home *** CD-ROM | disk | FTP | other *** search
- /*
- * jquant1.c
- *
- * Copyright (C) 1991, 1992, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains 1-pass color quantization (color mapping) routines.
- * These routines are invoked via the methods color_quantize
- * and color_quant_init/term.
- */
-
- #include "jinclude.h"
-
- #ifdef QUANT_1PASS_SUPPORTED
-
-
- /*
- * The main purpose of 1-pass quantization is to provide a fast, if not very
- * high quality, colormapped output capability. A 2-pass quantizer usually
- * gives better visual quality; however, for quantized grayscale output this
- * quantizer is perfectly adequate. Dithering is highly recommended with this
- * quantizer, though you can turn it off if you really want to.
- *
- * This implementation quantizes in the output colorspace. This has a couple
- * of disadvantages: each pixel must be individually color-converted, and if
- * the color conversion includes gamma correction then quantization is done in
- * a nonlinear space, which is less desirable. The major advantage is that
- * with the usual output color spaces (RGB, grayscale) an orthogonal grid of
- * representative colors can be used, thus permitting the very simple and fast
- * color lookup scheme used here. The standard JPEG colorspace (YCbCr) cannot
- * be effectively handled this way, because only about a quarter of an
- * orthogonal grid would fall within the gamut of realizable colors. Another
- * advantage is that when the user wants quantized grayscale output from a
- * color JPEG file, this quantizer can provide a high-quality result with no
- * special hacking.
- *
- * The gamma-correction problem could be eliminated by adjusting the grid
- * spacing to counteract the gamma correction applied by color_convert.
- * At this writing, gamma correction is not implemented by jdcolor, so
- * nothing is done here.
- *
- * In 1-pass quantization the colormap must be chosen in advance of seeing the
- * image. We use a map consisting of all combinations of Ncolors[i] color
- * values for the i'th component. The Ncolors[] values are chosen so that
- * their product, the total number of colors, is no more than that requested.
- * (In most cases, the product will be somewhat less.)
- *
- * Since the colormap is orthogonal, the representative value for each color
- * component can be determined without considering the other components;
- * then these indexes can be combined into a colormap index by a standard
- * N-dimensional-array-subscript calculation. Most of the arithmetic involved
- * can be precalculated and stored in the lookup table colorindex[].
- * colorindex[i][j] maps pixel value j in component i to the nearest
- * representative value (grid plane) for that component; this index is
- * multiplied by the array stride for component i, so that the
- * index of the colormap entry closest to a given pixel value is just
- * sum( colorindex[component-number][pixel-component-value] )
- * Aside from being fast, this scheme allows for variable spacing between
- * representative values with no additional lookup cost.
- */
-
-
- #define MAX_COMPONENTS 4 /* max components I can handle */
-
- static JSAMPARRAY colormap; /* The actual color map */
- /* colormap[i][j] = value of i'th color component for output pixel value j */
-
- static JSAMPARRAY colorindex; /* Precomputed mapping for speed */
- /* colorindex[i][j] = index of color closest to pixel value j in component i,
- * premultiplied as described above. Since colormap indexes must fit into
- * JSAMPLEs, the entries of this array will too.
- */
-
- static JSAMPARRAY input_buffer; /* color conversion workspace */
- /* Since our input data is presented in the JPEG colorspace, we have to call
- * color_convert to get it into the output colorspace. input_buffer is a
- * one-row-high workspace for the result of color_convert.
- */
-
-
- /* Declarations for Floyd-Steinberg dithering.
- *
- * Errors are accumulated into the arrays evenrowerrs[] and oddrowerrs[].
- * These have resolutions of 1/16th of a pixel count. The error at a given
- * pixel is propagated to its unprocessed neighbors using the standard F-S
- * fractions,
- * ... (here) 7/16
- * 3/16 5/16 1/16
- * We work left-to-right on even rows, right-to-left on odd rows.
- *
- * In each of the xxxrowerrs[] arrays, indexing is [component#][position].
- * We provide (#columns + 2) entries per component; the extra entry at each
- * end saves us from special-casing the first and last pixels.
- * In evenrowerrs[], the entries for a component are stored left-to-right, but
- * in oddrowerrs[] they are stored right-to-left. This means we always
- * process the current row's error entries in increasing order and the next
- * row's error entries in decreasing order, regardless of whether we are
- * working L-to-R or R-to-L in the pixel data!
- *
- * Note: on a wide image, we might not have enough room in a PC's near data
- * segment to hold the error arrays; so they are allocated with alloc_medium.
- */
-
- #ifdef EIGHT_BIT_SAMPLES
- typedef INT16 FSERROR; /* 16 bits should be enough */
- #else
- typedef INT32 FSERROR; /* may need more than 16 bits? */
- #endif
-
- typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
-
- static FSERRPTR evenrowerrs[MAX_COMPONENTS]; /* errors for even rows */
- static FSERRPTR oddrowerrs[MAX_COMPONENTS]; /* errors for odd rows */
- static boolean on_odd_row; /* flag to remember which row we are on */
-
-
- /*
- * Policy-making subroutines for color_quant_init: these routines determine
- * the colormap to be used. The rest of the module only assumes that the
- * colormap is orthogonal.
- *
- * * select_ncolors decides how to divvy up the available colors
- * among the components.
- * * output_value defines the set of representative values for a component.
- * * largest_input_value defines the mapping from input values to
- * representative values for a component.
- * Note that the latter two routines may impose different policies for
- * different components, though this is not currently done.
- */
-
-
- LOCAL int
- select_ncolors (decompress_info_ptr cinfo, int Ncolors[])
- /* Determine allocation of desired colors to components, */
- /* and fill in Ncolors[] array to indicate choice. */
- /* Return value is total number of colors (product of Ncolors[] values). */
- {
- int nc = cinfo->color_out_comps; /* number of color components */
- int max_colors = cinfo->desired_number_of_colors;
- int total_colors, iroot, i;
- long temp;
- boolean changed;
-
- /* We can allocate at least the nc'th root of max_colors per component. */
- /* Compute floor(nc'th root of max_colors). */
- iroot = 1;
- do {
- iroot++;
- temp = iroot; /* set temp = iroot ** nc */
- for (i = 1; i < nc; i++)
- temp *= iroot;
- } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
- iroot--; /* now iroot = floor(root) */
-
- /* Must have at least 2 color values per component */
- if (iroot < 2)
- ERREXIT1(cinfo->emethods, "Cannot quantize to fewer than %d colors",
- (int) temp);
-
- if (cinfo->out_color_space == CS_RGB && nc == 3) {
- /* We provide a special policy for quantizing in RGB space.
- * If 256 colors are requested, we allocate 8 red, 8 green, 4 blue levels;
- * this corresponds to the common 3/3/2-bit scheme. For other totals,
- * the counts are set so that the number of colors allocated to each
- * component are roughly in the proportion R 3, G 4, B 2.
- * For low color counts, it's easier to hardwire the optimal choices
- * than try to tweak the algorithm to generate them.
- */
- if (max_colors == 256) {
- Ncolors[0] = 8; Ncolors[1] = 8; Ncolors[2] = 4;
- return 256;
- }
- if (max_colors < 12) {
- /* Fixed mapping for 8 colors */
- Ncolors[0] = Ncolors[1] = Ncolors[2] = 2;
- } else if (max_colors < 18) {
- /* Fixed mapping for 12 colors */
- Ncolors[0] = 2; Ncolors[1] = 3; Ncolors[2] = 2;
- } else if (max_colors < 24) {
- /* Fixed mapping for 18 colors */
- Ncolors[0] = 3; Ncolors[1] = 3; Ncolors[2] = 2;
- } else if (max_colors < 27) {
- /* Fixed mapping for 24 colors */
- Ncolors[0] = 3; Ncolors[1] = 4; Ncolors[2] = 2;
- } else if (max_colors < 36) {
- /* Fixed mapping for 27 colors */
- Ncolors[0] = 3; Ncolors[1] = 3; Ncolors[2] = 3;
- } else {
- /* these weights are readily derived with a little algebra */
- Ncolors[0] = (iroot * 266) >> 8; /* R weight is 1.0400 */
- Ncolors[1] = (iroot * 355) >> 8; /* G weight is 1.3867 */
- Ncolors[2] = (iroot * 177) >> 8; /* B weight is 0.6934 */
- }
- total_colors = Ncolors[0] * Ncolors[1] * Ncolors[2];
- /* The above computation produces "floor" values, so we may be able to
- * increment the count for one or more components without exceeding
- * max_colors. We try in the order B, G, R.
- */
- do {
- changed = FALSE;
- for (i = 2; i >= 0; i--) {
- /* calculate new total_colors if Ncolors[i] is incremented */
- temp = total_colors / Ncolors[i];
- temp *= Ncolors[i]+1; /* done in long arith to avoid oflo */
- if (temp <= (long) max_colors) {
- Ncolors[i]++; /* OK, apply the increment */
- total_colors = (int) temp;
- changed = TRUE;
- }
- }
- } while (changed); /* loop until no increment is possible */
- } else {
- /* For any colorspace besides RGB, treat all the components equally. */
-
- /* Initialize to iroot color values for each component */
- total_colors = 1;
- for (i = 0; i < nc; i++) {
- Ncolors[i] = iroot;
- total_colors *= iroot;
- }
- /* We may be able to increment the count for one or more components without
- * exceeding max_colors, though we know not all can be incremented.
- */
- for (i = 0; i < nc; i++) {
- /* calculate new total_colors if Ncolors[i] is incremented */
- temp = total_colors / Ncolors[i];
- temp *= Ncolors[i]+1; /* done in long arith to avoid oflo */
- if (temp > (long) max_colors)
- break; /* won't fit, done */
- Ncolors[i]++; /* OK, apply the increment */
- total_colors = (int) temp;
- }
- }
-
- return total_colors;
- }
-
-
- LOCAL int
- output_value (decompress_info_ptr cinfo, int ci, int j, int maxj)
- /* Return j'th output value, where j will range from 0 to maxj */
- /* The output values must fall in 0..MAXJSAMPLE in increasing order */
- {
- /* We always provide values 0 and MAXJSAMPLE for each component;
- * any additional values are equally spaced between these limits.
- * (Forcing the upper and lower values to the limits ensures that
- * dithering can't produce a color outside the selected gamut.)
- */
- return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
- }
-
-
- LOCAL int
- largest_input_value (decompress_info_ptr cinfo, int ci, int j, int maxj)
- /* Return largest input value that should map to j'th output value */
- /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
- {
- /* Breakpoints are halfway between values returned by output_value */
- return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
- }
-
-
- /*
- * Initialize for one-pass color quantization.
- */
-
- METHODDEF void
- color_quant_init (decompress_info_ptr cinfo)
- {
- int total_colors; /* Number of distinct output colors */
- int Ncolors[MAX_COMPONENTS]; /* # of values alloced to each component */
- int i,j,k, nci, blksize, blkdist, ptr, val;
-
- /* Make sure my internal arrays won't overflow */
- if (cinfo->num_components > MAX_COMPONENTS ||
- cinfo->color_out_comps > MAX_COMPONENTS)
- ERREXIT1(cinfo->emethods, "Cannot quantize more than %d color components",
- MAX_COMPONENTS);
- /* Make sure colormap indexes can be represented by JSAMPLEs */
- if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
- ERREXIT1(cinfo->emethods, "Cannot request more than %d quantized colors",
- MAXJSAMPLE+1);
-
- /* Select number of colors for each component */
- total_colors = select_ncolors(cinfo, Ncolors);
-
- /* Report selected color counts */
- if (cinfo->color_out_comps == 3)
- TRACEMS4(cinfo->emethods, 1, "Quantizing to %d = %d*%d*%d colors",
- total_colors, Ncolors[0], Ncolors[1], Ncolors[2]);
- else
- TRACEMS1(cinfo->emethods, 1, "Quantizing to %d colors", total_colors);
-
- /* Allocate and fill in the colormap and color index. */
- /* The colors are ordered in the map in standard row-major order, */
- /* i.e. rightmost (highest-indexed) color changes most rapidly. */
-
- colormap = (*cinfo->emethods->alloc_small_sarray)
- ((long) total_colors, (long) cinfo->color_out_comps);
- colorindex = (*cinfo->emethods->alloc_small_sarray)
- ((long) (MAXJSAMPLE+1), (long) cinfo->color_out_comps);
-
- /* blksize is number of adjacent repeated entries for a component */
- /* blkdist is distance between groups of identical entries for a component */
- blkdist = total_colors;
-
- for (i = 0; i < cinfo->color_out_comps; i++) {
- /* fill in colormap entries for i'th color component */
- nci = Ncolors[i]; /* # of distinct values for this color */
- blksize = blkdist / nci;
- for (j = 0; j < nci; j++) {
- /* Compute j'th output value (out of nci) for component */
- val = output_value(cinfo, i, j, nci-1);
- /* Fill in all colormap entries that have this value of this component */
- for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
- /* fill in blksize entries beginning at ptr */
- for (k = 0; k < blksize; k++)
- colormap[i][ptr+k] = (JSAMPLE) val;
- }
- }
- blkdist = blksize; /* blksize of this color is blkdist of next */
-
- /* fill in colorindex entries for i'th color component */
- /* in loop, val = index of current output value, */
- /* and k = largest j that maps to current val */
- val = 0;
- k = largest_input_value(cinfo, i, 0, nci-1);
- for (j = 0; j <= MAXJSAMPLE; j++) {
- while (j > k) /* advance val if past boundary */
- k = largest_input_value(cinfo, i, ++val, nci-1);
- /* premultiply so that no multiplication needed in main processing */
- colorindex[i][j] = (JSAMPLE) (val * blksize);
- }
- }
-
- /* Pass the colormap to the output module. */
- /* NB: the output module may continue to use the colormap until shutdown. */
- cinfo->colormap = colormap;
- cinfo->actual_number_of_colors = total_colors;
- (*cinfo->methods->put_color_map) (cinfo, total_colors, colormap);
-
- /* Allocate workspace to hold one row of color-converted data */
- input_buffer = (*cinfo->emethods->alloc_small_sarray)
- (cinfo->image_width, (long) cinfo->color_out_comps);
-
- /* Allocate Floyd-Steinberg workspace if necessary */
- if (cinfo->use_dithering) {
- size_t arraysize = (size_t) ((cinfo->image_width + 2L) * SIZEOF(FSERROR));
-
- for (i = 0; i < cinfo->color_out_comps; i++) {
- evenrowerrs[i] = (FSERRPTR) (*cinfo->emethods->alloc_medium) (arraysize);
- oddrowerrs[i] = (FSERRPTR) (*cinfo->emethods->alloc_medium) (arraysize);
- /* we only need to zero the forward contribution for current row. */
- jzero_far((void FAR *) evenrowerrs[i], arraysize);
- }
- on_odd_row = FALSE;
- }
- }
-
-
- /*
- * Subroutines for color conversion methods.
- */
-
- LOCAL void
- do_color_conversion (decompress_info_ptr cinfo, JSAMPIMAGE input_data, int row)
- /* Convert the indicated row of the input data into output colorspace */
- /* in input_buffer. This requires a little trickery since color_convert */
- /* expects to deal with 3-D arrays; fortunately we can fake it out */
- /* at fairly low cost. */
- {
- short ci;
- JSAMPARRAY input_hack[MAX_COMPONENTS];
- JSAMPARRAY output_hack[MAX_COMPONENTS];
-
- /* create JSAMPIMAGE pointing at specified row of input_data */
- for (ci = 0; ci < cinfo->num_components; ci++)
- input_hack[ci] = input_data[ci] + row;
- /* Create JSAMPIMAGE pointing at input_buffer */
- for (ci = 0; ci < cinfo->color_out_comps; ci++)
- output_hack[ci] = &(input_buffer[ci]);
-
- (*cinfo->methods->color_convert) (cinfo, 1, cinfo->image_width,
- input_hack, output_hack);
- }
-
-
- /*
- * Map some rows of pixels to the output colormapped representation.
- */
-
- METHODDEF void
- color_quantize (decompress_info_ptr cinfo, int num_rows,
- JSAMPIMAGE input_data, JSAMPARRAY output_data)
- /* General case, no dithering */
- {
- register int pixcode, ci;
- register JSAMPROW ptrout;
- register long col;
- int row;
- long width = cinfo->image_width;
- register int nc = cinfo->color_out_comps;
-
- for (row = 0; row < num_rows; row++) {
- do_color_conversion(cinfo, input_data, row);
- ptrout = output_data[row];
- for (col = 0; col < width; col++) {
- pixcode = 0;
- for (ci = 0; ci < nc; ci++) {
- pixcode += GETJSAMPLE(colorindex[ci]
- [GETJSAMPLE(input_buffer[ci][col])]);
- }
- *ptrout++ = (JSAMPLE) pixcode;
- }
- }
- }
-
-
- METHODDEF void
- color_quantize3 (decompress_info_ptr cinfo, int num_rows,
- JSAMPIMAGE input_data, JSAMPARRAY output_data)
- /* Fast path for color_out_comps==3, no dithering */
- {
- register int pixcode;
- register JSAMPROW ptr0, ptr1, ptr2, ptrout;
- register long col;
- int row;
- long width = cinfo->image_width;
-
- for (row = 0; row < num_rows; row++) {
- do_color_conversion(cinfo, input_data, row);
- ptr0 = input_buffer[0];
- ptr1 = input_buffer[1];
- ptr2 = input_buffer[2];
- ptrout = output_data[row];
- for (col = width; col > 0; col--) {
- pixcode = GETJSAMPLE(colorindex[0][GETJSAMPLE(*ptr0++)]);
- pixcode += GETJSAMPLE(colorindex[1][GETJSAMPLE(*ptr1++)]);
- pixcode += GETJSAMPLE(colorindex[2][GETJSAMPLE(*ptr2++)]);
- *ptrout++ = (JSAMPLE) pixcode;
- }
- }
- }
-
-
- METHODDEF void
- color_quantize_dither (decompress_info_ptr cinfo, int num_rows,
- JSAMPIMAGE input_data, JSAMPARRAY output_data)
- /* General case, with Floyd-Steinberg dithering */
- {
- register FSERROR val;
- FSERROR two_val;
- register FSERRPTR thisrowerr, nextrowerr;
- register JSAMPROW input_ptr;
- register JSAMPROW output_ptr;
- JSAMPLE *range_limit = cinfo->sample_range_limit;
- JSAMPROW colorindex_ci;
- JSAMPROW colormap_ci;
- register int pixcode;
- int dir; /* 1 for left-to-right, -1 for right-to-left */
- int ci;
- int nc = cinfo->color_out_comps;
- int row;
- long col_counter;
- long width = cinfo->image_width;
- SHIFT_TEMPS
-
- for (row = 0; row < num_rows; row++) {
- do_color_conversion(cinfo, input_data, row);
- /* Initialize output values to 0 so can process components separately */
- jzero_far((void FAR *) output_data[row],
- (size_t) (width * SIZEOF(JSAMPLE)));
- for (ci = 0; ci < nc; ci++) {
- if (on_odd_row) {
- /* work right to left in this row */
- dir = -1;
- input_ptr = input_buffer[ci] + (width-1);
- output_ptr = output_data[row] + (width-1);
- thisrowerr = oddrowerrs[ci] + 1;
- nextrowerr = evenrowerrs[ci] + width;
- } else {
- /* work left to right in this row */
- dir = 1;
- input_ptr = input_buffer[ci];
- output_ptr = output_data[row];
- thisrowerr = evenrowerrs[ci] + 1;
- nextrowerr = oddrowerrs[ci] + width;
- }
- colorindex_ci = colorindex[ci];
- colormap_ci = colormap[ci];
- *nextrowerr = 0; /* need only initialize this one entry */
- for (col_counter = width; col_counter > 0; col_counter--) {
- /* Get accumulated error for this component, round to integer.
- * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
- * for either sign of the error value.
- */
- val = RIGHT_SHIFT(*thisrowerr + 8, 4);
- /* Compute pixel value + error compensation, range-limit to
- * 0..MAXJSAMPLE. Note max error value is +- MAXJSAMPLE.
- */
- val = GETJSAMPLE(range_limit[GETJSAMPLE(*input_ptr) + val]);
- /* Select output value, accumulate into output code for this pixel */
- pixcode = GETJSAMPLE(*output_ptr) + GETJSAMPLE(colorindex_ci[val]);
- *output_ptr = (JSAMPLE) pixcode;
- /* Compute actual representation error at this pixel */
- /* Note: we can do this even though we don't yet have the final */
- /* value of pixcode, because the colormap is orthogonal. */
- val -= GETJSAMPLE(colormap_ci[pixcode]);
- /* Propagate error to (same component of) adjacent pixels */
- /* Remember that nextrowerr entries are in reverse order! */
- two_val = val * 2;
- nextrowerr[-1] = val; /* not +=, since not initialized yet */
- val += two_val; /* form error * 3 */
- nextrowerr[ 1] += val;
- val += two_val; /* form error * 5 */
- nextrowerr[ 0] += val;
- val += two_val; /* form error * 7 */
- thisrowerr[ 1] += val;
- input_ptr += dir; /* advance input ptr to next column */
- output_ptr += dir; /* advance output ptr to next column */
- thisrowerr++; /* cur-row error ptr advances to right */
- nextrowerr--; /* next-row error ptr advances to left */
- }
- }
- on_odd_row = (on_odd_row ? FALSE : TRUE);
- }
- }
-
-
- /*
- * Finish up at the end of the file.
- */
-
- METHODDEF void
- color_quant_term (decompress_info_ptr cinfo)
- {
- /* no work (we let free_all release the workspace) */
- /* Note that we *mustn't* free the colormap before free_all, */
- /* since output module may use it! */
- }
-
-
- /*
- * Prescan some rows of pixels.
- * Not used in one-pass case.
- */
-
- METHODDEF void
- color_quant_prescan (decompress_info_ptr cinfo, int num_rows,
- JSAMPIMAGE image_data, JSAMPARRAY workspace)
- {
- ERREXIT(cinfo->emethods, "Should not get here!");
- }
-
-
- /*
- * Do two-pass quantization.
- * Not used in one-pass case.
- */
-
- METHODDEF void
- color_quant_doit (decompress_info_ptr cinfo, quantize_caller_ptr source_method)
- {
- ERREXIT(cinfo->emethods, "Should not get here!");
- }
-
-
- /*
- * The method selection routine for 1-pass color quantization.
- */
-
- GLOBAL void
- jsel1quantize (decompress_info_ptr cinfo)
- {
- if (! cinfo->two_pass_quantize) {
- cinfo->methods->color_quant_init = color_quant_init;
- if (cinfo->use_dithering) {
- cinfo->methods->color_quantize = color_quantize_dither;
- } else {
- if (cinfo->color_out_comps == 3)
- cinfo->methods->color_quantize = color_quantize3;
- else
- cinfo->methods->color_quantize = color_quantize;
- }
- cinfo->methods->color_quant_prescan = color_quant_prescan;
- cinfo->methods->color_quant_doit = color_quant_doit;
- cinfo->methods->color_quant_term = color_quant_term;
- }
- }
-
- #endif /* QUANT_1PASS_SUPPORTED */
-