home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Power-Programmierung
/
CD1.mdf
/
euphoria
/
plot3d.ex
< prev
next >
Wrap
Text File
|
1994-01-12
|
6KB
|
252 lines
--------------------------------
-- Plotting of 3-D Surfaces: --
-- Z as a function of X and Y --
--------------------------------
-- The program does a quick plot of each function to get the scaling right,
-- then replots so the picture will fit neatly on the screen.
-- The 4 x-y quadrants are in different colors.
-- Where z is positive, a brighter shade of color is used.
-- edit the_function() to insert your function
-- set GRAPHICS_MODE = a good mode for your machine
-- (see euphoria\include\graphics.e for a list of modes)
-- Press Enter at any time to skip to the next function.
constant GRAPHICS_MODE = 261 -- SVGA
without type_check
include graphics.e
include select.e
constant NFUNCS = 6
constant c = sqrt(2.0) / 2
constant SCREEN = 1
atom x_min, x_max, x_inc
atom y_min, y_max, y_inc
atom z_min, z_max
atom xc_min, xc_max, yc_min, yc_max
atom origin_x, origin_y
origin_x = 400
origin_y = 150
integer func_no
integer grid_width, fine
integer x_res, y_res
atom h_magnifier, v_magnifier
sequence prev_coord
function abs(atom x)
if x < 0 then
return -x
else
return x
end if
end function
function the_function(atom x, atom y)
-- compute a function z of two variables x and y
-- There are actually several different functions below,
-- selected by the func_no variable
sequence pq, pr, ps -- points in the plane
atom dq, dr, ds -- distance from p
atom z, w
if func_no = 1 then
return 100*x*x + 100*y*y - 50
elsif func_no = 2 then
return 200*x*x*x - 200*y*y*y
elsif func_no = 3 then
return 50 * cos(8*x*y)
elsif func_no = 4 then
return 50 * cos(8*(x+y))
elsif func_no = 5 then
z = 50 * cos(50 * sqrt(x*x+y*y))
if z >= -0.01 then
if (x < 0 and y < 0) or (x > 0 and y > 0) then
return z / 10
else
return z
end if
else
return -0.01
end if
elsif func_no = 6 then
pq = {.6, -.4}
pr = {-.6, 0}
ps = {.5, +.5}
dq = sqrt((x-pq[1]) * (x-pq[1]) + (y-pq[2]) * (y-pq[2]))
dr = sqrt((x-pr[1]) * (x-pr[1]) + (y-pr[2]) * (y-pr[2]))
ds = sqrt((x-ps[1]) * (x-ps[1]) + (y-ps[2]) * (y-ps[2]))
z = -25 * cos(ds*15)/(0.1 + ds*sqrt(ds)) +
75 * cos(dq*3) /(0.1 + dq*sqrt(dq))
if x < 0 then
w = 60 * cos(9 * dr)
if w < 0 then
w = 0
else
w = w * 2 * sqrt(-x)
end if
z = z + w
end if
return z
end if
end function
procedure set_range()
-- magnification factors
h_magnifier = 1.0
v_magnifier = 1.0
-- extreme values
xc_min = 1e307
xc_max = -1e307
yc_min = xc_min
yc_max = xc_max
z_min = xc_min
z_max = xc_max
-- range of values to plot
x_min = -1
x_max = +1
y_min = -1
y_max = +1
-- calculate some derived values:
x_inc = (x_max - x_min) / x_res
y_inc = (y_max - y_min) / y_res
end procedure
procedure note_extreme(sequence coord, atom z)
-- record the extreme values
if coord[1] < xc_min then
xc_min = coord[1]
elsif coord[1] > xc_max then
xc_max = coord[1]
end if
if coord[2] < yc_min then
yc_min = coord[2]
elsif coord[2] > yc_max then
yc_max = coord[2]
end if
if z > z_max then
z_max = z
elsif z < z_min then
z_min = z
end if
end procedure
function set_coord(atom x, atom y, atom z)
-- return the coordinates to plot, given the x, y and z values
atom k
k = (x - x_min)/x_inc * c
return {h_magnifier * (origin_x + (y - y_min)/y_inc - k),
v_magnifier * (origin_y - z + k)}
end function
procedure plot(atom x, atom y)
-- plot the point according to 3-D perspective
atom z, col
sequence coord
z = the_function(x, y)
coord = set_coord(x, y, z)
note_extreme(coord, z)
-- select color by quadrant
col = (z >= 0) * 8 + (x >= 0) * 2 + (y >= 0) + 1
if length(prev_coord) = 0 then
pixel(col, coord)
else
draw_line(col, {prev_coord, coord})
end if
prev_coord = coord
end procedure
function plot_a_function()
-- generate 3d plotted graph for a user inputs
for x = x_min to x_max by grid_width * x_inc do
if get_key() != -1 then
return 0
end if
prev_coord = {}
for y = y_min to y_max by fine * y_inc do
plot(x, y)
end for
end for
for y = y_min to y_max by grid_width * y_inc do
if get_key() != -1 then
return 0
end if
prev_coord = {}
for x = x_min to x_max by fine * x_inc do
plot(x, y)
end for
end for
return 1
end function
procedure box()
-- draw a box around the outside of edge of the screen
polygon(5, 0, {{0, 0}, {0, y_res-1}, {x_res-1, y_res-1}, {x_res-1, 0}})
end procedure
procedure plot3d()
-- main program
func_no = 1
while func_no <= NFUNCS do
set_range()
-- do a quick trial run to establish range of values
grid_width = 20
fine = 4
if plot_a_function() then
clear_screen()
box()
-- make next one fit screen better
v_magnifier = (y_res - 1) / (yc_max - yc_min)
h_magnifier = (x_res - 1) / (xc_max - xc_min)
origin_x = origin_x - xc_min
origin_y = origin_y - yc_min
grid_width = 20
fine = 1
if plot_a_function() then
position(2, 2)
printf(SCREEN, "x: %5.1f to %4.1f", {x_min, x_max})
position(3, 2)
printf(SCREEN, "y: %5.1f to %4.1f", {y_min, y_max})
position(4, 2)
printf(SCREEN, "z: %5.1f to %4.1f", {z_min, z_max})
while get_key() = -1 do
end while
end if
end if
func_no = func_no + 1
clear_screen()
end while
end procedure
sequence config
-- execution starts here:
if select_mode(GRAPHICS_MODE) then
config = video_config()
x_res = config[VC_XPIXELS]
y_res = config[VC_YPIXELS]
plot3d()
if graphics_mode(-1) then
end if
else
puts(1, "couldn't find a good graphics mode\n")
end if