1
normalVertexNr = 236 244 237
positionVertexNr = 40 32 39
smoothingGroup = 17024
}
40
{
materialNr = 1
normalVertexNr = 237 244 245
positionVertexNr = 39 32 31
smoothingGroup = 32897
}
41
{
materialNr = 1
normalVertexNr = 235 237 243
positionVertexNr = 41 39 33
smoothingGroup = 9218
}
42
{
materialNr = 1
normalVertexNr = 237 245 243
positionVertexNr = 39 31 33
smoothingGroup = 35
}
43
{
materialNr = 1
normalVertexNr = 243 242 235
positionVertexNr = 33 34 41
smoothingGroup = 24704
}
44
{
materialNr = 1
normalVertexNr = 234 235 242
positionVertexNr = 42 41 34
smoothingGroup = 4480
}
45
{
materialNr = 1
normalVertexNr = 241 233 242
positionVertexNr = 35 43 34
smoothingGroup = 1120
}
46
{
materialNr = 1
normalVertexNr = 233 234 242
positionVertexNr = 43 42 34
smoothingGroup = 800
}
47
{
materialNr = 1
normalVertexNr = 240 232 241
positionVertexNr = 36 44 35
smoothingGroup = 131600
}
48
{
materialNr = 1
normalVertexNr = 232 233 241
positionVertexNr = 44 43 35
smoothingGroup = 208
}
49
{
materialNr = 1
normalVertexNr = 238 231 239
positionVertexNr = 38 45 37
smoothingGroup = 141312
}
50
{
materialNr = 1
normalVertexNr = 239 231 230
positionVertexNr = 37 45 46
smoothingGroup = 74752
}
51
{
materialNr = 1
normalVertexNr = 229 231 238
positionVertexNr = 47 45 38
smoothingGroup = 2432
}
52
{
materialNr = 1
normalVertexNr = 238 244 229
positionVertexNr = 38 32 47
smoothingGroup = 1296
}
53
{
materialNr = 1
normalVertexNr = 236 229 244
positionVertexNr = 40 47 32
smoothingGroup = 592
}
54
{
materialNr = 1
normalVertexNr = 227 236 228
positionVertexNr = 49 40 48
smoothingGroup = 10272
}
55
{
materialNr = 1
normalVertexNr = 228 236 237
positionVertexNr = 48 40 39
smoothingGroup = 18440
}
56
{
materialNr = 1
normalVertexNr = 235 226 237
positionVertexNr = 41 50 39
smoothingGroup = 1044
}
57
{
materialNr = 1
normalVertexNr = 226 228 237
positionVertexNr = 50 48 39
smoothingGroup = 4108
}
58
{
materialNr = 1
normalVertexNr = 234 225 235
positionVertexNr = 42 51 41
smoothingGroup = 4105
}
59
{
materialNr = 1
normalVertexNr = 225 226 235
positionVertexNr = 51 50 41
smoothingGroup = 2065
}
60
{
materialNr = 1
normalVertexNr = 233 224 234
positionVertexNr = 43 52 42
smoothingGroup = 518
}
61
{
materialNr = 1
normalVertexNr = 224 225 234
positionVertexNr = 52 51 42
smoothingGroup = 1036
}
62
{
materialNr = 1
normalVertexNr = 223 224 232
positionVertexNr = 53 52 44
smoothingGroup = 49153
}
63
{
materialNr = 1
normalVertexNr = 224 233 232
positionVertexNr = 52 43 44
smoothingGroup = 131
}
64
{
materialNr = 1
normalVertexNr = 230 231 221
positionVertexNr = 46 45 55
smoothingGroup = 98320
}
65
{
materialNr = 1
normalVertexNr = 231 222 221
positionVertexNr = 45 54 55
smoothingGroup = 16402
}
66
{
materialNr = 1
normalVertexNr = 229 220 231
positionVertexNr = 47 56 45
smoothingGroup = 140
}
67
{
materialNr = 1
normalVertexNr = 220 222 231
positionVertexNr = 56 54 45
smoothingGroup = 20488
}
68
{
materialNr = 1
normalVertexNr = 220 229 227
positionVertexNr = 56 47 49
smoothingGroup = 7
}
69
{
materialNr = 1
normalVertexNr = 227 229 236
positionVertexNr = 49 47 40
smoothingGroup = 97
}
70
{
materialNr = 1
normalVertexNr = 228 219 227
positionVertexNr = 48 57 49
smoothingGroup = 8960
}
71
{
materialNr = 1
normalVertexNr = 219 218 227
positionVertexNr = 57 58 49
smoothingGroup = 1664
}
72
{
materialNr = 1
normalVertexNr = 228 226 219
positionVertexNr = 48 50 57
smoothingGroup = 4416
}
73
{
materialNr = 1
normalVertexNr = 217 219 226
positionVertexNr = 59 57 50
smoothingGroup = 98
}
74
{
materialNr = 1
normalVertexNr = 226 225 217
positionVertexNr = 50 51 59
smoothingGroup = 2592
}
75
{
materialNr = 1
normalVertexNr = 216 217 225
positionVertexNr = 60 59 51
smoothingGroup = 896
}
76
{
materialNr = 1
normalVertexNr = 225 224 216
positionVertexNr = 51 52 60
smoothingGroup = 1344
}
77
{
materialNr = 1
normalVertexNr = 215 216 224
positionVertexNr = 61 60 52
smoothingGroup = 112
}
78
{
materialNr = 1
normalVertexNr = 224 223 215
positionVertexNr = 52 53 61
smoothingGroup = 24608
}
79
{
materialNr = 1
normalVertexNr = 214 215 223
positionVertexNr = 62 61 53
smoothingGroup = 12800
}
80
{
materialNr = 1
normalVertexNr = 212 221 213
positionVertexNr = 64 55 63
smoothingGroup = 14336
}
81
{
materialNr = 1
normalVertexNr = 221 222 213
positionVertexNr = 55 54 63
smoothingGroup = 3074
}
82
{
materialNr = 1
normalVertexNr = 220 211 222
positionVertexNr = 56 65 54
smoothingGroup = 4864
}
83
{
materialNr = 1
normalVertexNr = 211 213 222
positionVertexNr = 65 63 54
smoothingGroup = 1664
}
84
{
materialNr = 1
normalVertexNr = 227 218 220
positionVertexNr = 49 58 56
smoothingGroup = 1042
}
85
{
materialNr = 1
normalVertexNr = 218 211 220
positionVertexNr = 58 65 56
smoothingGroup = 304
}
86
{
materialNr = 1
normalVertexNr = 218 219 273
positionVertexNr = 58 57 3
smoothingGroup = 140
}
87
{
materialNr = 1
normalVertexNr = 272 273 219
positionVertexNr = 4 3 57
smoothingGroup = 4194324
}
88
{
materialNr = 1
normalVertexNr = 219 217 272
positionVertexNr = 57 59 4
smoothingGroup = 19
}
89
{
materialNr = 1
normalVertexNr = 270 272 217
positionVertexNr = 6 4 59
smoothingGroup = 2097161
}
90
{
materialNr = 1
normalVertexNr = 217 216 270
positionVertexNr = 59 60 6
smoothingGroup = 140
}
91
{
materialNr = 1
normalVertexNr = 269 270 216
positionVertexNr = 7 6 60
smoothingGroup = 1048582
}
92
{
materialNr = 1
normalVertexNr = 216 215 269
positionVertexNr = 60 61 7
smoothingGroup = 19
}
93
{
materialNr = 1
normalVertexNr = 268 269 215
positionVertexNr = 8 7 61
smoothingGroup = 524545
}
94
{
materialNr = 1
normalVertexNr = 215 214 268
positionVertexNr = 61 62 8
smoothingGroup = 896
}
95
{
materialNr = 1
normalVertexNr = 214 267 268
positionVertexNr = 62 9 8
smoothingGroup = 262288
}
96
{
materialNr = 1
normalVertexNr = 266 267 214
positionVertexNr = 10 9 62
smoothingGroup = 131120
}
97
{
materialNr = 1
normalVertexNr = 212 263 264
positionVertexNr = 64 13 12
smoothingGroup = 67072
}
98
{
materialNr = 1
normalVertexNr = 213 262 212
positionVertexNr = 63 14 64
smoothingGroup = 8512
}
99
{
materialNr = 1
normalVertexNr = 212 262 263
positionVertexNr = 64 14 13
smoothingGroup = 33536
}
100
{
materialNr = 1
normalVertexNr = 213 211 262
positionVertexNr = 63 65 14
smoothingGroup = 196
}
101
{
materialNr = 1
normalVertexNr = 261 262 211
positionVertexNr = 15 14 65
smoothingGroup = 16390
}
102
{
materialNr = 1
normalVertexNr = 218 273 211
positionVertexNr = 58 3 65
smoothingGroup = 41
}
103
{
materialNr = 1
normalVertexNr = 273 261 211
positionVertexNr = 3 15 65
smoothingGroup = 2051
}
104
{
materialNr = 1
normalVertexNr = 264 265 208
positionVertexNr = 12 11 68
smoothingGroup = 12582914
}
105
{
materialNr = 1
normalVertexNr = 265 266 208
positionVertexNr = 11 10 68
smoothingGroup = 18874370
}
106
{
materialNr = 1
normalVertexNr = 266 207 208
positionVertexNr = 10 69 68
smoothingGroup = 3145729
}
107
{
materialNr = 1
normalVertexNr = 207 206 208
positionVertexNr = 69 70 68
smoothingGroup = 1572928
}
108
{
materialNr = 1
normalVertexNr = 206 205 208
positionVertexNr = 70 71 68
smoothingGroup = 393280
}
109
{
materialNr = 1
normalVertexNr = 205 204 208
positionVertexNr = 71 72 68
smoothingGroup = 360448
}
110
{
materialNr = 1
normalVertexNr = 204 203 208
positionVertexNr = 72 73 68
smoothingGroup = 67600
}
111
{
materialNr = 1
normalVertexNr = 203 202 208
positionVertexNr = 73 74 68
smoothingGroup = 19456
}
112
{
materialNr = 1
normalVertexNr = 202 201 208
positionVertexNr = 74 75 68
smoothingGroup = 9472
}
113
{
materialNr = 1
normalVertexNr = 201 200 208
positionVertexNr = 75 76 68
smoothingGroup = 4480
}
114
{
materialNr = 1
normalVertexNr = 200 199 208
positionVertexNr = 76 77 68
smoothingGroup = 672
}
115
{
materialNr = 1
normalVertexNr = 199 264 208
positionVertexNr = 77 12 68
smoothingGroup = 4194344
}
116
{
materialNr = 1
normalVertexNr = 197 78 196
positionVertexNr = 79 198 80
smoothingGroup = 212992
}
117
{
materialNr = 1
normalVertexNr = 196 78 209
positionVertexNr = 80 198 67
smoothingGroup = 69696
}
118
{
materialNr = 1
normalVertexNr = 195 196 209
positionVertexNr = 81 80 67
smoothingGroup = 6176
}
119
{
materialNr = 1
normalVertexNr = 196 193 197
positionVertexNr = 80 83 79
smoothingGroup = 132608
}
120
{
materialNr = 1
normalVertexNr = 193 194 197
positionVertexNr = 83 82 79
smoothingGroup = 37888
}
121
{
materialNr = 1
normalVertexNr = 193 196 192
positionVertexNr = 83 80 84
smoothingGroup = 642
}
122
{
materialNr = 1
normalVertexNr = 192 196 195
positionVertexNr = 84 80 81
smoothingGroup = 2176
}
123
{
materialNr = 1
normalVertexNr = 193 188 194
positionVertexNr = 83 88 82
smoothingGroup = 34848
}
124
{
materialNr = 1
normalVertexNr = 188 189 194
positionVertexNr = 88 87 82
smoothingGroup = 16928
}
125
{
materialNr = 1
normalVertexNr = 192 187 193
positionVertexNr = 84 89 83
smoothingGroup = 322
}
126
{
materialNr = 1
normalVertexNr = 187 188 193
positionVertexNr = 89 88 83
smoothingGroup = 2320
}
127
{
materialNr = 1
normalVertexNr = 192 191 187
positionVertexNr = 84 85 89
smoothingGroup = 96
}
128
{
materialNr = 1
normalVertexNr = 186 187 191
positionVertexNr = 90 89 85
smoothingGroup = 4256
}
129
{
materialNr = 1
normalVertexNr = 252 246 191
positionVertexNr = 24 30 85
smoothingGroup = 1026
}
130
{
materialNr = 1
normalVertexNr = 190 189 185
positionVertexNr = 86 87 91
smoothingGroup = 98368
}
131
{
materialNr = 1
normalVertexNr = 184 185 189
positionVertexNr = 92 91 87
smoothingGroup = 45056
}
132
{
materialNr = 1
normalVertexNr = 183 184 188
positionVertexNr = 93 92 88
smoothingGroup = 1027
}
133
{
materialNr = 1
normalVertexNr = 184 189 188
positionVertexNr = 92 87 88
smoothingGroup = 20481
}
134
{
materialNr = 1
normalVertexNr = 188 187 183
positionVertexNr = 88 89 93
smoothingGroup = 1044
}
135
{
materialNr = 1
normalVertexNr = 182 183 187
positionVertexNr = 94 93 89
smoothingGroup = 524
}
136
{
materialNr = 1
normalVertexNr = 181 182 186
positionVertexNr = 95 94 90
smoothingGroup = 10241
}
137
{
materialNr = 1
normalVertexNr = 182 187 186
positionVertexNr = 94 89 90
smoothingGroup = 137
}
138
{
materialNr = 1
normalVertexNr = 180 181 191
positionVertexNr = 96 95 85
smoothingGroup = 28
}
139
{
materialNr = 1
normalVertexNr = 181 186 191
positionVertexNr = 95 90 85
smoothingGroup = 6148
}
140
{
materialNr = 1
normalVertexNr = 191 246 180
positionVertexNr = 85 30 96
smoothingGroup = 19
}
141
{
materialNr = 1
normalVertexNr = 246 239 180
positionVertexNr = 30 37 96
smoothingGroup = 16897
}
142
{
materialNr = 1
normalVertexNr = 179 232 185
positionVertexNr = 97 44 91
smoothingGroup = 2312
}
143
{
materialNr = 1
normalVertexNr = 232 240 185
positionVertexNr = 44 36 91
smoothingGroup = 552
}
144
{
materialNr = 1
normalVertexNr = 185 184 179
positionVertexNr = 91 92 97
smoothingGroup = 10256
}
145
{
materialNr = 1
normalVertexNr = 178 179 184
positionVertexNr = 98 97 92
smoothingGroup = 592
}
146
{
materialNr = 1
normalVertexNr = 183 177 184
positionVertexNr = 93 99 92
smoothingGroup = 386
}
147
{
materialNr = 1
normalVertexNr = 177 178 184
positionVertexNr = 99 98 92
smoothingGroup = 672
}
148
{
materialNr = 1
normalVertexNr = 177 183 176
positionVertexNr = 99 93 100
smoothingGroup = 2368
}
149
{
materialNr = 1
normalVertexNr = 176 183 182
positionVertexNr = 100 93 94
smoothingGroup = 608
}
150
{
materialNr = 1
normalVertexNr = 175 176 181
positionVertexNr = 101 100 95
smoothingGroup = 1154
}
151
{
materialNr = 1
normalVertexNr = 176 182 181
positionVertexNr = 100 94 95
smoothingGroup = 8226
}
152
{
materialNr = 1
normalVertexNr = 180 174 181
positionVertexNr = 96 102 95
smoothingGroup = 328
}
153
{
materialNr = 1
normalVertexNr = 174 175 181
positionVertexNr = 102 101 95
smoothingGroup = 1600
}
154
{
materialNr = 1
normalVertexNr = 173 174 180
positionVertexNr = 103 102 96
smoothingGroup = 4480
}
155
{
materialNr = 1
normalVertexNr = 180 239 173
positionVertexNr = 96 37 103
smoothingGroup = 672
}
156
{
materialNr = 1
normalVertexNr = 239 230 173
positionVertexNr = 37 46 103
smoothingGroup = 1120
}
157
{
materialNr = 1
normalVertexNr = 172 223 179
positionVertexNr = 104 53 97
smoothingGroup = 1156
}
158
{
materialNr = 1
normalVertexNr = 223 232 179
positionVertexNr = 53 44 97
smoothingGroup = 33028
}
159
{
materialNr = 1
normalVertexNr = 172 179 171
positionVertexNr = 104 97 105
smoothingGroup = 5122
}
160
{
materialNr = 1
normalVertexNr = 171 179 178
positionVertexNr = 105 97 98
smoothingGroup = 67
}
161
{
materialNr = 1
normalVertexNr = 178 177 171
positionVertexNr = 98 99 105
smoothingGroup = 41
}
162
{
materialNr = 1
normalVertexNr = 170 171 177
positionVertexNr = 106 105 99
smoothingGroup = 8216
}
163
{
materialNr = 1
normalVertexNr = 177 176 170
positionVertexNr = 99 100 106
smoothingGroup = 2068
}
164
{
materialNr = 1
normalVertexNr = 169 170 176
positionVertexNr = 107 106 100
smoothingGroup = 4101
}
165
{
materialNr = 1
normalVertexNr = 168 169 175
positionVertexNr = 108 107 101
smoothingGroup = 2088
}
166
{
materialNr = 1
normalVertexNr = 169 176 175
positionVertexNr = 107 100 101
smoothingGroup = 137
}
167
{
materialNr = 1
normalVertexNr = 175 174 168
positionVertexNr = 101 102 108
smoothingGroup = 548
}
168
{
materialNr = 1
normalVertexNr = 167 168 174
positionVertexNr = 109 108 102
smoothingGroup = 21
}
169
{
materialNr = 1
normalVertexNr = 166 167 173
positionVertexNr = 110 109 103
smoothingGroup = 2058
}
170
{
materialNr = 1
normalVertexNr = 167 174 173
positionVertexNr = 109 102 103
smoothingGroup = 4114
}
171
{
materialNr = 1
normalVertexNr = 166 173 221
positionVertexNr = 110 103 55
smoothingGroup = 13
}
172
{
materialNr = 1
normalVertexNr = 230 221 173
positionVertexNr = 46 55 103
smoothingGroup = 32833
}
173
{
materialNr = 1
normalVertexNr = 172 165 223
positionVertexNr = 104 111 53
smoothingGroup = 2240
}
174
{
materialNr = 1
normalVertexNr = 214 223 165
positionVertexNr = 62 53 111
smoothingGroup = 4168
}
175
{
materialNr = 1
normalVertexNr = 171 164 172
positionVertexNr = 105 112 104
smoothingGroup = 4864
}
176
{
materialNr = 1
normalVertexNr = 164 165 172
positionVertexNr = 112 111 104
smoothingGroup = 2592
}
177
{
materialNr = 1
normalVertexNr = 171 170 164
positionVertexNr = 105 106 112
smoothingGroup = 8576
}
178
{
materialNr = 1
normalVertexNr = 163 164 170
positionVertexNr = 113 112 106
smoothingGroup = 1216
}
179
{
materialNr = 1
normalVertexNr = 169 162 170
positionVertexNr = 107 114 106
smoothingGroup = 4610
}
180
{
materialNr = 1
normalVertexNr = 162 163 170
positionVertexNr = 114 113 106
smoothingGroup = 1568
}
181
{
materialNr = 1
normalVertexNr = 169 168 162
positionVertexNr = 107 108 114
smoothingGroup = 2306
}
182
{
materialNr = 1
normalVertexNr = 161 162 168
positionVertexNr = 115 114 108
smoothingGroup = 448
}
183
{
materialNr = 1
normalVertexNr = 168 167 161
positionVertexNr = 108 109 115
smoothingGroup = 1153
}
184
{
materialNr = 1
normalVertexNr = 160 161 167
positionVertexNr = 116 115 109
smoothingGroup = 1568
}
185
{
materialNr = 1
normalVertexNr = 167 166 160
positionVertexNr = 109 110 116
smoothingGroup = 2816
}
186
{
materialNr = 1
normalVertexNr = 159 160 166
positionVertexNr = 117 116 110
smoothingGroup = 448
}
187
{
materialNr = 1
normalVertexNr = 221 212 166
positionVertexNr = 55 64 110
smoothingGroup = 4132
}
188
{
materialNr = 1
normalVertexNr = 212 159 166
positionVertexNr = 64 117 110
smoothingGroup = 176
}
189
{
materialNr = 1
normalVertexNr = 266 214 207
positionVertexNr = 10 62 69
smoothingGroup = 37
}
190
{
materialNr = 1
normalVertexNr = 214 165 207
positionVertexNr = 62 111 69
smoothingGroup = 14
}
191
{
materialNr = 1
normalVertexNr = 165 206 207
positionVertexNr = 111 70 69
smoothingGroup = 524306
}
192
{
materialNr = 1
normalVertexNr = 165 164 206
positionVertexNr = 111 112 70
smoothingGroup = 49
}
193
{
materialNr = 1
normalVertexNr = 205 206 164
positionVertexNr = 71 70 112
smoothingGroup = 131081
}
194
{
materialNr = 1
normalVertexNr = 163 204 164
positionVertexNr = 113 72 112
smoothingGroup = 70
}
195
{
materialNr = 1
normalVertexNr = 204 205 164
positionVertexNr = 72 71 112
smoothingGroup = 32780
}
196
{
materialNr = 1
normalVertexNr = 162 203 163
positionVertexNr = 114 73 113
smoothingGroup = 41
}
197
{
materialNr = 1
normalVertexNr = 203 204 163
positionVertexNr = 73 72 113
smoothingGroup = 19
}
198
{
materialNr = 1
normalVertexNr = 161 202 162
positionVertexNr = 115 74 114
smoothingGroup = 84
}
199
{
materialNr = 1
normalVertexNr = 202 203 162
positionVertexNr = 74 73 114
smoothingGroup = 16396
}
200
{
materialNr = 1
normalVertexNr = 161 160 202
positionVertexNr = 115 116 74
smoothingGroup = 50
}
201
{
materialNr = 1
normalVertexNr = 201 202 160
positionVertexNr = 75 74 116
smoothingGroup = 8195
}
202
{
materialNr = 1
normalVertexNr = 159 200 160
positionVertexNr = 117 76 116
smoothingGroup = 76
}
203
{
materialNr = 1
normalVertexNr = 200 201 160
positionVertexNr = 76 75 116
smoothingGroup = 4105
}
204
{
materialNr = 1
normalVertexNr = 212 199 159
positionVertexNr = 64 77 117
smoothingGroup = 19
}
205
{
materialNr = 1
normalVertexNr = 199 200 159
positionVertexNr = 77 76 117
smoothingGroup = 518
}
206
{
materialNr = 1
normalVertexNr = 212 264 199
positionVertexNr = 64 12 77
smoothingGroup = 1033
}
207
{
materialNr = 1
normalVertexNr = 194 158 197
positionVertexNr = 82 118 79
smoothingGroup = 4116
}
208
{
materialNr = 1
normalVertexNr = 189 190 194
positionVertexNr = 87 86 82
smoothingGroup = 578
}
209
{
materialNr = 1
normalVertexNr = 190 158 194
positionVertexNr = 86 118 82
smoothingGroup = 26
}
210
{
materialNr = 2
normalVertexNr = 91 74 92
positionVertexNr = 185 202 184
smoothingGroup = 234881024
}
211
{
materialNr = 1
normalVertexNr = 190 185 154
positionVertexNr = 86 91 122
smoothingGroup = 81924
}
212
{
materialNr = 1
normalVertexNr = 240 154 185
positionVertexNr = 36 122 91
smoothingGroup = 38
}
213
{
materialNr = 1
normalVertexNr = 247 154 241
positionVertexNr = 29 122 35
smoothingGroup = 32777
}
214
{
materialNr = 1
normalVertexNr = 240 241 154
positionVertexNr = 36 35 122
smoothingGroup = 131075
}
215
{
materialNr = 1
normalVertexNr = 190 154 153
positionVertexNr = 86 122 123
smoothingGroup = 28672
}
216
{
materialNr = 1
normalVertexNr = 154 152 153
positionVertexNr = 122 124 123
smoothingGroup = 6656
}
217
{
materialNr = 1
normalVertexNr = 247 151 154
positionVertexNr = 29 125 122
smoothingGroup = 328
}
218
{
materialNr = 1
normalVertexNr = 154 151 152
positionVertexNr = 122 125 124
smoothingGroup = 3328
}
219
{
materialNr = 1
normalVertexNr = 156 150 247
positionVertexNr = 120 126 29
smoothingGroup = 8226
}
220
{
materialNr = 1
normalVertexNr = 247 150 151
positionVertexNr = 29 126 125
smoothingGroup = 112
}
221
{
materialNr = 1
normalVertexNr = 156 149 150
positionVertexNr = 120 127 126
smoothingGroup = 12544
}
222
{
materialNr = 1
normalVertexNr = 155 148 156
positionVertexNr = 121 128 120
smoothingGroup = 1600
}
223
{
materialNr = 1
normalVertexNr = 156 148 149
positionVertexNr = 120 128 127
smoothingGroup = 328
}
224
{
materialNr = 1
normalVertexNr = 257 147 155
positionVertexNr = 19 129 121
smoothingGroup = 65824
}
225
{
materialNr = 1
normalVertexNr = 155 147 148
positionVertexNr = 121 129 128
smoothingGroup = 1072
}
226
{
materialNr = 1
normalVertexNr = 257 72 147
positionVertexNr = 19 204 129
smoothingGroup = 328
}
227
{
materialNr = 1
normalVertexNr = 145 146 48
positionVertexNr = 131 130 228
smoothingGroup = 266752
}
228
{
materialNr = 1
normalVertexNr = 274 48 146
positionVertexNr = 2 228 130
smoothingGroup = 20512
}
229
{
materialNr = 1
normalVertexNr = 198 157 145
positionVertexNr = 78 119 131
smoothingGroup = 204800
}
230
{
materialNr = 1
normalVertexNr = 157 144 145
positionVertexNr = 119 132 131
smoothingGroup = 98336
}
231
{
materialNr = 1
normalVertexNr = 157 158 143
positionVertexNr = 119 118 133
smoothingGroup = 1216
}
232
{
materialNr = 1
normalVertexNr = 158 142 143
positionVertexNr = 118 134 133
smoothingGroup = 1568
}
233
{
materialNr = 1
normalVertexNr = 158 190 142
positionVertexNr = 118 86 134
smoothingGroup = 296
}
234
{
materialNr = 1
normalVertexNr = 190 153 142
positionVertexNr = 86 123 134
smoothingGroup = 8576
}
235
{
materialNr = 1
normalVertexNr = 69 81 70
positionVertexNr = 207 195 206
smoothingGroup = 212992
}
236
{
materialNr = 1
normalVertexNr = 81 141 70
positionVertexNr = 195 135 206
smoothingGroup = 74240
}
237
{
materialNr = 1
normalVertexNr = 149 140 150
positionVertexNr = 127 136 126
smoothingGroup = 6148
}
238
{
materialNr = 1
normalVertexNr = 150 140 141
positionVertexNr = 126 136 135
smoothingGroup = 2184
}
239
{
materialNr = 1
normalVertexNr = 148 139 149
positionVertexNr = 128 137 127
smoothingGroup = 11
}
240
{
materialNr = 1
normalVertexNr = 149 139 140
positionVertexNr = 127 137 136
smoothingGroup = 37
}
241
{
materialNr = 1
normalVertexNr = 147 138 148
positionVertexNr = 129 138 128
smoothingGroup = 4240
}
242
{
materialNr = 1
normalVertexNr = 148 138 139
positionVertexNr = 128 138 137
smoothingGroup = 12290
}
243
{
materialNr = 1
normalVertexNr = 147 146 138
positionVertexNr = 129 130 138
smoothingGroup = 2180
}
244
{
materialNr = 1
normalVertexNr = 146 137 138
positionVertexNr = 130 139 138
smoothingGroup = 2312
}
245
{
materialNr = 1
normalVertexNr = 146 145 137
positionVertexNr = 130 131 139
smoothingGroup = 1792
}
246
{
materialNr = 1
normalVertexNr = 145 136 137
positionVertexNr = 131 140 139
smoothingGroup = 17412
}
247
{
materialNr = 1
normalVertexNr = 145 144 136
positionVertexNr = 131 132 140
smoothingGroup = 2084
}
248
{
materialNr = 1
normalVertexNr = 144 135 136
positionVertexNr = 132 141 140
smoothingGroup = 14336
}
249
{
materialNr = 1
normalVertexNr = 144 143 135
positionVertexNr = 132 133 141
smoothingGroup = 4120
}
250
{
materialNr = 1
normalVertexNr = 143 134 135
positionVertexNr = 133 142 141
smoothingGroup = 14
}
251
{
materialNr = 1
normalVertexNr = 143 142 134
positionVertexNr = 133 134 142
smoothingGroup = 2562
}
252
{
materialNr = 1
normalVertexNr = 142 133 134
positionVertexNr = 134 143 142
smoothingGroup = 2065
}
253
{
materialNr = 1
normalVertexNr = 83 82 68
positionVertexNr = 193 194 208
smoothingGroup = 133152
}
254
{
materialNr = 1
normalVertexNr = 82 84 68
positionVertexNr = 194 192 208
smoothingGroup = 67840
}
255
{
materialNr = 1
normalVertexNr = 69 84 81
positionVertexNr = 207 192 195
smoothingGroup = 49280
}
256
{
materialNr = 1
normalVertexNr = 81 84 82
positionVertexNr = 195 192 194
smoothingGroup = 448
}
257
{
materialNr = 1
normalVertexNr = 70 141 33
positionVertexNr = 206 135 243
smoothingGroup = 8512
}
258
{
materialNr = 1
normalVertexNr = 141 140 33
positionVertexNr = 135 136 243
smoothingGroup = 1096
}
259
{
materialNr = 2
normalVertexNr = 126 76 125
positionVertexNr = 150 200 151
smoothingGroup = 200704
}
260
{
materialNr = 2
normalVertexNr = 104 125 76
positionVertexNr = 172 151 200
smoothingGroup = 73856
}
261
{
materialNr = 2
normalVertexNr = 124 125 103
positionVertexNr = 152 151 173
smoothingGroup = 49216
}
262
{
materialNr = 2
normalVertexNr = 104 103 125
positionVertexNr = 172 173 151
smoothingGroup = 10304
}
263
{
materialNr = 2
normalVertexNr = 123 124 102
positionVertexNr = 153 152 174
smoothingGroup = 9472
}
264
{
materialNr = 2
normalVertexNr = 103 102 124
positionVertexNr = 173 174 152
smoothingGroup = 37120
}
265
{
materialNr = 2
normalVertexNr = 122 123 101
positionVertexNr = 154 153 175
smoothingGroup = 66176
}
266
{
materialNr = 2
normalVertexNr = 102 101 123
positionVertexNr = 174 175 153
smoothingGroup = 10368
}
267
{
materialNr = 2
normalVertexNr = 101 100 122
positionVertexNr = 175 176 154
smoothingGroup = 49664
}
268
{
materialNr = 2
normalVertexNr = 100 121 122
positionVertexNr = 176 155 154
smoothingGroup = 45056
}
269
{
materialNr = 2
normalVertexNr = 120 121 75
positionVertexNr = 156 155 201
smoothingGroup = 65696
}
270
{
materialNr = 2
normalVertexNr = 121 100 75
positionVertexNr = 155 176 201
smoothingGroup = 10368
}
271
{
materialNr = 2
normalVertexNr = 119 120 67
positionVertexNr = 157 156 209
smoothingGroup = 57344
}
272
{
materialNr = 2
normalVertexNr = 120 75 67
positionVertexNr = 156 201 209
smoothingGroup = 86016
}
273
{
materialNr = 1
normalVertexNr = 133 83 67
positionVertexNr = 143 193 209
smoothingGroup = 1600
}
274
{
materialNr = 1
normalVertexNr = 83 68 67
positionVertexNr = 193 208 209
smoothingGroup = 131600
}
275
{
materialNr = 2
normalVertexNr = 132 131 118
positionVertexNr = 144 145 158
smoothingGroup = 41984
}
276
{
materialNr = 2
normalVertexNr = 131 117 118
positionVertexNr = 145 159 158
smoothingGroup = 10368
}
277
{
materialNr = 2
normalVertexNr = 130 116 131
positionVertexNr = 146 160 145
smoothingGroup = 17152
}
278
{
materialNr = 2
normalVertexNr = 131 116 117
positionVertexNr = 145 160 159
smoothingGroup = 2368
}
279
{
materialNr = 2
normalVertexNr = 130 129 116
positionVertexNr = 146 147 160
smoothingGroup = 28672
}
280
{
materialNr = 2
normalVertexNr = 129 115 116
positionVertexNr = 147 161 160
smoothingGroup = 9344
}
281
{
materialNr = 2
normalVertexNr = 128 114 129
positionVertexNr = 148 162 147
smoothingGroup = 2368
}
282
{
materialNr = 2
normalVertexNr = 129 114 115
positionVertexNr = 147 162 161
smoothingGroup = 1600
}
283
{
materialNr = 2
normalVertexNr = 127 113 128
positionVertexNr = 149 163 148
smoothingGroup = 1184
}
284
{
materialNr = 2
normalVertexNr = 128 113 114
positionVertexNr = 148 163 162
smoothingGroup = 2192
}
285
{
materialNr = 2
normalVertexNr = 126 112 127
positionVertexNr = 150 164 149
smoothingGroup = 2624
}
286
{
materialNr = 2
normalVertexNr = 127 112 113
positionVertexNr = 149 164 163
smoothingGroup = 352
}
287
{
materialNr = 2
normalVertexNr = 125 111 126
positionVertexNr = 151 165 150
smoothingGroup = 132352
}
288
{
materialNr = 2
normalVertexNr = 126 111 112
positionVertexNr = 150 165 164
smoothingGroup = 1664
}
289
{
materialNr = 2
normalVertexNr = 124 110 125
positionVertexNr = 152 166 151
smoothingGroup = 16928
}
290
{
materialNr = 2
normalVertexNr = 125 110 111
positionVertexNr = 151 166 165
smoothingGroup = 296
}
291
{
materialNr = 2
normalVertexNr = 123 109 124
positionVertexNr = 153 167 152
smoothingGroup = 1042
}
292
{
materialNr = 2
normalVertexNr = 124 109 110
positionVertexNr = 152 167 166
smoothingGroup = 656
}
293
{
materialNr = 2
normalVertexNr = 123 122 109
positionVertexNr = 153 154 167
smoothingGroup = 65546
}
294
{
materialNr = 2
normalVertexNr = 122 108 109
positionVertexNr = 154 168 167
smoothingGroup = 328
}
295
{
materialNr = 2
normalVertexNr = 122 121 108
positionVertexNr = 154 155 168
smoothingGroup = 5184
}
296
{
materialNr = 2
normalVertexNr = 121 107 108
positionVertexNr = 155 169 168
smoothingGroup = 1552
}
297
{
materialNr = 2
normalVertexNr = 121 120 107
positionVertexNr = 155 156 169
smoothingGroup = 56
}
298
{
materialNr = 2
normalVertexNr = 120 106 107
positionVertexNr = 156 170 169
smoothingGroup = 268
}
299
{
materialNr = 2
normalVertexNr = 120 119 106
positionVertexNr = 156 157 170
smoothingGroup = 10244
}
300
{
materialNr = 2
normalVertexNr = 119 105 106
positionVertexNr = 157 171 170
smoothingGroup = 3584
}
301
{
materialNr = 2
normalVertexNr = 119 132 105
positionVertexNr = 157 144 171
smoothingGroup = 896
}
302
{
materialNr = 2
normalVertexNr = 132 118 105
positionVertexNr = 144 158 171
smoothingGroup = 33088
}
303
{
materialNr = 1
normalVertexNr = 33 140 34
positionVertexNr = 243 136 242
smoothingGroup = 1552
}
304
{
materialNr = 1
normalVertexNr = 140 139 34
positionVertexNr = 136 137 242
smoothingGroup = 304
}
305
{
materialNr = 1
normalVertexNr = 34 139 35
positionVertexNr = 242 137 241
smoothingGroup = 448
}
306
{
materialNr = 1
normalVertexNr = 139 138 35
positionVertexNr = 137 138 241
smoothingGroup = 9280
}
307
{
materialNr = 1
normalVertexNr = 35 138 36
positionVertexNr = 241 138 240
smoothingGroup = 1568
}
308
{
materialNr = 1
normalVertexNr = 138 137 36
positionVertexNr = 138 139 240
smoothingGroup = 41
}
309
{
materialNr = 1
normalVertexNr = 37 36 136
positionVertexNr = 239 240 140
smoothingGroup = 448
}
310
{
materialNr = 1
normalVertexNr = 137 136 36
positionVertexNr = 139 140 240
smoothingGroup = 16513
}
311
{
materialNr = 1
normalVertexNr = 38 37 135
positionVertexNr = 238 239 141
smoothingGroup = 1568
}
312
{
materialNr = 1
normalVertexNr = 136 135 37
positionVertexNr = 140 141 239
smoothingGroup = 8960
}
313
{
materialNr = 2
normalVertexNr = 118 117 99
positionVertexNr = 158 159 177
smoothingGroup = 176
}
314
{
materialNr = 2
normalVertexNr = 117 98 99
positionVertexNr = 159 178 177
smoothingGroup = 16777240
}
315
{
materialNr = 2
normalVertexNr = 98 117 97
positionVertexNr = 178 159 179
smoothingGroup = 8388618
}
316
{
materialNr = 2
normalVertexNr = 117 116 97
positionVertexNr = 159 160 179
smoothingGroup = 70
}
317
{
materialNr = 2
normalVertexNr = 96 97 115
positionVertexNr = 180 179 161
smoothingGroup = 4194321
}
318
{
materialNr = 2
normalVertexNr = 116 115 97
positionVertexNr = 160 161 179
smoothingGroup = 133
}
319
{
materialNr = 2
normalVertexNr = 114 95 115
positionVertexNr = 162 181 161
smoothingGroup = 522
}
320
{
materialNr = 2
normalVertexNr = 115 95 96
positionVertexNr = 161 181 180
smoothingGroup = 2097170
}
321
{
materialNr = 2
normalVertexNr = 113 94 114
positionVertexNr = 163 182 162
smoothingGroup = 21
}
322
{
materialNr = 2
normalVertexNr = 114 94 95
positionVertexNr = 162 182 181
smoothingGroup = 1048588
}
323
{
materialNr = 2
normalVertexNr = 112 93 113
positionVertexNr = 164 183 163
smoothingGroup = 266
}
324
{
materialNr = 2
normalVertexNr = 113 93 94
positionVertexNr = 163 183 182
smoothingGroup = 524291
}
325
{
materialNr = 2
normalVertexNr = 111 92 112
positionVertexNr = 165 184 164
smoothingGroup = 133
}
326
{
materialNr = 2
normalVertexNr = 112 92 93
positionVertexNr = 164 184 183
smoothingGroup = 262156
}
327
{
materialNr = 2
normalVertexNr = 110 91 111
positionVertexNr = 166 185 165
smoothingGroup = 74
}
328
{
materialNr = 2
normalVertexNr = 111 91 92
positionVertexNr = 165 185 184
smoothingGroup = 134217731
}
329
{
materialNr = 2
normalVertexNr = 109 90 110
positionVertexNr = 167 186 166
smoothingGroup = 133
}
330
{
materialNr = 2
normalVertexNr = 110 90 91
positionVertexNr = 166 186 185
smoothingGroup = 131140
}
331
{
materialNr = 2
normalVertexNr = 109 108 90
positionVertexNr = 167 168 186
smoothingGroup = 289
}
332
{
materialNr = 2
normalVertexNr = 108 89 90
positionVertexNr = 168 187 186
smoothingGroup = 65570
}
333
{
materialNr = 2
normalVertexNr = 108 107 89
positionVertexNr = 168 169 187
smoothingGroup = 642
}
334
{
materialNr = 2
normalVertexNr = 107 88 89
positionVertexNr = 169 188 187
smoothingGroup = 32897
}
335
{
materialNr = 2
normalVertexNr = 107 106 88
positionVertexNr = 169 170 188
smoothingGroup = 321
}
336
{
materialNr = 2
normalVertexNr = 106 87 88
positionVertexNr = 170 189 188
smoothingGroup = 16480
}
337
{
materialNr = 2
normalVertexNr = 106 105 87
positionVertexNr = 170 171 189
smoothingGroup = 1072
}
338
{
materialNr = 2
normalVertexNr = 105 86 87
positionVertexNr = 171 190 189
smoothingGroup = 8216
}
339
{
materialNr = 2
normalVertexNr = 105 118 86
positionVertexNr = 171 158 190
smoothingGroup = 76
}
340
{
materialNr = 2
normalVertexNr = 118 99 86
positionVertexNr = 158 177 190
smoothingGroup = 4132
}
341
{
materialNr = 1
normalVertexNr = 210 73 47
positionVertexNr = 66 203 229
smoothingGroup = 12544
}
342
{
materialNr = 1
normalVertexNr = 48 47 73
positionVertexNr = 228 229 203
smoothingGroup = 392
}
343
{
materialNr = 1
normalVertexNr = 72 257 275
positionVertexNr = 204 19 1
smoothingGroup = 12296
}
344
{
materialNr = 1
normalVertexNr = 79 275 257
positionVertexNr = 197 1 19
smoothingGroup = 6272
}
345
{
materialNr = 1
normalVertexNr = 197 157 198
positionVertexNr = 79 119 78
smoothingGroup = 8201
}
346
{
materialNr = 1
normalVertexNr = 156 258 155
positionVertexNr = 120 18 121
smoothingGroup = 16900
}
347
{
materialNr = 1
normalVertexNr = 156 253 258
positionVertexNr = 120 23 18
smoothingGroup = 2180
}
348
{
materialNr = 1
normalVertexNr = 197 158 157
positionVertexNr = 79 118 119
smoothingGroup = 69
}
349
{
materialNr = 2
normalVertexNr = 84 129 130
positionVertexNr = 192 147 146
smoothingGroup = 4144
}
350
{
materialNr = 2
normalVertexNr = 84 130 131
positionVertexNr = 192 146 145
smoothingGroup = 552
}
351
{
materialNr = 1
normalVertexNr = 142 153 133
positionVertexNr = 134 123 143
smoothingGroup = 148
}
352
{
materialNr = 1
normalVertexNr = 153 83 133
positionVertexNr = 123 193 143
smoothingGroup = 70
}
353
{
materialNr = 1
normalVertexNr = 152 82 153
positionVertexNr = 124 194 123
smoothingGroup = 521
}
354
{
materialNr = 1
normalVertexNr = 82 83 153
positionVertexNr = 194 193 123
smoothingGroup = 35
}
355
{
materialNr = 1
normalVertexNr = 151 81 152
positionVertexNr = 125 195 124
smoothingGroup = 1030
}
356
{
materialNr = 1
normalVertexNr = 81 82 152
positionVertexNr = 195 194 124
smoothingGroup = 76
}
357
{
materialNr = 1
normalVertexNr = 81 151 141
positionVertexNr = 195 125 135
smoothingGroup = 515
}
358
{
materialNr = 1
normalVertexNr = 151 150 141
positionVertexNr = 125 126 135
smoothingGroup = 145
}
359
{
materialNr = 1
normalVertexNr = 210 80 198
positionVertexNr = 66 196 78
smoothingGroup = 3584
}
360
{
materialNr = 1
normalVertexNr = 257 71 79
positionVertexNr = 19 205 197
smoothingGroup = 3074
}
361
{
materialNr = 1
normalVertexNr = 71 77 79
positionVertexNr = 205 199 197
smoothingGroup = 1792
}
362
{
materialNr = 1
normalVertexNr = 197 198 78
positionVertexNr = 79 78 198
smoothingGroup = 16648
}
363
{
materialNr = 1
normalVertexNr = 78 198 80
positionVertexNr = 198 78 196
smoothingGroup = 1408
}
364
{
materialNr = 1
normalVertexNr = 71 276 77
positionVertexNr = 205 0 199
smoothingGroup = 448
}
365
{
materialNr = 1
normalVertexNr = 39 38 134
positionVertexNr = 237 238 142
smoothingGroup = 448
}
366
{
materialNr = 1
normalVertexNr = 135 134 38
positionVertexNr = 141 142 238
smoothingGroup = 1156
}
367
{
materialNr = 1
normalVertexNr = 67 39 133
positionVertexNr = 209 237 143
smoothingGroup = 1064
}
368
{
materialNr = 1
normalVertexNr = 134 133 39
positionVertexNr = 142 143 237
smoothingGroup = 289
}
369
{
materialNr = 2
normalVertexNr = 99 98 74
positionVertexNr = 177 178 202
smoothingGroup = 16780288
}
370
{
materialNr = 2
normalVertexNr = 74 98 97
positionVertexNr = 202 178 179
smoothingGroup = 8390144
}
371
{
materialNr = 2
normalVertexNr = 74 97 96
positionVertexNr = 202 179 180
smoothingGroup = 4195072
}
372
{
materialNr = 2
normalVertexNr = 74 96 95
positionVertexNr = 202 180 181
smoothingGroup = 2097536
}
373
{
materialNr = 2
normalVertexNr = 74 95 94
positionVertexNr = 202 181 182
smoothingGroup = 1048768
}
374
{
materialNr = 2
normalVertexNr = 74 94 93
positionVertexNr = 202 182 183
smoothingGroup = 524384
}
375
{
materialNr = 2
normalVertexNr = 74 93 92
positionVertexNr = 202 183 184
smoothingGroup = 67371040
}
376
{
materialNr = 2
normalVertexNr = 90 74 91
positionVertexNr = 186 202 185
smoothingGroup = 33685520
}
377
{
materialNr = 2
normalVertexNr = 89 74 90
positionVertexNr = 187 202 186
smoothingGroup = 65560
}
378
{
materialNr = 2
normalVertexNr = 88 74 89
positionVertexNr = 188 202 187
smoothingGroup = 32780
}
379
{
materialNr = 2
normalVertexNr = 87 74 88
positionVertexNr = 189 202 188
smoothingGroup = 16390
}
380
{
materialNr = 2
normalVertexNr = 86 74 87
positionVertexNr = 190 202 189
smoothingGroup = 8195
}
381
{
materialNr = 2
normalVertexNr = 99 74 86
positionVertexNr = 177 202 190
smoothingGroup = 6145
}
382
{
materialNr = 1
normalVertexNr = 73 210 198
positionVertexNr = 203 66 78
smoothingGroup = 6208
}
383
{
materialNr = 1
normalVertexNr = 145 73 198
positionVertexNr = 131 203 78
smoothingGroup = 131138
}
384
{
materialNr = 1
normalVertexNr = 53 72 55
positionVertexNr = 223 204 221
smoothingGroup = 3584
}
385
{
materialNr = 1
normalVertexNr = 147 72 53
positionVertexNr = 129 204 223
smoothingGroup = 577
}
386
{
materialNr = 1
normalVertexNr = 258 71 257
positionVertexNr = 18 205 19
smoothingGroup = 32771
}
387
{
materialNr = 1
normalVertexNr = 258 259 71
positionVertexNr = 18 17 205
smoothingGroup = 41
}
388
{
materialNr = 1
normalVertexNr = 259 276 71
positionVertexNr = 17 0 205
smoothingGroup = 8288
}
389
{
materialNr = 1
normalVertexNr = 157 143 144
positionVertexNr = 119 133 132
smoothingGroup = 32912
}
390
{
materialNr = 2
normalVertexNr = 76 126 70
positionVertexNr = 200 150 206
smoothingGroup = 4144
}
391
{
materialNr = 2
normalVertexNr = 127 70 126
positionVertexNr = 149 206 150
smoothingGroup = 2072
}
392
{
materialNr = 2
normalVertexNr = 128 69 127
positionVertexNr = 148 207 149
smoothingGroup = 1030
}
393
{
materialNr = 2
normalVertexNr = 69 70 127
positionVertexNr = 207 206 149
smoothingGroup = 131084
}
394
{
materialNr = 2
normalVertexNr = 84 69 129
positionVertexNr = 192 207 147
smoothingGroup = 32785
}
395
{
materialNr = 2
normalVertexNr = 69 128 129
positionVertexNr = 207 148 147
smoothingGroup = 259
}
396
{
materialNr = 2
normalVertexNr = 84 131 68
positionVertexNr = 192 145 208
smoothingGroup = 65548
}
397
{
materialNr = 2
normalVertexNr = 132 68 131
positionVertexNr = 144 208 145
smoothingGroup = 1030
}
398
{
materialNr = 2
normalVertexNr = 132 119 68
positionVertexNr = 144 157 208
smoothingGroup = 131
}
399
{
materialNr = 2
normalVertexNr = 67 68 119
positionVertexNr = 209 208 157
smoothingGroup = 32785
}
400
{
materialNr = 0
normalVertexNr = 79 65 275
positionVertexNr = 197 211 1
smoothingGroup = 208
}
401
{
materialNr = 0
normalVertexNr = 275 65 66
positionVertexNr = 1 211 210
smoothingGroup = 68
}
402
{
materialNr = 0
normalVertexNr = 64 276 63
positionVertexNr = 212 0 213
smoothingGroup = 24
}
403
{
materialNr = 0
normalVertexNr = 276 260 63
positionVertexNr = 0 16 213
smoothingGroup = 2068
}
404
{
materialNr = 0
normalVertexNr = 41 78 61
positionVertexNr = 235 198 215
smoothingGroup = 48
}
405
{
materialNr = 0
normalVertexNr = 40 209 62
positionVertexNr = 236 67 214
smoothingGroup = 12
}
406
{
materialNr = 0
normalVertexNr = 58 46 85
positionVertexNr = 218 230 191
smoothingGroup = 1040
}
407
{
materialNr = 0
normalVertexNr = 46 47 85
positionVertexNr = 230 229 191
smoothingGroup = 560
}
408
{
materialNr = 0
normalVertexNr = 58 85 54
positionVertexNr = 218 191 222
smoothingGroup = 1280
}
409
{
materialNr = 0
normalVertexNr = 85 55 54
positionVertexNr = 191 221 222
smoothingGroup = 448
}
410
{
materialNr = 0
normalVertexNr = 45 210 59
positionVertexNr = 231 66 217
smoothingGroup = 20
}
411
{
materialNr = 0
normalVertexNr = 44 79 56
positionVertexNr = 232 197 220
smoothingGroup = 9
}
412
{
materialNr = 0
normalVertexNr = 79 77 56
positionVertexNr = 197 199 220
smoothingGroup = 524
}
413
{
materialNr = 0
normalVertexNr = 57 61 80
positionVertexNr = 219 215 196
smoothingGroup = 12
}
414
{
materialNr = 0
normalVertexNr = 78 80 61
positionVertexNr = 198 196 215
smoothingGroup = 164
}
415
{
materialNr = 0
normalVertexNr = 77 276 43
positionVertexNr = 199 0 233
smoothingGroup = 131
}
416
{
materialNr = 0
normalVertexNr = 276 64 43
positionVertexNr = 0 212 233
smoothingGroup = 9
}
417
{
materialNr = 1
normalVertexNr = 55 72 275
positionVertexNr = 221 204 1
smoothingGroup = 9248
}
418
{
materialNr = 0
normalVertexNr = 42 275 66
positionVertexNr = 234 1 210
smoothingGroup = 6
}
419
{
materialNr = 1
normalVertexNr = 53 55 274
positionVertexNr = 223 221 2
smoothingGroup = 2072
}
420
{
materialNr = 1
normalVertexNr = 274 55 85
positionVertexNr = 2 221 191
smoothingGroup = 76
}
421
{
materialNr = 1
normalVertexNr = 274 146 53
positionVertexNr = 2 130 223
smoothingGroup = 50
}
422
{
materialNr = 1
normalVertexNr = 147 53 146
positionVertexNr = 129 223 130
smoothingGroup = 7
}
423
{
materialNr = 0
normalVertexNr = 51 52 60
positionVertexNr = 225 224 216
smoothingGroup = 4
}
424
{
materialNr = 0
normalVertexNr = 195 60 52
positionVertexNr = 81 216 224
smoothingGroup = 6
}
425
{
materialNr = 0
normalVertexNr = 49 63 50
positionVertexNr = 227 213 226
smoothingGroup = 1
}
426
{
materialNr = 0
normalVertexNr = 63 260 50
positionVertexNr = 213 16 226
smoothingGroup = 5
}
427
{
materialNr = 1
normalVertexNr = 48 274 47
positionVertexNr = 228 2 229
smoothingGroup = 16513
}
428
{
materialNr = 1
normalVertexNr = 274 85 47
positionVertexNr = 2 191 229
smoothingGroup = 517
}
429
{
materialNr = 1
normalVertexNr = 145 48 73
positionVertexNr = 131 228 203
smoothingGroup = 262154
}
430
{
materialNr = 0
normalVertexNr = 59 210 46
positionVertexNr = 217 66 230
smoothingGroup = 6
}
431
{
materialNr = 0
normalVertexNr = 210 47 46
positionVertexNr = 66 229 230
smoothingGroup = 8226
}
432
{
materialNr = 0
normalVertexNr = 45 57 210
positionVertexNr = 231 219 66
smoothingGroup = 17
}
433
{
materialNr = 0
normalVertexNr = 80 210 57
positionVertexNr = 196 66 219
smoothingGroup = 521
}
434
{
materialNr = 0
normalVertexNr = 79 44 65
positionVertexNr = 197 232 211
smoothingGroup = 17
}
435
{
materialNr = 0
normalVertexNr = 77 43 56
positionVertexNr = 199 233 220
smoothingGroup = 6
}
436
{
materialNr = 0
normalVertexNr = 54 55 42
positionVertexNr = 222 221 234
smoothingGroup = 129
}
437
{
materialNr = 0
normalVertexNr = 55 275 42
positionVertexNr = 221 1 234
smoothingGroup = 35
}
438
{
materialNr = 0
normalVertexNr = 78 41 209
positionVertexNr = 198 235 67
smoothingGroup = 82
}
439
{
materialNr = 0
normalVertexNr = 209 41 62
positionVertexNr = 67 235 214
smoothingGroup = 6
}
440
{
materialNr = 0
normalVertexNr = 60 195 40
positionVertexNr = 216 81 236
smoothingGroup = 3
}
441
{
materialNr = 0
normalVertexNr = 195 209 40
positionVertexNr = 81 67 236
smoothingGroup = 41
}
442
{
materialNr = 1
normalVertexNr = 39 67 75
positionVertexNr = 237 209 201
smoothingGroup = 4108
}
443
{
materialNr = 1
normalVertexNr = 38 39 100
positionVertexNr = 238 237 176
smoothingGroup = 82
}
444
{
materialNr = 1
normalVertexNr = 39 75 100
positionVertexNr = 237 201 176
smoothingGroup = 2054
}
445
{
materialNr = 1
normalVertexNr = 37 38 101
positionVertexNr = 239 238 175
smoothingGroup = 41
}
446
{
materialNr = 1
normalVertexNr = 38 100 101
positionVertexNr = 238 176 175
smoothingGroup = 16401
}
447
{
materialNr = 1
normalVertexNr = 36 37 102
positionVertexNr = 240 239 174
smoothingGroup = 84
}
448
{
materialNr = 1
normalVertexNr = 37 101 102
positionVertexNr = 239 175 174
smoothingGroup = 2060
}
449
{
materialNr = 1
normalVertexNr = 36 102 35
positionVertexNr = 240 174 241
smoothingGroup = 530
}
450
{
materialNr = 1
normalVertexNr = 35 102 103
positionVertexNr = 241 174 173
smoothingGroup = 4099
}
451
{
materialNr = 1
normalVertexNr = 35 103 34
positionVertexNr = 241 173 242
smoothingGroup = 137
}
452
{
materialNr = 1
normalVertexNr = 34 103 104
positionVertexNr = 242 173 172
smoothingGroup = 2060
}
453
{
materialNr = 1
normalVertexNr = 34 104 33
positionVertexNr = 242 172 243
smoothingGroup = 518
}
454
{
materialNr = 1
normalVertexNr = 33 104 76
positionVertexNr = 243 172 200
smoothingGroup = 131
}
455
{
materialNr = 1
normalVertexNr = 70 33 76
positionVertexNr = 206 243 200
smoothingGroup = 289
}
456
{
materialNr = 0
normalVertexNr = 23 22 32
positionVertexNr = 253 254 244
smoothingGroup = 262400
}
457
{
materialNr = 0
normalVertexNr = 32 22 30
positionVertexNr = 244 254 246
smoothingGroup = 393248
}
458
{
materialNr = 0
normalVertexNr = 28 26 22
positionVertexNr = 248 250 254
smoothingGroup = 66056
}
459
{
materialNr = 0
normalVertexNr = 22 26 30
positionVertexNr = 254 250 246
smoothingGroup = 196736
}
460
{
materialNr = 0
normalVertexNr = 26 25 30
positionVertexNr = 250 251 246
smoothingGroup = 49280
}
461
{
materialNr = 0
normalVertexNr = 30 25 27
positionVertexNr = 246 251 249
smoothingGroup = 40964
}
462
{
materialNr = 0
normalVertexNr = 31 29 23
positionVertexNr = 245 247 253
smoothingGroup = 4
}
463
{
materialNr = 0
normalVertexNr = 23 29 22
positionVertexNr = 253 247 254
smoothingGroup = 262
}
464
{
materialNr = 0
normalVertexNr = 29 24 22
positionVertexNr = 247 252 254
smoothingGroup = 3
}
465
{
materialNr = 0
normalVertexNr = 28 22 24
positionVertexNr = 248 254 252
smoothingGroup = 9
}
466
{
materialNr = 0
normalVertexNr = 21 32 20
positionVertexNr = 255 244 256
smoothingGroup = 24
}
467
{
materialNr = 0
normalVertexNr = 32 30 20
positionVertexNr = 244 246 256
smoothingGroup = 104
}
468
{
materialNr = 0
normalVertexNr = 19 20 18
positionVertexNr = 257 256 258
smoothingGroup = 13312
}
469
{
materialNr = 0
normalVertexNr = 20 30 18
positionVertexNr = 256 246 258
smoothingGroup = 4672
}
470
{
materialNr = 0
normalVertexNr = 18 30 17
positionVertexNr = 258 246 259
smoothingGroup = 2561
}
471
{
materialNr = 0
normalVertexNr = 30 27 17
positionVertexNr = 246 249 259
smoothingGroup = 1029
}
472
{
materialNr = 0
normalVertexNr = 16 21 15
positionVertexNr = 260 255 261
smoothingGroup = 4
}
473
{
materialNr = 0
normalVertexNr = 21 20 15
positionVertexNr = 255 256 261
smoothingGroup = 22
}
474
{
materialNr = 0
normalVertexNr = 15 20 14
positionVertexNr = 261 256 262
smoothingGroup = 3
}
475
{
materialNr = 0
normalVertexNr = 19 14 20
positionVertexNr = 257 262 256
smoothingGroup = 1025
}
476
{
materialNr = 0
normalVertexNr = 13 12 28
positionVertexNr = 263 264 248
smoothingGroup = 384
}
477
{
materialNr = 0
normalVertexNr = 26 28 12
positionVertexNr = 250 248 264
smoothingGroup = 832
}
478
{
materialNr = 0
normalVertexNr = 25 26 11
positionVertexNr = 251 250 265
smoothingGroup = 16402
}
479
{
materialNr = 0
normalVertexNr = 26 12 11
positionVertexNr = 250 264 265
smoothingGroup = 112
}
480
{
materialNr = 0
normalVertexNr = 25 11 27
positionVertexNr = 251 265 249
smoothingGroup = 8450
}
481
{
materialNr = 0
normalVertexNr = 27 11 10
positionVertexNr = 249 265 266
smoothingGroup = 896
}
482
{
materialNr = 0
normalVertexNr = 9 19 8
positionVertexNr = 267 257 268
smoothingGroup = 96
}
483
{
materialNr = 0
normalVertexNr = 19 18 8
positionVertexNr = 257 258 268
smoothingGroup = 8480
}
484
{
materialNr = 0
normalVertexNr = 17 7 18
positionVertexNr = 259 269 258
smoothingGroup = 2072
}
485
{
materialNr = 0
normalVertexNr = 18 7 8
positionVertexNr = 258 269 268
smoothingGroup = 400
}
486
{
materialNr = 0
normalVertexNr = 17 27 7
positionVertexNr = 259 249 269
smoothingGroup = 1096
}
487
{
materialNr = 0
normalVertexNr = 27 10 7
positionVertexNr = 249 266 269
smoothingGroup = 608
}
488
{
materialNr = 0
normalVertexNr = 13 6 12
positionVertexNr = 263 270 264
smoothingGroup = 132
}
489
{
materialNr = 0
normalVertexNr = 12 6 5
positionVertexNr = 264 270 271
smoothingGroup = 6
}
490
{
materialNr = 0
normalVertexNr = 11 12 4
positionVertexNr = 265 264 272
smoothingGroup = 41
}
491
{
materialNr = 0
normalVertexNr = 12 5 4
positionVertexNr = 264 271 272
smoothingGroup = 3
}
492
{
materialNr = 0
normalVertexNr = 11 4 10
positionVertexNr = 265 272 266
smoothingGroup = 140
}
493
{
materialNr = 0
normalVertexNr = 10 4 3
positionVertexNr = 266 272 273
smoothingGroup = 20
}
494
{
materialNr = 0
normalVertexNr = 9 8 2
positionVertexNr = 267 268 274
smoothingGroup = 65
}
495
{
materialNr = 0
normalVertexNr = 8 1 2
positionVertexNr = 268 275 274
smoothingGroup = 9
}
496
{
materialNr = 0
normalVertexNr = 7 0 8
positionVertexNr = 269 276 268
smoothingGroup = 134
}
497
{
materialNr = 0
normalVertexNr = 8 0 1
positionVertexNr = 268 276 275
smoothingGroup = 12
}
498
{
materialNr = 0
normalVertexNr = 7 10 0
positionVertexNr = 269 266 276
smoothingGroup = 35
}
499
{
materialNr = 0
normalVertexNr = 10 3 0
positionVertexNr = 266 273 276
smoothingGroup = 17
}
}
}