home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Source Code 1992 March
/
Source_Code_CD-ROM_Walnut_Creek_March_1992.iso
/
usenet
/
altsrcs
/
2
/
2400
/
nlopr.cc
next >
Wrap
Text File
|
1990-12-28
|
9KB
|
525 lines
/* ---------------------------------------------------------------------------
nlmdl: nlopr.cc
nlmdl is a C++ implementation of the statistical methods in A. Ronald
Gallant, "Nonlinear Statistical Models," New York: John Wiley and Sons,
1987, ISBN 0-471-80260-3, using a matrix class realmat that is distributed
with it. The header files nlmdl.h and realmat.h describe the use of the
program and matrix class, respectively.
Copyright (C) 1990.
A. Ronald Gallant
P.O. Box 5513
Raleigh NC 27650-5513
USA
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided
that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation.
This software is provided "as is" without any expressed or implied warranty.
------------------------------------------------------------------------------
This is the collection of operators used by nlmdl. They act on s, of class
status, using m, of class model; s must have been filled in and the function
initialize(), of class model, must have been called before using any of these
operators.
--------------------------------------------------------------------------- */
int line_search(char* msg)
{
REAL norm_D, norm_theta;
REAL step_length;
REAL save_obj = s.obj;
realmat save_theta = s.theta;
realmat ss(1,1);
ss = T(s.D) * s.D;
norm_D = sqrt(ss[1]);
ss = T(s.theta) * s.theta;
norm_theta = sqrt(ss[1]);
if ( norm_D < s.tol*(norm_theta + s.eps) ) {
strcpy(msg,"Tolerence check passed.\n");
return 1;
}
for (step_length=1; step_length >= 0.5; step_length -= 0.1) {
s.theta = save_theta + step_length * s.D;
(*opr_obj)();
if (s.obj < save_obj) {
sprintf(msg,"Step length = %g \n",step_length);
return 0 ;
}
}
for (step_length=0.5; step_length > 1.0e-13; step_length *= 0.5) {
s.theta = save_theta + step_length * s.D;
(*opr_obj)();
if (s.obj < save_obj) {
sprintf(msg,"Step length = %g \n",step_length);
return 0;
}
}
strcpy(msg,"A line search did not improve this estimate.\n");
s.obj = save_obj;
s.theta = save_theta;
return 1;
}
void SUR_obj()
{
INTEGER t;
realmat sse(1,1,(REAL)0 );
realmat varinv = invpsd(s.var,s.eps);
for (t=1; t<=s.n; t++)
sse = sse + T(m.e(t)) * varinv * m.e(t);
s.obj = sse[1];
}
void SUR_mgn()
{
INTEGER t;
realmat sse;
realmat varinv = invpsd(s.var,s.eps);
sse.resize(1,1,(REAL)0 );
s.V.resize(s.p, s.p, (REAL)0 );
s.D.resize(s.p, 1, (REAL)0 );
for(t=1; t<=s.n; t++) {
sse = sse + T(m.e(t)) * varinv * m.e(t);
s.V = s.V + T(m.dele(t)) * varinv * m.dele(t);
s.D = s.D + T(m.dele(t)) * varinv * m.e(t);
}
s.obj = sse[1];
s.V = invpsd(s.V,s.eps);
s.D = - s.V * s.D;
}
void SUR_var(int var_loop)
{
INTEGER i,j,t;
REAL fn;
if (rows(s.var)==0 || cols(s.var)==0) {
s.var.resize(s.M,s.M,(REAL)0 );
for (i=1; i<=s.M; i++) s.var.elem(i,i)=1.0;
}
if (var_loop == 0) return;
for (i=1; i<=s.M; i++)
for (j=1; j<=s.M; j++)
s.var.elem(i,j) = (REAL)0 ;
for (t=1; t<=s.n; t++)
s.var = s.var + m.e(t) * T(m.e(t));
if (s.M == 1 && s.n > s.p) {
fn = s.n - s.p;
strcpy(s.df,"corrected");
}
else {
fn = s.n;
strcpy(s.df,"uncorrected");
}
for (i=1; i<=s.M; i++)
for (j=1; j<=s.M; j++)
s.var.elem(i,j) = s.var.elem(i,j)/fn;
}
void SUR_V()
{
INTEGER t;
INTEGER tau;
INTEGER i;
REAL x,weight;
realmat varinv = invpsd(s.var,s.eps);
if (strcmp(s.vartype,"heteroskedastic") == 0 || s.MA > 0) {
realmat I(s.p,s.p,(REAL)0 );
realmat I_tau;
for (tau=0; tau<=s.MA; tau++) {
I_tau.resize(s.p,s.p,(REAL)0 );
for (t=tau+1; t<=s.n; t++)
I_tau = I_tau
+ T(m.dele(t)) * varinv * m.e(t)
* T(m.e(t-tau)) * varinv * m.dele(t-tau);
if (strcmp(s.weights,"Parzen") == 0 && tau > 0) {
x = tau/(REAL)s.MA;
if ( x < 0.5 )
weight = 1.0 - 6.0*pow(x,2) + 6.0*pow(x,3);
else
weight = 2.0*pow((1.0 - x),3);
}
else {
weight = 1.0;
}
I = I + weight*I_tau;
if (tau > 0)
I = I + weight*T(I_tau);
}
s.V = s.V * I * s.V;
}
s.rank = 0;
for (i=1; i<=s.p; i++)
if (s.V.elem(i,i) > (REAL)0 ) s.rank++;
return;
}
realmat qZ;
void opr_qZ(INTEGER t)
{
INTEGER alpha, i, ii;
realmat q_tmp(s.M,1);
realmat Z_tmp(s.K,1);
qZ.resize(s.M*s.K,1);
q_tmp = m.e(t);
Z_tmp = m.Z(t);
for (alpha=1; alpha<=s.M; alpha++) {
for (i=1; i<=s.K; i++) {
ii = s.K*(alpha-1) + i;
qZ[ii] = q_tmp[alpha] * Z_tmp[i];
}
}
}
realmat QZ;
void opr_QZ(INTEGER t)
{
INTEGER alpha, i, ii, k;
realmat Q_tmp(s.M,s.p);
realmat Z_tmp(s.K,1);
QZ.resize(s.M*s.K,s.p);
Q_tmp = m.dele(t);
Z_tmp = m.Z(t);
for (k=1; k<=s.p; k++) {
for (alpha=1; alpha<=s.M; alpha++) {
for (i=1; i<=s.K; i++) {
ii = s.K*(alpha-1) + i;
QZ.elem(ii,k) = Q_tmp.elem(alpha,k) * Z_tmp[i];
}
}
}
}
realmat qZ_mts;
void opr_qZ_mts()
{
INTEGER t;
qZ_mts.resize(s.M*s.K, 1, (REAL)0 );
for (t=1; t<=s.n; t++) {
opr_qZ(t);
qZ_mts = qZ_mts + qZ;
}
}
realmat QZ_mts;
void opr_QZ_mts()
{
INTEGER t;
QZ_mts.resize(s.M*s.K, s.p, (REAL)0 );
for (t=1; t<=s.n; t++) {
opr_QZ(t);
QZ_mts = QZ_mts + QZ;
}
}
realmat ZZ;
void opr_ZZ()
{
INTEGER t;
ZZ.resize(s.K, s.K, (REAL)0 );
for (t=1; t<=s.n; t++)
ZZ = ZZ + m.Z(t) * T(m.Z(t));
}
void TSLS_obj()
{
INTEGER alpha, i, ii;
INTEGER beta, j, jj;
realmat varinv = invpsd(s.var,s.eps);
opr_qZ_mts();
opr_ZZ();
realmat ZZinv = invpsd(ZZ,s.eps);
s.obj = (REAL)0 ;
for (alpha=1; alpha<=s.M; alpha++) {
for (i=1; i<=s.K; i++) {
for (beta=1; beta<=s.M; beta++) {
for (j=1; j<=s.K; j++) {
ii = s.K*(alpha-1) + i;
jj = s.K*(beta-1) + j;
s.obj += qZ_mts[ii] * qZ_mts[jj]
* varinv.elem(alpha,beta) * ZZinv.elem(i,j);
}
}
}
}
}
void TSLS_mgn()
{
INTEGER alpha, i, ii;
INTEGER beta, j, jj;
INTEGER k,l;
realmat varinv = invpsd(s.var,s.eps);
opr_qZ_mts();
opr_QZ_mts();
opr_ZZ();
realmat ZZinv = invpsd(ZZ,s.eps);
s.obj = (REAL)0 ;
s.V.resize(s.p, s.p, (REAL)0 );
s.D.resize(s.p, 1, (REAL)0 );
for (alpha=1; alpha<=s.M; alpha++) {
for (i=1; i<=s.K; i++) {
for (beta=1; beta<=s.M; beta++) {
for (j=1; j<=s.K; j++) {
ii = s.K*(alpha-1) + i;
jj = s.K*(beta-1) + j;
s.obj += qZ_mts[ii] * qZ_mts[jj]
* varinv.elem(alpha,beta) * ZZinv.elem(i,j);
for (k=1; k<=s.p; k++) {
s.D[k] += QZ_mts.elem(ii,k) * qZ_mts[jj]
* varinv.elem(alpha,beta) * ZZinv.elem(i,j);
for (l=1; l<=s.p; l++) {
s.V.elem(k,l) += QZ_mts.elem(ii,k) * QZ_mts.elem(jj,l)
* varinv.elem(alpha,beta) * ZZinv.elem(i,j);
}
}
}
}
}
}
s.V = invpsd(s.V,s.eps);
s.D = - s.V * s.D;
}
void TSLS_V()
{
INTEGER i;
s.rank = 0;
for (i=1; i<=s.p; i++)
if (s.V.elem(i,i) > (REAL)0 ) s.rank++;
return;
};
void GMM_obj()
{
realmat sse(1,1);
realmat varinv = invpsd(s.var,s.eps);
opr_qZ_mts();
sse = T(qZ_mts) * varinv * qZ_mts ;
s.obj = sse[1];
}
void GMM_mgn() {
realmat sse(1,1);
realmat varinv = invpsd(s.var,s.eps);
opr_qZ_mts();
opr_QZ_mts();
sse = T(qZ_mts) * varinv * qZ_mts ;
s.obj = sse[1];
s.D = T(QZ_mts) * varinv * qZ_mts ;
s.V = T(QZ_mts) * varinv * QZ_mts ;
s.V = invpsd(s.V,s.eps);
s.D = - s.V * s.D;
}
void GMM_var(int var_loop)
{
INTEGER l = s.M * s.K;
INTEGER t;
INTEGER tau;
INTEGER alpha, i, j, ii, jj;
REAL x,weight;
strcpy(s.df,"uncorrected");
if (rows(s.var)==0 || cols(s.var)==0) {
s.var.resize(l,l,(REAL)0 );
opr_ZZ();
for (alpha=1; alpha<=s.M; alpha++) {
for (i=1; i<=s.K; i++) {
for (j=1; j<=s.K; j++) {
ii = s.K*(alpha-1) + i;
jj = s.K*(alpha-1) + j;
s.var.elem(ii,jj) = ZZ.elem(i,j);
}
}
}
}
if (var_loop == 0) return;
realmat I(l,l);
realmat I_tau(l,l);
realmat qZ_lag(l,1);
for (tau=0; tau<=s.MA; tau++) {
for (i=1; i<=l; i++)
for (j=1; j<=l; j++)
I_tau.elem(i,j)=(REAL)0 ;
for (t=tau+1; t<=s.n; t++) {
opr_qZ(t-tau);
qZ_lag = qZ;
opr_qZ(t);
I_tau = I_tau + qZ * T(qZ_lag);
}
if (strcmp(s.weights,"Parzen") == 0 && tau > 0) {
x = tau/(REAL)s.MA;
if ( x < 0.5 )
weight = 1.0 - 6.0*pow(x,2) + 6.0*pow(x,3);
else
weight = 2.0*pow((1.0 - x),3);
}
else {
weight = 1.0;
}
I = I + weight*I_tau;
if (tau > 0) {
I = I + weight*T(I_tau);
}
}
s.var = I;
return;
}
void GMM_V()
{
INTEGER i;
s.rank = 0;
for (i=1; i<=s.p; i++)
if (s.V.elem(i,i) > (REAL)0 ) s.rank++;
return;
}