home *** CD-ROM | disk | FTP | other *** search
- /*
- * jmemmgr.c
- *
- * Copyright (C) 1991, 1992, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file provides the standard system-independent memory management
- * routines. This code is usable across a wide variety of machines; most
- * of the system dependencies have been isolated in a separate file.
- * The major functions provided here are:
- * * bookkeeping to allow all allocated memory to be freed upon exit;
- * * policy decisions about how to divide available memory among the
- * various large arrays;
- * * control logic for swapping virtual arrays between main memory and
- * backing storage.
- * The separate system-dependent file provides the actual backing-storage
- * access code, and it contains the policy decision about how much total
- * main memory to use.
- * This file is system-dependent in the sense that some of its functions
- * are unnecessary in some systems. For example, if there is enough virtual
- * memory so that backing storage will never be used, much of the big-array
- * control logic could be removed. (Of course, if you have that much memory
- * then you shouldn't care about a little bit of unused code...)
- *
- * These routines are invoked via the methods alloc_small, free_small,
- * alloc_medium, free_medium, alloc_small_sarray, free_small_sarray,
- * alloc_small_barray, free_small_barray, request_big_sarray,
- * request_big_barray, alloc_big_arrays, access_big_sarray, access_big_barray,
- * free_big_sarray, free_big_barray, and free_all.
- */
-
- #define AM_MEMORY_MANAGER /* we define big_Xarray_control structs */
-
- #include "jinclude.h"
- #include "jmemsys.h" /* import the system-dependent declarations */
-
- #ifndef NO_GETENV
- #ifdef INCLUDES_ARE_ANSI
- #include <stdlib.h> /* to declare getenv() */
- #else
- extern char * getenv PP((const char * name));
- #endif
- #endif
-
-
- /*
- * On many systems it is not necessary to distinguish alloc_small from
- * alloc_medium; the main case where they must be distinguished is when
- * FAR pointers are distinct from regular pointers. However, you might
- * want to keep them separate if you have different system-dependent logic
- * for small and large memory requests (i.e., jget_small and jget_large
- * do different things).
- */
-
- #ifdef NEED_FAR_POINTERS
- #define NEED_ALLOC_MEDIUM /* flags alloc_medium really exists */
- #endif
-
-
- /*
- * Many machines require storage alignment: longs must start on 4-byte
- * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
- * always returns pointers that are multiples of the worst-case alignment
- * requirement, and we had better do so too. This means the headers that
- * we tack onto allocated structures had better have length a multiple of
- * the alignment requirement.
- * There isn't any really portable way to determine the worst-case alignment
- * requirement. In this code we assume that the alignment requirement is
- * multiples of sizeof(align_type). Here we define align_type as double;
- * with this definition, the code will run on all machines known to me.
- * If your machine has lesser alignment needs, you can save a few bytes
- * by making align_type smaller.
- */
-
- typedef double align_type;
-
-
- /*
- * Some important notes:
- * The allocation routines provided here must never return NULL.
- * They should exit to error_exit if unsuccessful.
- *
- * It's not a good idea to try to merge the sarray and barray routines,
- * even though they are textually almost the same, because samples are
- * usually stored as bytes while coefficients are shorts. Thus, in machines
- * where byte pointers have a different representation from word pointers,
- * the resulting machine code could not be the same.
- */
-
-
- static external_methods_ptr methods; /* saved for access to error_exit */
-
-
- #ifdef MEM_STATS /* optional extra stuff for statistics */
-
- /* These macros are the assumed overhead per block for malloc().
- * They don't have to be accurate, but the printed statistics will be
- * off a little bit if they are not.
- */
- #define MALLOC_OVERHEAD (SIZEOF(void *)) /* overhead for jget_small() */
- #define MALLOC_FAR_OVERHEAD (SIZEOF(void FAR *)) /* for jget_large() */
-
- static long total_num_small = 0; /* total # of small objects alloced */
- static long total_bytes_small = 0; /* total bytes requested */
- static long cur_num_small = 0; /* # currently alloced */
- static long max_num_small = 0; /* max simultaneously alloced */
-
- #ifdef NEED_ALLOC_MEDIUM
- static long total_num_medium = 0; /* total # of medium objects alloced */
- static long total_bytes_medium = 0; /* total bytes requested */
- static long cur_num_medium = 0; /* # currently alloced */
- static long max_num_medium = 0; /* max simultaneously alloced */
- #endif
-
- static long total_num_sarray = 0; /* total # of sarray objects alloced */
- static long total_bytes_sarray = 0; /* total bytes requested */
- static long cur_num_sarray = 0; /* # currently alloced */
- static long max_num_sarray = 0; /* max simultaneously alloced */
-
- static long total_num_barray = 0; /* total # of barray objects alloced */
- static long total_bytes_barray = 0; /* total bytes requested */
- static long cur_num_barray = 0; /* # currently alloced */
- static long max_num_barray = 0; /* max simultaneously alloced */
-
-
- LOCAL void
- print_mem_stats (void)
- {
- /* since this is only a debugging stub, we can cheat a little on the
- * trace message mechanism... helpful 'cuz trace_message can't handle longs.
- */
- fprintf(stderr, "total_num_small = %ld\n", total_num_small);
- fprintf(stderr, "total_bytes_small = %ld\n", total_bytes_small);
- if (cur_num_small)
- fprintf(stderr, "cur_num_small = %ld\n", cur_num_small);
- fprintf(stderr, "max_num_small = %ld\n", max_num_small);
-
- #ifdef NEED_ALLOC_MEDIUM
- fprintf(stderr, "total_num_medium = %ld\n", total_num_medium);
- fprintf(stderr, "total_bytes_medium = %ld\n", total_bytes_medium);
- if (cur_num_medium)
- fprintf(stderr, "cur_num_medium = %ld\n", cur_num_medium);
- fprintf(stderr, "max_num_medium = %ld\n", max_num_medium);
- #endif
-
- fprintf(stderr, "total_num_sarray = %ld\n", total_num_sarray);
- fprintf(stderr, "total_bytes_sarray = %ld\n", total_bytes_sarray);
- if (cur_num_sarray)
- fprintf(stderr, "cur_num_sarray = %ld\n", cur_num_sarray);
- fprintf(stderr, "max_num_sarray = %ld\n", max_num_sarray);
-
- fprintf(stderr, "total_num_barray = %ld\n", total_num_barray);
- fprintf(stderr, "total_bytes_barray = %ld\n", total_bytes_barray);
- if (cur_num_barray)
- fprintf(stderr, "cur_num_barray = %ld\n", cur_num_barray);
- fprintf(stderr, "max_num_barray = %ld\n", max_num_barray);
- }
-
- #endif /* MEM_STATS */
-
-
- LOCAL void
- out_of_memory (int which)
- /* Report an out-of-memory error and stop execution */
- /* If we compiled MEM_STATS support, report alloc requests before dying */
- {
- #ifdef MEM_STATS
- if (methods->trace_level <= 0) /* don't do it if free_all() will */
- print_mem_stats(); /* print optional memory usage statistics */
- #endif
- ERREXIT1(methods, "Insufficient memory (case %d)", which);
- }
-
-
- /*
- * Management of "small" objects.
- * These are all-in-memory, and are in near-heap space on an 80x86.
- */
-
- typedef union small_struct * small_ptr;
-
- typedef union small_struct {
- small_ptr next; /* next in list of allocated objects */
- align_type dummy; /* ensures alignment of following storage */
- } small_hdr;
-
- static small_ptr small_list; /* head of list */
-
-
- METHODDEF void *
- alloc_small (size_t sizeofobject)
- /* Allocate a "small" object */
- {
- small_ptr result;
-
- sizeofobject += SIZEOF(small_hdr); /* add space for header */
-
- #ifdef MEM_STATS
- total_num_small++;
- total_bytes_small += sizeofobject + MALLOC_OVERHEAD;
- cur_num_small++;
- if (cur_num_small > max_num_small) max_num_small = cur_num_small;
- #endif
-
- result = (small_ptr) jget_small(sizeofobject);
- if (result == NULL)
- out_of_memory(1);
-
- result->next = small_list;
- small_list = result;
- result++; /* advance past header */
-
- return (void *) result;
- }
-
-
- METHODDEF void
- free_small (void *ptr)
- /* Free a "small" object */
- {
- small_ptr hdr;
- small_ptr * llink;
-
- hdr = (small_ptr) ptr;
- hdr--; /* point back to header */
-
- /* Remove item from list -- linear search is fast enough */
- llink = &small_list;
- while (*llink != hdr) {
- if (*llink == NULL)
- ERREXIT(methods, "Bogus free_small request");
- llink = &( (*llink)->next );
- }
- *llink = hdr->next;
-
- jfree_small((void *) hdr);
-
- #ifdef MEM_STATS
- cur_num_small--;
- #endif
- }
-
-
- /*
- * Management of "medium-size" objects.
- * These are just like small objects except they are in the FAR heap.
- */
-
- #ifdef NEED_ALLOC_MEDIUM
-
- typedef union medium_struct FAR * medium_ptr;
-
- typedef union medium_struct {
- medium_ptr next; /* next in list of allocated objects */
- align_type dummy; /* ensures alignment of following storage */
- } medium_hdr;
-
- static medium_ptr medium_list; /* head of list */
-
-
- METHODDEF void FAR *
- alloc_medium (size_t sizeofobject)
- /* Allocate a "medium-size" object */
- {
- medium_ptr result;
-
- sizeofobject += SIZEOF(medium_hdr); /* add space for header */
-
- #ifdef MEM_STATS
- total_num_medium++;
- total_bytes_medium += sizeofobject + MALLOC_FAR_OVERHEAD;
- cur_num_medium++;
- if (cur_num_medium > max_num_medium) max_num_medium = cur_num_medium;
- #endif
-
- result = (medium_ptr) jget_large(sizeofobject);
- if (result == NULL)
- out_of_memory(2);
-
- result->next = medium_list;
- medium_list = result;
- result++; /* advance past header */
-
- return (void FAR *) result;
- }
-
-
- METHODDEF void
- free_medium (void FAR *ptr)
- /* Free a "medium-size" object */
- {
- medium_ptr hdr;
- medium_ptr FAR * llink;
-
- hdr = (medium_ptr) ptr;
- hdr--; /* point back to header */
-
- /* Remove item from list -- linear search is fast enough */
- llink = &medium_list;
- while (*llink != hdr) {
- if (*llink == NULL)
- ERREXIT(methods, "Bogus free_medium request");
- llink = &( (*llink)->next );
- }
- *llink = hdr->next;
-
- jfree_large((void FAR *) hdr);
-
- #ifdef MEM_STATS
- cur_num_medium--;
- #endif
- }
-
- #endif /* NEED_ALLOC_MEDIUM */
-
-
- /*
- * Management of "small" (all-in-memory) 2-D sample arrays.
- * The pointers are in near heap, the samples themselves in FAR heap.
- * The header structure is adjacent to the row pointers.
- * To minimize allocation overhead and to allow I/O of large contiguous
- * blocks, we allocate the sample rows in groups of as many rows as possible
- * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
- * Note that the big-array control routines, later in this file, know about
- * this chunking of rows ... and also how to get the rowsperchunk value!
- */
-
- typedef struct small_sarray_struct * small_sarray_ptr;
-
- typedef struct small_sarray_struct {
- small_sarray_ptr next; /* next in list of allocated sarrays */
- long numrows; /* # of rows in this array */
- long rowsperchunk; /* max # of rows per allocation chunk */
- JSAMPROW dummy; /* ensures alignment of following storage */
- } small_sarray_hdr;
-
- static small_sarray_ptr small_sarray_list; /* head of list */
-
-
- METHODDEF JSAMPARRAY
- alloc_small_sarray (long samplesperrow, long numrows)
- /* Allocate a "small" (all-in-memory) 2-D sample array */
- {
- small_sarray_ptr hdr;
- JSAMPARRAY result;
- JSAMPROW workspace;
- long rowsperchunk, currow, i;
-
- #ifdef MEM_STATS
- total_num_sarray++;
- cur_num_sarray++;
- if (cur_num_sarray > max_num_sarray) max_num_sarray = cur_num_sarray;
- #endif
-
- /* Calculate max # of rows allowed in one allocation chunk */
- rowsperchunk = MAX_ALLOC_CHUNK / (samplesperrow * SIZEOF(JSAMPLE));
- if (rowsperchunk <= 0)
- ERREXIT(methods, "Image too wide for this implementation");
-
- /* Get space for header and row pointers; this is always "near" on 80x86 */
- hdr = (small_sarray_ptr) alloc_small((size_t) (numrows * SIZEOF(JSAMPROW)
- + SIZEOF(small_sarray_hdr)));
-
- result = (JSAMPARRAY) (hdr+1); /* advance past header */
-
- /* Insert into list now so free_all does right thing if I fail */
- /* after allocating only some of the rows... */
- hdr->next = small_sarray_list;
- hdr->numrows = 0;
- hdr->rowsperchunk = rowsperchunk;
- small_sarray_list = hdr;
-
- /* Get the rows themselves; on 80x86 these are "far" */
- currow = 0;
- while (currow < numrows) {
- rowsperchunk = MIN(rowsperchunk, numrows - currow);
- #ifdef MEM_STATS
- total_bytes_sarray += rowsperchunk * samplesperrow * SIZEOF(JSAMPLE)
- + MALLOC_FAR_OVERHEAD;
- #endif
- workspace = (JSAMPROW) jget_large((size_t) (rowsperchunk * samplesperrow
- * SIZEOF(JSAMPLE)));
- if (workspace == NULL)
- out_of_memory(3);
- for (i = rowsperchunk; i > 0; i--) {
- result[currow++] = workspace;
- workspace += samplesperrow;
- }
- hdr->numrows = currow;
- }
-
- return result;
- }
-
-
- METHODDEF void
- free_small_sarray (JSAMPARRAY ptr)
- /* Free a "small" (all-in-memory) 2-D sample array */
- {
- small_sarray_ptr hdr;
- small_sarray_ptr * llink;
- long i;
-
- hdr = (small_sarray_ptr) ptr;
- hdr--; /* point back to header */
-
- /* Remove item from list -- linear search is fast enough */
- llink = &small_sarray_list;
- while (*llink != hdr) {
- if (*llink == NULL)
- ERREXIT(methods, "Bogus free_small_sarray request");
- llink = &( (*llink)->next );
- }
- *llink = hdr->next;
-
- /* Free the rows themselves; on 80x86 these are "far" */
- /* Note we only free the row-group headers! */
- for (i = 0; i < hdr->numrows; i += hdr->rowsperchunk) {
- jfree_large((void FAR *) ptr[i]);
- }
-
- /* Free header and row pointers */
- free_small((void *) hdr);
-
- #ifdef MEM_STATS
- cur_num_sarray--;
- #endif
- }
-
-
- /*
- * Management of "small" (all-in-memory) 2-D coefficient-block arrays.
- * This is essentially the same as the code for sample arrays, above.
- */
-
- typedef struct small_barray_struct * small_barray_ptr;
-
- typedef struct small_barray_struct {
- small_barray_ptr next; /* next in list of allocated barrays */
- long numrows; /* # of rows in this array */
- long rowsperchunk; /* max # of rows per allocation chunk */
- JBLOCKROW dummy; /* ensures alignment of following storage */
- } small_barray_hdr;
-
- static small_barray_ptr small_barray_list; /* head of list */
-
-
- METHODDEF JBLOCKARRAY
- alloc_small_barray (long blocksperrow, long numrows)
- /* Allocate a "small" (all-in-memory) 2-D coefficient-block array */
- {
- small_barray_ptr hdr;
- JBLOCKARRAY result;
- JBLOCKROW workspace;
- long rowsperchunk, currow, i;
-
- #ifdef MEM_STATS
- total_num_barray++;
- cur_num_barray++;
- if (cur_num_barray > max_num_barray) max_num_barray = cur_num_barray;
- #endif
-
- /* Calculate max # of rows allowed in one allocation chunk */
- rowsperchunk = MAX_ALLOC_CHUNK / (blocksperrow * SIZEOF(JBLOCK));
- if (rowsperchunk <= 0)
- ERREXIT(methods, "Image too wide for this implementation");
-
- /* Get space for header and row pointers; this is always "near" on 80x86 */
- hdr = (small_barray_ptr) alloc_small((size_t) (numrows * SIZEOF(JBLOCKROW)
- + SIZEOF(small_barray_hdr)));
-
- result = (JBLOCKARRAY) (hdr+1); /* advance past header */
-
- /* Insert into list now so free_all does right thing if I fail */
- /* after allocating only some of the rows... */
- hdr->next = small_barray_list;
- hdr->numrows = 0;
- hdr->rowsperchunk = rowsperchunk;
- small_barray_list = hdr;
-
- /* Get the rows themselves; on 80x86 these are "far" */
- currow = 0;
- while (currow < numrows) {
- rowsperchunk = MIN(rowsperchunk, numrows - currow);
- #ifdef MEM_STATS
- total_bytes_barray += rowsperchunk * blocksperrow * SIZEOF(JBLOCK)
- + MALLOC_FAR_OVERHEAD;
- #endif
- workspace = (JBLOCKROW) jget_large((size_t) (rowsperchunk * blocksperrow
- * SIZEOF(JBLOCK)));
- if (workspace == NULL)
- out_of_memory(4);
- for (i = rowsperchunk; i > 0; i--) {
- result[currow++] = workspace;
- workspace += blocksperrow;
- }
- hdr->numrows = currow;
- }
-
- return result;
- }
-
-
- METHODDEF void
- free_small_barray (JBLOCKARRAY ptr)
- /* Free a "small" (all-in-memory) 2-D coefficient-block array */
- {
- small_barray_ptr hdr;
- small_barray_ptr * llink;
- long i;
-
- hdr = (small_barray_ptr) ptr;
- hdr--; /* point back to header */
-
- /* Remove item from list -- linear search is fast enough */
- llink = &small_barray_list;
- while (*llink != hdr) {
- if (*llink == NULL)
- ERREXIT(methods, "Bogus free_small_barray request");
- llink = &( (*llink)->next );
- }
- *llink = hdr->next;
-
- /* Free the rows themselves; on 80x86 these are "far" */
- /* Note we only free the row-group headers! */
- for (i = 0; i < hdr->numrows; i += hdr->rowsperchunk) {
- jfree_large((void FAR *) ptr[i]);
- }
-
- /* Free header and row pointers */
- free_small((void *) hdr);
-
- #ifdef MEM_STATS
- cur_num_barray--;
- #endif
- }
-
-
-
- /*
- * About "big" array management:
- *
- * To allow machines with limited memory to handle large images,
- * all processing in the JPEG system is done a few pixel or block rows
- * at a time. The above "small" array routines are only used to allocate
- * strip buffers (as wide as the image, but just a few rows high).
- * In some cases multiple passes must be made over the data. In these
- * cases the "big" array routines are used. The array is still accessed
- * a strip at a time, but the memory manager must save the whole array
- * for repeated accesses. The intended implementation is that there is
- * a strip buffer in memory (as high as is possible given the desired memory
- * limit), plus a backing file that holds the rest of the array.
- *
- * The request_big_array routines are told the total size of the image (in case
- * it is useful to know the total file size that will be needed). They are
- * also given the unit height, which is the number of rows that will be
- * accessed at once; the in-memory buffer should be made a multiple of
- * this height for best efficiency.
- *
- * The request routines create control blocks (and may open backing files),
- * but they don't create the in-memory buffers. This is postponed until
- * alloc_big_arrays is called. At that time the total amount of space needed
- * is known (approximately, anyway), so free memory can be divided up fairly.
- *
- * The access_big_array routines are responsible for making a specific strip
- * area accessible (after reading or writing the backing file, if necessary).
- * Note that the access routines are told whether the caller intends to modify
- * the accessed strip; during a read-only pass this saves having to rewrite
- * data to disk.
- *
- * The typical access pattern is one top-to-bottom pass to write the data,
- * followed by one or more read-only top-to-bottom passes. However, other
- * access patterns may occur while reading. For example, translation of image
- * formats that use bottom-to-top scan order will require bottom-to-top read
- * passes. The memory manager need not support multiple write passes nor
- * funny write orders (meaning that rearranging rows must be handled while
- * reading data out of the big array, not while putting it in).
- *
- * In current usage, the access requests are always for nonoverlapping strips;
- * that is, successive access start_row numbers always differ by exactly the
- * unitheight. This allows fairly simple buffer dump/reload logic if the
- * in-memory buffer is made a multiple of the unitheight. It would be
- * possible to keep downsampled rather than fullsize data in the "big" arrays,
- * thus reducing temp file size, if we supported overlapping strip access
- * (access requests differing by less than the unitheight). At the moment
- * I don't believe this is worth the extra complexity.
- */
-
-
-
- /* The control blocks for virtual arrays.
- * System-dependent info for the associated backing store is hidden inside
- * the backing_store_info struct.
- */
-
- struct big_sarray_control {
- long rows_in_array; /* total virtual array height */
- long samplesperrow; /* width of array (and of memory buffer) */
- long unitheight; /* # of rows accessed by access_big_sarray() */
- JSAMPARRAY mem_buffer; /* the in-memory buffer */
- long rows_in_mem; /* height of memory buffer */
- long rowsperchunk; /* allocation chunk size in mem_buffer */
- long cur_start_row; /* first logical row # in the buffer */
- boolean dirty; /* do current buffer contents need written? */
- boolean b_s_open; /* is backing-store data valid? */
- big_sarray_ptr next; /* link to next big sarray control block */
- backing_store_info b_s_info; /* System-dependent control info */
- };
-
- static big_sarray_ptr big_sarray_list; /* head of list */
-
- struct big_barray_control {
- long rows_in_array; /* total virtual array height */
- long blocksperrow; /* width of array (and of memory buffer) */
- long unitheight; /* # of rows accessed by access_big_barray() */
- JBLOCKARRAY mem_buffer; /* the in-memory buffer */
- long rows_in_mem; /* height of memory buffer */
- long rowsperchunk; /* allocation chunk size in mem_buffer */
- long cur_start_row; /* first logical row # in the buffer */
- boolean dirty; /* do current buffer contents need written? */
- boolean b_s_open; /* is backing-store data valid? */
- big_barray_ptr next; /* link to next big barray control block */
- backing_store_info b_s_info; /* System-dependent control info */
- };
-
- static big_barray_ptr big_barray_list; /* head of list */
-
-
- METHODDEF big_sarray_ptr
- request_big_sarray (long samplesperrow, long numrows, long unitheight)
- /* Request a "big" (virtual-memory) 2-D sample array */
- {
- big_sarray_ptr result;
-
- /* get control block */
- result = (big_sarray_ptr) alloc_small(SIZEOF(struct big_sarray_control));
-
- result->rows_in_array = numrows;
- result->samplesperrow = samplesperrow;
- result->unitheight = unitheight;
- result->mem_buffer = NULL; /* marks array not yet realized */
- result->b_s_open = FALSE; /* no associated backing-store object */
- result->next = big_sarray_list; /* add to list of big arrays */
- big_sarray_list = result;
-
- return result;
- }
-
-
- METHODDEF big_barray_ptr
- request_big_barray (long blocksperrow, long numrows, long unitheight)
- /* Request a "big" (virtual-memory) 2-D coefficient-block array */
- {
- big_barray_ptr result;
-
- /* get control block */
- result = (big_barray_ptr) alloc_small(SIZEOF(struct big_barray_control));
-
- result->rows_in_array = numrows;
- result->blocksperrow = blocksperrow;
- result->unitheight = unitheight;
- result->mem_buffer = NULL; /* marks array not yet realized */
- result->b_s_open = FALSE; /* no associated backing-store object */
- result->next = big_barray_list; /* add to list of big arrays */
- big_barray_list = result;
-
- return result;
- }
-
-
- METHODDEF void
- alloc_big_arrays (long extra_small_samples, long extra_small_blocks,
- long extra_medium_space)
- /* Allocate the in-memory buffers for any unrealized "big" arrays */
- /* 'extra' values are upper bounds for total future small-array requests */
- /* and far-heap requests */
- {
- long total_extra_space = extra_small_samples * SIZEOF(JSAMPLE)
- + extra_small_blocks * SIZEOF(JBLOCK)
- + extra_medium_space;
- long space_per_unitheight, maximum_space, avail_mem;
- long unitheights, max_unitheights;
- big_sarray_ptr sptr;
- big_barray_ptr bptr;
-
- /* Compute the minimum space needed (unitheight rows in each buffer)
- * and the maximum space needed (full image height in each buffer).
- * These may be of use to the system-dependent jmem_available routine.
- */
- space_per_unitheight = 0;
- maximum_space = total_extra_space;
- for (sptr = big_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->mem_buffer == NULL) { /* if not realized yet */
- space_per_unitheight += sptr->unitheight *
- sptr->samplesperrow * SIZEOF(JSAMPLE);
- maximum_space += sptr->rows_in_array *
- sptr->samplesperrow * SIZEOF(JSAMPLE);
- }
- }
- for (bptr = big_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->mem_buffer == NULL) { /* if not realized yet */
- space_per_unitheight += bptr->unitheight *
- bptr->blocksperrow * SIZEOF(JBLOCK);
- maximum_space += bptr->rows_in_array *
- bptr->blocksperrow * SIZEOF(JBLOCK);
- }
- }
-
- if (space_per_unitheight <= 0)
- return; /* no unrealized arrays, no work */
-
- /* Determine amount of memory to actually use; this is system-dependent. */
- avail_mem = jmem_available(space_per_unitheight + total_extra_space,
- maximum_space);
-
- /* If the maximum space needed is available, make all the buffers full
- * height; otherwise parcel it out with the same number of unitheights
- * in each buffer.
- */
- if (avail_mem >= maximum_space)
- max_unitheights = 1000000000L;
- else {
- max_unitheights = (avail_mem - total_extra_space) / space_per_unitheight;
- /* If there doesn't seem to be enough space, try to get the minimum
- * anyway. This allows a "stub" implementation of jmem_available().
- */
- if (max_unitheights <= 0)
- max_unitheights = 1;
- }
-
- /* Allocate the in-memory buffers and initialize backing store as needed. */
-
- for (sptr = big_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->mem_buffer == NULL) { /* if not realized yet */
- unitheights = (sptr->rows_in_array + sptr->unitheight - 1L)
- / sptr->unitheight;
- if (unitheights <= max_unitheights) {
- /* This buffer fits in memory */
- sptr->rows_in_mem = sptr->rows_in_array;
- } else {
- /* It doesn't fit in memory, create backing store. */
- sptr->rows_in_mem = max_unitheights * sptr->unitheight;
- jopen_backing_store(& sptr->b_s_info,
- (long) (sptr->rows_in_array *
- sptr->samplesperrow * SIZEOF(JSAMPLE)));
- sptr->b_s_open = TRUE;
- }
- sptr->mem_buffer = alloc_small_sarray(sptr->samplesperrow,
- sptr->rows_in_mem);
- /* Reach into the small_sarray header and get the rowsperchunk field.
- * Yes, I know, this is horrible coding practice.
- */
- sptr->rowsperchunk =
- ((small_sarray_ptr) sptr->mem_buffer)[-1].rowsperchunk;
- sptr->cur_start_row = 0;
- sptr->dirty = FALSE;
- }
- }
-
- for (bptr = big_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->mem_buffer == NULL) { /* if not realized yet */
- unitheights = (bptr->rows_in_array + bptr->unitheight - 1L)
- / bptr->unitheight;
- if (unitheights <= max_unitheights) {
- /* This buffer fits in memory */
- bptr->rows_in_mem = bptr->rows_in_array;
- } else {
- /* It doesn't fit in memory, create backing store. */
- bptr->rows_in_mem = max_unitheights * bptr->unitheight;
- jopen_backing_store(& bptr->b_s_info,
- (long) (bptr->rows_in_array *
- bptr->blocksperrow * SIZEOF(JBLOCK)));
- bptr->b_s_open = TRUE;
- }
- bptr->mem_buffer = alloc_small_barray(bptr->blocksperrow,
- bptr->rows_in_mem);
- /* Reach into the small_barray header and get the rowsperchunk field. */
- bptr->rowsperchunk =
- ((small_barray_ptr) bptr->mem_buffer)[-1].rowsperchunk;
- bptr->cur_start_row = 0;
- bptr->dirty = FALSE;
- }
- }
- }
-
-
- LOCAL void
- do_sarray_io (big_sarray_ptr ptr, boolean writing)
- /* Do backing store read or write of a "big" sample array */
- {
- long bytesperrow, file_offset, byte_count, rows, i;
-
- bytesperrow = ptr->samplesperrow * SIZEOF(JSAMPLE);
- file_offset = ptr->cur_start_row * bytesperrow;
- /* Loop to read or write each allocation chunk in mem_buffer */
- for (i = 0; i < ptr->rows_in_mem; i += ptr->rowsperchunk) {
- /* One chunk, but check for short chunk at end of buffer */
- rows = MIN(ptr->rowsperchunk, ptr->rows_in_mem - i);
- /* Transfer no more than fits in file */
- rows = MIN(rows, ptr->rows_in_array - (ptr->cur_start_row + i));
- if (rows <= 0) /* this chunk might be past end of file! */
- break;
- byte_count = rows * bytesperrow;
- if (writing)
- (*ptr->b_s_info.write_backing_store) (& ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- else
- (*ptr->b_s_info.read_backing_store) (& ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- file_offset += byte_count;
- }
- }
-
-
- LOCAL void
- do_barray_io (big_barray_ptr ptr, boolean writing)
- /* Do backing store read or write of a "big" coefficient-block array */
- {
- long bytesperrow, file_offset, byte_count, rows, i;
-
- bytesperrow = ptr->blocksperrow * SIZEOF(JBLOCK);
- file_offset = ptr->cur_start_row * bytesperrow;
- /* Loop to read or write each allocation chunk in mem_buffer */
- for (i = 0; i < ptr->rows_in_mem; i += ptr->rowsperchunk) {
- /* One chunk, but check for short chunk at end of buffer */
- rows = MIN(ptr->rowsperchunk, ptr->rows_in_mem - i);
- /* Transfer no more than fits in file */
- rows = MIN(rows, ptr->rows_in_array - (ptr->cur_start_row + i));
- if (rows <= 0) /* this chunk might be past end of file! */
- break;
- byte_count = rows * bytesperrow;
- if (writing)
- (*ptr->b_s_info.write_backing_store) (& ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- else
- (*ptr->b_s_info.read_backing_store) (& ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- file_offset += byte_count;
- }
- }
-
-
- METHODDEF JSAMPARRAY
- access_big_sarray (big_sarray_ptr ptr, long start_row, boolean writable)
- /* Access the part of a "big" sample array starting at start_row */
- /* and extending for ptr->unitheight rows. writable is true if */
- /* caller intends to modify the accessed area. */
- {
- /* debugging check */
- if (start_row < 0 || start_row+ptr->unitheight > ptr->rows_in_array ||
- ptr->mem_buffer == NULL)
- ERREXIT(methods, "Bogus access_big_sarray request");
-
- /* Make the desired part of the virtual array accessible */
- if (start_row < ptr->cur_start_row ||
- start_row+ptr->unitheight > ptr->cur_start_row+ptr->rows_in_mem) {
- if (! ptr->b_s_open)
- ERREXIT(methods, "Virtual array controller messed up");
- /* Flush old buffer contents if necessary */
- if (ptr->dirty) {
- do_sarray_io(ptr, TRUE);
- ptr->dirty = FALSE;
- }
- /* Decide what part of virtual array to access.
- * Algorithm: if target address > current window, assume forward scan,
- * load starting at target address. If target address < current window,
- * assume backward scan, load so that target address is top of window.
- * Note that when switching from forward write to forward read, will have
- * start_row = 0, so the limiting case applies and we load from 0 anyway.
- */
- if (start_row > ptr->cur_start_row) {
- ptr->cur_start_row = start_row;
- } else {
- ptr->cur_start_row = start_row + ptr->unitheight - ptr->rows_in_mem;
- if (ptr->cur_start_row < 0)
- ptr->cur_start_row = 0; /* don't fall off front end of file */
- }
- /* If reading, read in the selected part of the array.
- * If we are writing, we need not pre-read the selected portion,
- * since the access sequence constraints ensure it would be garbage.
- */
- if (! writable) {
- do_sarray_io(ptr, FALSE);
- }
- }
- /* Flag the buffer dirty if caller will write in it */
- if (writable)
- ptr->dirty = TRUE;
- /* Return address of proper part of the buffer */
- return ptr->mem_buffer + (start_row - ptr->cur_start_row);
- }
-
-
- METHODDEF JBLOCKARRAY
- access_big_barray (big_barray_ptr ptr, long start_row, boolean writable)
- /* Access the part of a "big" coefficient-block array starting at start_row */
- /* and extending for ptr->unitheight rows. writable is true if */
- /* caller intends to modify the accessed area. */
- {
- /* debugging check */
- if (start_row < 0 || start_row+ptr->unitheight > ptr->rows_in_array ||
- ptr->mem_buffer == NULL)
- ERREXIT(methods, "Bogus access_big_barray request");
-
- /* Make the desired part of the virtual array accessible */
- if (start_row < ptr->cur_start_row ||
- start_row+ptr->unitheight > ptr->cur_start_row+ptr->rows_in_mem) {
- if (! ptr->b_s_open)
- ERREXIT(methods, "Virtual array controller messed up");
- /* Flush old buffer contents if necessary */
- if (ptr->dirty) {
- do_barray_io(ptr, TRUE);
- ptr->dirty = FALSE;
- }
- /* Decide what part of virtual array to access.
- * Algorithm: if target address > current window, assume forward scan,
- * load starting at target address. If target address < current window,
- * assume backward scan, load so that target address is top of window.
- * Note that when switching from forward write to forward read, will have
- * start_row = 0, so the limiting case applies and we load from 0 anyway.
- */
- if (start_row > ptr->cur_start_row) {
- ptr->cur_start_row = start_row;
- } else {
- ptr->cur_start_row = start_row + ptr->unitheight - ptr->rows_in_mem;
- if (ptr->cur_start_row < 0)
- ptr->cur_start_row = 0; /* don't fall off front end of file */
- }
- /* If reading, read in the selected part of the array.
- * If we are writing, we need not pre-read the selected portion,
- * since the access sequence constraints ensure it would be garbage.
- */
- if (! writable) {
- do_barray_io(ptr, FALSE);
- }
- }
- /* Flag the buffer dirty if caller will write in it */
- if (writable)
- ptr->dirty = TRUE;
- /* Return address of proper part of the buffer */
- return ptr->mem_buffer + (start_row - ptr->cur_start_row);
- }
-
-
- METHODDEF void
- free_big_sarray (big_sarray_ptr ptr)
- /* Free a "big" (virtual-memory) 2-D sample array */
- {
- big_sarray_ptr * llink;
-
- /* Remove item from list -- linear search is fast enough */
- llink = &big_sarray_list;
- while (*llink != ptr) {
- if (*llink == NULL)
- ERREXIT(methods, "Bogus free_big_sarray request");
- llink = &( (*llink)->next );
- }
- *llink = ptr->next;
-
- if (ptr->b_s_open) /* there may be no backing store */
- (*ptr->b_s_info.close_backing_store) (& ptr->b_s_info);
-
- if (ptr->mem_buffer != NULL) /* just in case never realized */
- free_small_sarray(ptr->mem_buffer);
-
- free_small((void *) ptr); /* free the control block too */
- }
-
-
- METHODDEF void
- free_big_barray (big_barray_ptr ptr)
- /* Free a "big" (virtual-memory) 2-D coefficient-block array */
- {
- big_barray_ptr * llink;
-
- /* Remove item from list -- linear search is fast enough */
- llink = &big_barray_list;
- while (*llink != ptr) {
- if (*llink == NULL)
- ERREXIT(methods, "Bogus free_big_barray request");
- llink = &( (*llink)->next );
- }
- *llink = ptr->next;
-
- if (ptr->b_s_open) /* there may be no backing store */
- (*ptr->b_s_info.close_backing_store) (& ptr->b_s_info);
-
- if (ptr->mem_buffer != NULL) /* just in case never realized */
- free_small_barray(ptr->mem_buffer);
-
- free_small((void *) ptr); /* free the control block too */
- }
-
-
- /*
- * Cleanup: free anything that's been allocated since jselmemmgr().
- */
-
- METHODDEF void
- free_all (void)
- {
- /* First free any open "big" arrays -- these may release small arrays */
- while (big_sarray_list != NULL)
- free_big_sarray(big_sarray_list);
- while (big_barray_list != NULL)
- free_big_barray(big_barray_list);
- /* Free any open small arrays -- these may release small objects */
- /* +1's are because we must pass a pointer to the data, not the header */
- while (small_sarray_list != NULL)
- free_small_sarray((JSAMPARRAY) (small_sarray_list + 1));
- while (small_barray_list != NULL)
- free_small_barray((JBLOCKARRAY) (small_barray_list + 1));
- /* Free any remaining small objects */
- while (small_list != NULL)
- free_small((void *) (small_list + 1));
- #ifdef NEED_ALLOC_MEDIUM
- while (medium_list != NULL)
- free_medium((void FAR *) (medium_list + 1));
- #endif
-
- jmem_term(); /* system-dependent cleanup */
-
- #ifdef MEM_STATS
- if (methods->trace_level > 0)
- print_mem_stats(); /* print optional memory usage statistics */
- #endif
- }
-
-
- /*
- * The method selection routine for virtual memory systems.
- * The system-dependent setup routine should call this routine
- * to install the necessary method pointers in the supplied struct.
- */
-
- GLOBAL void
- jselmemmgr (external_methods_ptr emethods)
- {
- methods = emethods; /* save struct addr for error exit access */
-
- emethods->alloc_small = alloc_small;
- emethods->free_small = free_small;
- #ifdef NEED_ALLOC_MEDIUM
- emethods->alloc_medium = alloc_medium;
- emethods->free_medium = free_medium;
- #else
- emethods->alloc_medium = alloc_small;
- emethods->free_medium = free_small;
- #endif
- emethods->alloc_small_sarray = alloc_small_sarray;
- emethods->free_small_sarray = free_small_sarray;
- emethods->alloc_small_barray = alloc_small_barray;
- emethods->free_small_barray = free_small_barray;
- emethods->request_big_sarray = request_big_sarray;
- emethods->request_big_barray = request_big_barray;
- emethods->alloc_big_arrays = alloc_big_arrays;
- emethods->access_big_sarray = access_big_sarray;
- emethods->access_big_barray = access_big_barray;
- emethods->free_big_sarray = free_big_sarray;
- emethods->free_big_barray = free_big_barray;
- emethods->free_all = free_all;
-
- /* Initialize list headers to empty */
- small_list = NULL;
- #ifdef NEED_ALLOC_MEDIUM
- medium_list = NULL;
- #endif
- small_sarray_list = NULL;
- small_barray_list = NULL;
- big_sarray_list = NULL;
- big_barray_list = NULL;
-
- jmem_init(emethods); /* system-dependent initialization */
-
- /* Check for an environment variable JPEGMEM; if found, override the
- * default max_memory setting from jmem_init. Note that a command line
- * -m argument may again override this value.
- * If your system doesn't support getenv(), define NO_GETENV to disable
- * this feature.
- */
- #ifndef NO_GETENV
- { char * memenv;
-
- if ((memenv = getenv("JPEGMEM")) != NULL) {
- long lval;
- char ch = 'x';
-
- if (sscanf(memenv, "%ld%c", &lval, &ch) > 0) {
- if (ch == 'm' || ch == 'M')
- lval *= 1000L;
- emethods->max_memory_to_use = lval * 1000L;
- }
- }
- }
- #endif
-
- }
-