home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Power-Programmierung
/
CD1.mdf
/
euphoria
/
allsorts.ex
next >
Wrap
Text File
|
1994-02-15
|
8KB
|
373 lines
----------------------------------------
-- Sorting Algorithms in Euphoria --
-- These routines will sort sequences --
-- of general Euphoria objects --
----------------------------------------
without type_check
constant MAX = 4800
constant TRUE = 1, FALSE = 0
constant CHECK_RESULTS = FALSE
integer hybrid_limit
type natural(integer x)
return x >= 0
end type
type file_number(integer x)
return x >= -1
end type
function simple_sort(sequence x)
-- put x into ascending order
-- using a very simple sort
object temp
for i = 1 to length(x) - 1 do
for j = i + 1 to length(x) do
if compare(x[j],x[i]) < 0 then
temp = x[j]
x[j] = x[i]
x[i] = temp
end if
end for
end for
return x
end function
function bubble_sort(sequence x)
-- put x into ascending order
-- using bubble sort
object temp
natural flip, limit
flip = length(x)
while flip > 0 do
limit = flip
flip = 0
for i = 1 to limit - 1 do
if compare(x[i+1], x[i]) < 0 then
temp = x[i+1]
x[i+1] = x[i]
x[i] = temp
flip = i
end if
end for
end while
return x
end function
function insertion_sort(sequence x)
-- put x into ascending order
-- using insertion sort
object temp
natural final
for i = 2 to length(x) do
temp = x[i]
final = 1
for j = i-1 to 1 by -1 do
if compare(temp, x[j]) < 0 then
x[j+1] = x[j]
else
final = j + 1
exit
end if
end for
x[final] = temp
end for
return x
end function
function shell_sort(sequence x)
-- Shell sort based on insertion sort
integer gap, j, first, last
object tempi, tempj
last = length(x)
gap = floor(last / 3) + 1
while TRUE do
first = gap + 1
for i = first to last do
tempi = x[i]
j = i - gap
while TRUE do
tempj = x[j]
if compare(tempi, tempj) >= 0 then
j = j + gap
exit
end if
x[j+gap] = tempj
if j <= gap then
exit
end if
j = j - gap
end while
x[j] = tempi
end for
if gap = 1 then
return x
else
gap = floor(gap / 3) + 1
end if
end while
end function
global function quick_sort(sequence x)
-- put x into ascending order
-- using recursive quick sort
natural n, last, midval, temp
n = length(x)
if n < 2 then
return x -- already sorted (trivial case)
end if
midval = x[(n + 1) / 2]
x[(n + 1) / 2] = x[1]
last = 1
for i = 2 to n do
if compare(x[i], midval) < 0 then
last = last + 1
temp = x[last] x[last] = x[i] x[i] = temp
end if
end for
return quick_sort(x[2..last]) & {midval} & quick_sort(x[last+1..n])
end function
global function hybrid_sort(sequence x)
-- put x into ascending order
-- using recursive quick sort
-- but call insertion sort for short sequences
natural n, last, midpt
object midval, temp
n = length(x)
if n < hybrid_limit then
return insertion_sort(x)
end if
midpt = floor((n + 1) / 2)
midval = x[midpt]
x[midpt] = x[1]
last = 1
for i = 2 to n do
if compare(x[i], midval) < 0 then
last = last + 1
temp = x[last] x[last] = x[i] x[i] = temp
end if
end for
return hybrid_sort(x[2..last]) & {midval} & hybrid_sort(x[last+1..n])
end function
sequence x
procedure g_insertion_sort()
-- put global variable x into ascending order
-- using insertion sort of general objects
object temp
natural final
for i = 2 to length(x) do
temp = x[i]
final = 1
for j = i-1 to 1 by -1 do
if compare(temp, x[j]) < 0 then
x[j+1] = x[j]
else
final = j + 1
exit
end if
end for
x[final] = temp
end for
end procedure
procedure best_sort(natural m, natural n)
-- put x into ascending order
-- using recursive quick sort
natural last, midpt
object midval, temp
if n - m < 20 then -- 10 or 20
return
end if
midpt = floor((m + n) / 2)
midval = x[midpt]
x[midpt] = x[m]
last = m
for i = m+1 to n do
if compare(x[i], midval) < 0 then
last = last + 1
temp = x[last] x[last] = x[i] x[i] = temp
end if
end for
x[m] = x[last]
x[last] = midval
best_sort(m, last-1)
best_sort(last+1, n)
end procedure
global function great_sort(sequence a)
-- Avoids dynamic storage allocation - just passes indexes into
-- a global sequence.
-- Not much better than hybrid_sort which makes full use of dynamic
-- storage allocation.
-- Note that we only partition down to a certain degree, then do an
-- insertion sort which will run fast because things are roughly in order.
-- See Knuth for the details
x = a
best_sort(1, length(x))
g_insertion_sort()
return x
end function
global function merge_sort(sequence x)
-- put x into ascending order
-- using recursive merge sort
natural n
sequence x1, x2, newx
n = length(x)
if n < 2 then
return x
end if
x1 = merge_sort(x[1..n/2])
x2 = merge_sort(x[n/2+1..n])
newx = {}
while length(x1) > 0 and length(x2) > 0 do
if compare(x1[1], x2[1]) < 0 then
newx = append(newx, x1[1])
x1 = x1[2..length(x1)]
else
newx = append(newx, x2[1])
x2 = x2[2..length(x2)]
end if
end while
newx = newx & x1 & x2 -- one will be empty
return newx
end function
procedure check_results(sequence sdata, sequence data)
-- compare results with another sort to make sure they are correct
if CHECK_RESULTS then
if compare(sdata, shell_sort(data)) != 0 then
puts(2, "\nabort!\n")
print(2, 1/0)
end if
end if
end procedure
procedure all_sorts()
-- test all sorting routines over a range of numbers of items
file_number printer
natural nitems, iterations
atom t0, t
sequence data, sdata
printer = 1 -- open("PRN", "w")
nitems = 5
while nitems <= MAX do
-- get several sets of data of length nitems
iterations = floor(MAX/nitems)
if iterations > 500 then
iterations = 500
end if
printf(printer, "\ntime (sec.) to sort %d items (averaged over %d trials)\n",
{nitems, iterations})
data = rand(repeat(repeat(nitems, nitems), iterations))
t0 = time()
for i = 1 to iterations do
sdata = bubble_sort(data[i])
check_results(sdata, data[i])
end for
t = time() - t0
printf(printer, "bubble sort %9.4f\n", t/iterations)
t0 = time()
for i = 1 to iterations do
sdata = simple_sort(data[i])
check_results(sdata, data[i])
end for
t = time() - t0
printf(printer, "simple sort %9.4f\n", t/iterations)
t0 = time()
for i = 1 to iterations do
sdata = insertion_sort(data[i])
check_results(sdata, data[i])
end for
t = time() - t0
printf(printer, "insertion sort%9.4f\n", t/iterations)
t0 = time()
for i = 1 to iterations do
sdata = shell_sort(data[i])
check_results(sdata, data[i])
end for
t = time() - t0
printf(printer, "shell sort %9.4f\n", t/iterations)
t0 = time()
for i = 1 to iterations do
sdata = merge_sort(data[i])
check_results(sdata, data[i])
end for
t = time() - t0
printf(printer, "merge sort %9.4f\n", t/iterations)
t0 = time()
for i = 1 to iterations do
sdata = quick_sort(data[i])
check_results(sdata, data[i])
end for
t = time() - t0
printf(printer, "quick sort %9.4f\n", t/iterations)
for hl = 20 to 20 by 2 do
hybrid_limit = hl
t0 = time()
for i = 1 to iterations do
sdata = hybrid_sort(data[i])
check_results(sdata, data[i])
end for
t = time() - t0
printf(printer, "hybrid sort-%d%9.4f\n", {hybrid_limit,t/iterations})
end for
for hl = 20 to 20 by 2 do
hybrid_limit = hl
t0 = time()
for i = 1 to iterations do
sdata = great_sort(data[i])
check_results(sdata, data[i])
end for
t = time() - t0
printf(printer, "great sort-%d %9.4f\n", {hybrid_limit,t/iterations})
end for
puts(1, "\nPress Enter to continue, q to quit: ")
if find('q', gets(0)) then
abort(1)
end if
nitems = nitems * 2
end while
end procedure
all_sorts()