home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Turbo Toolbox
/
Turbo_Toolbox.iso
/
turbo5
/
hilb.pas
< prev
next >
Wrap
Pascal/Delphi Source File
|
1988-10-09
|
6KB
|
246 lines
{$N-}
program Hilb;
{
The program performs simultaneous solution by Gauss-Jordan
elimination.
--------------------------------------------------
From: Pascal Programs for Scientists and Engineers
Alan R. Miller, Sybex
n x n inverse hilbert matrix
solution is 1 1 1 1 1
double precision version
--------------------------------------------------
INSTRUCTIONS
1. Compile and run the program using the $N- (Numeric Processing :
Software) compiler directive.
2. if you have a math coprocessor in your computer, compile and run the
program using the $N+ (Numeric Processing : Hardware) compiler
directive. Compare the speed and precision of the results to those
of example 1.
}
const
maxr = 10;
maxc = 10;
type
{$IFOPT N+} { use extended type if using 80x87 }
real = extended;
{$ENDIF}
ary = array[1..maxr] of real;
arys = array[1..maxc] of real;
ary2s = array[1..maxr, 1..maxc] of real;
var
y : arys;
coef : arys;
a, b : ary2s;
n, m, i, j : integer;
error : boolean;
procedure gaussj
(var b : ary2s; (* square matrix of coefficients *)
y : arys; (* constant vector *)
var coef : arys; (* solution vector *)
ncol : integer; (* order of matrix *)
var error: boolean); (* true if matrix singular *)
(* Gauss Jordan matrix inversion and solution *)
(* Adapted from McCormick *)
(* Feb 8, 81 *)
(* B(N,N) coefficient matrix, becomes inverse *)
(* Y(N) original constant vector *)
(* W(N,M) constant vector(s) become solution vector *)
(* DETERM is the determinant *)
(* ERROR = 1 if singular *)
(* INDEX(N,3) *)
(* NV is number of constant vectors *)
var
w : array[1..maxc, 1..maxc] of real;
index: array[1..maxc, 1..3] of integer;
i, j, k, l, nv, irow, icol, n, l1 : integer;
determ, pivot, hold, sum, t, ab, big: real;
procedure swap(var a, b: real);
var
hold: real;
begin (* swap *)
hold := a;
a := b;
b := hold
end (* procedure swap *);
begin (* Gauss-Jordan main program *)
error := false;
nv := 1 (* single constant vector *);
n := ncol;
for i := 1 to n do
begin
w[i, 1] := y[i] (* copy constant vector *);
index[i, 3] := 0
end;
determ := 1.0;
for i := 1 to n do
begin
(* search for largest element *)
big := 0.0;
for j := 1 to n do
begin
if index[j, 3] <> 1 then
begin
for k := 1 to n do
begin
if index[k, 3] > 1 then
begin
writeln(' ERROR: matrix singular');
error := true;
exit; (* abort *)
end;
if index[k, 3] < 1 then
if abs(b[j, k]) > big then
begin
irow := j;
icol := k;
big := abs(b[j, k])
end
end (* k loop *)
end
end (* j loop *);
index[icol, 3] := index[icol, 3] + 1;
index[i, 1] := irow;
index[i, 2] := icol;
(* interchange rows to put pivot on diagonal *)
if irow <> icol then
begin
determ := - determ;
for l := 1 to n do
swap(b[irow, l], b[icol, l]);
if nv > 0 then
for l := 1 to nv do
swap(w[irow, l], w[icol, l])
end; (* if irow <> icol *)
(* divide pivot row by pivot column *)
pivot := b[icol, icol];
determ := determ * pivot;
b[icol, icol] := 1.0;
for l := 1 to n do
b[icol, l] := b[icol, l] / pivot;
if nv > 0 then
for l := 1 to nv do
w[icol, l] := w[icol, l] / pivot;
(* reduce nonpivot rows *)
for l1 := 1 to n do
begin
if l1 <> icol then
begin
t := b[l1, icol];
b[l1, icol] := 0.0;
for l := 1 to n do
b[l1, l] := b[l1, l] - b[icol, l] * t;
if nv > 0 then
for l := 1 to nv do
w[l1, l] := w[l1, l] - w[icol, l] * t;
end (* if l1 <> icol *)
end
end (* i loop *);
if error then exit;
(* interchange columns *)
for i := 1 to n do
begin
l := n - i + 1;
if index[l, 1] <> index[l, 2] then
begin
irow := index[l, 1];
icol := index[l, 2];
for k := 1 to n do
swap(b[k, irow], b[k, icol])
end (* if index *)
end (* i loop *);
for k := 1 to n do
if index[k, 3] <> 1 then
begin
writeln(' ERROR: matrix singular');
error := true;
exit; (* abort *)
end;
for i := 1 to n do
coef[i] := w[i, 1];
end (* procedure gaussj *);
procedure get_data(var a : ary2s;
var y : arys;
var n, m : integer);
(* setup n-by-n hilbert matrix *)
var
i, j : integer;
begin
for i := 1 to n do
begin
a[n,i] := 1.0/(n + i - 1);
a[i,n] := a[n,i]
end;
a[n,n] := 1.0/(2*n -1);
for i := 1 to n do
begin
y[i] := 0.0;
for j := 1 to n do
y[i] := y[i] + a[i,j]
end;
writeln;
if n < 7 then
begin
for i:= 1 to n do
begin
for j:= 1 to m do
write( a[i,j] :7:5, ' ');
writeln( ' : ', y[i] :7:5)
end;
writeln
end (* if n<7 *)
end (* procedure get_data *);
procedure write_data;
(* print out the answers *)
var
i : integer;
begin
for i := 1 to m do
write( coef[i] :13:9);
writeln;
end (* write_data *);
begin (* main program *)
a[1,1] := 1.0;
n := 2;
m := n;
repeat
get_data (a, y, n, m);
for i := 1 to n do
for j := 1 to n do
b[i,j] := a[i,j] (* setup work array *);
gaussj (b, y, coef, n, error);
if not error then write_data;
n := n+1;
m := n
until n > maxr;
end.