home *** CD-ROM | disk | FTP | other *** search
- /*
- * jchuff.c
- *
- * Copyright (C) 1991, 1992, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy encoding routines.
- * These routines are invoked via the methods entropy_encode,
- * entropy_encode_init/term, and entropy_optimize.
- */
-
- #include "jinclude.h"
-
-
- /* Static variables to avoid passing 'round extra parameters */
-
- static compress_info_ptr cinfo;
-
- static INT32 huff_put_buffer; /* current bit-accumulation buffer */
- static int huff_put_bits; /* # of bits now in it */
-
- static char * output_buffer; /* output buffer */
- static int bytes_in_buffer;
-
-
-
- LOCAL void
- fix_huff_tbl (HUFF_TBL * htbl)
- /* Compute derived values for a Huffman table */
- {
- int p, i, l, lastp, si;
- char huffsize[257];
- UINT16 huffcode[257];
- UINT16 code;
-
- /* Figure C.1: make table of Huffman code length for each symbol */
- /* Note that this is in code-length order. */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- for (i = 1; i <= (int) htbl->bits[l]; i++)
- huffsize[p++] = (char) l;
- }
- huffsize[p] = 0;
- lastp = p;
-
- /* Figure C.2: generate the codes themselves */
- /* Note that this is in code-length order. */
-
- code = 0;
- si = huffsize[0];
- p = 0;
- while (huffsize[p]) {
- while (((int) huffsize[p]) == si) {
- huffcode[p++] = code;
- code++;
- }
- code <<= 1;
- si++;
- }
-
- /* Figure C.3: generate encoding tables */
- /* These are code and size indexed by symbol value */
-
- /* Set any codeless symbols to have code length 0;
- * this allows emit_bits to detect any attempt to emit such symbols.
- */
- MEMZERO(htbl->ehufsi, SIZEOF(htbl->ehufsi));
-
- for (p = 0; p < lastp; p++) {
- htbl->ehufco[htbl->huffval[p]] = huffcode[p];
- htbl->ehufsi[htbl->huffval[p]] = huffsize[p];
- }
-
- /* We don't bother to fill in the decoding tables mincode[], maxcode[], */
- /* and valptr[], since they are not used for encoding. */
- }
-
-
- /* Outputting bytes to the file */
-
- LOCAL void
- flush_bytes (void)
- {
- if (bytes_in_buffer)
- (*cinfo->methods->entropy_output) (cinfo, output_buffer, bytes_in_buffer);
- bytes_in_buffer = 0;
- }
-
-
- #define emit_byte(val) \
- MAKESTMT( if (bytes_in_buffer >= JPEG_BUF_SIZE) \
- flush_bytes(); \
- output_buffer[bytes_in_buffer++] = (char) (val); )
-
-
-
- /* Outputting bits to the file */
-
- /* Only the right 24 bits of huff_put_buffer are used; the valid bits are
- * left-justified in this part. At most 16 bits can be passed to emit_bits
- * in one call, and we never retain more than 7 bits in huff_put_buffer
- * between calls, so 24 bits are sufficient.
- */
-
- INLINE
- LOCAL void
- emit_bits (UINT16 code, int size)
- {
- /* This routine is heavily used, so it's worth coding tightly. */
- register INT32 put_buffer = code;
- register int put_bits = huff_put_bits;
-
- /* if size is 0, caller used an invalid Huffman table entry */
- if (size == 0)
- ERREXIT(cinfo->emethods, "Missing Huffman code table entry");
-
- put_buffer &= (((INT32) 1) << size) - 1; /* Mask off any excess bits in code */
-
- put_bits += size; /* new number of bits in buffer */
-
- put_buffer <<= 24 - put_bits; /* align incoming bits */
-
- put_buffer |= huff_put_buffer; /* and merge with old buffer contents */
-
- while (put_bits >= 8) {
- int c = (int) ((put_buffer >> 16) & 0xFF);
-
- emit_byte(c);
- if (c == 0xFF) { /* need to stuff a zero byte? */
- emit_byte(0);
- }
- put_buffer <<= 8;
- put_bits -= 8;
- }
-
- huff_put_buffer = put_buffer; /* Update global variables */
- huff_put_bits = put_bits;
- }
-
-
- LOCAL void
- flush_bits (void)
- {
- emit_bits((UINT16) 0x7F, 7); /* fill any partial byte with ones */
- huff_put_buffer = 0; /* and reset bit-buffer to empty */
- huff_put_bits = 0;
- }
-
-
-
- /* Encode a single block's worth of coefficients */
- /* Note that the DC coefficient has already been converted to a difference */
-
- LOCAL void
- encode_one_block (JBLOCK block, HUFF_TBL *dctbl, HUFF_TBL *actbl)
- {
- register int temp, temp2;
- register int nbits;
- register int k, r, i;
-
- /* Encode the DC coefficient difference per section F.1.2.1 */
-
- temp = temp2 = block[0];
-
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* For a negative input, want temp2 = bitwise complement of abs(input) */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 0;
- while (temp) {
- nbits++;
- temp >>= 1;
- }
-
- /* Emit the Huffman-coded symbol for the number of bits */
- emit_bits(dctbl->ehufco[nbits], dctbl->ehufsi[nbits]);
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- if (nbits) /* emit_bits rejects calls with size 0 */
- emit_bits((UINT16) temp2, nbits);
-
- /* Encode the AC coefficients per section F.1.2.2 */
-
- r = 0; /* r = run length of zeros */
-
- for (k = 1; k < DCTSIZE2; k++) {
- if ((temp = block[k]) == 0) {
- r++;
- } else {
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- emit_bits(actbl->ehufco[0xF0], actbl->ehufsi[0xF0]);
- r -= 16;
- }
-
- temp2 = temp;
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 1; /* there must be at least one 1 bit */
- while (temp >>= 1)
- nbits++;
-
- /* Emit Huffman symbol for run length / number of bits */
- i = (r << 4) + nbits;
- emit_bits(actbl->ehufco[i], actbl->ehufsi[i]);
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- emit_bits((UINT16) temp2, nbits);
-
- r = 0;
- }
- }
-
- /* If the last coef(s) were zero, emit an end-of-block code */
- if (r > 0)
- emit_bits(actbl->ehufco[0], actbl->ehufsi[0]);
- }
-
-
-
- /*
- * Initialize for a Huffman-compressed scan.
- * This is invoked after writing the SOS marker.
- * The pipeline controller must establish the entropy_output method pointer
- * before calling this routine.
- */
-
- METHODDEF void
- huff_init (compress_info_ptr xinfo)
- {
- short ci;
- jpeg_component_info * compptr;
-
- /* Initialize static variables */
- cinfo = xinfo;
- huff_put_buffer = 0;
- huff_put_bits = 0;
-
- /* Initialize the output buffer */
- output_buffer = (char *) (*cinfo->emethods->alloc_small)
- ((size_t) JPEG_BUF_SIZE);
- bytes_in_buffer = 0;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Make sure requested tables are present */
- if (cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no] == NULL ||
- cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no] == NULL)
- ERREXIT(cinfo->emethods, "Use of undefined Huffman table");
- /* Compute derived values for Huffman tables */
- /* We may do this more than once for same table, but it's not a big deal */
- fix_huff_tbl(cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no]);
- fix_huff_tbl(cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]);
- /* Initialize DC predictions to 0 */
- cinfo->last_dc_val[ci] = 0;
- }
-
- /* Initialize restart stuff */
- cinfo->restarts_to_go = cinfo->restart_interval;
- cinfo->next_restart_num = 0;
- }
-
-
- /*
- * Emit a restart marker & resynchronize predictions.
- */
-
- LOCAL void
- emit_restart (compress_info_ptr cinfo)
- {
- short ci;
-
- flush_bits();
-
- emit_byte(0xFF);
- emit_byte(RST0 + cinfo->next_restart_num);
-
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- cinfo->last_dc_val[ci] = 0;
-
- /* Update restart state */
- cinfo->restarts_to_go = cinfo->restart_interval;
- cinfo->next_restart_num++;
- cinfo->next_restart_num &= 7;
- }
-
-
- /*
- * Encode and output one MCU's worth of Huffman-compressed coefficients.
- */
-
- METHODDEF void
- huff_encode (compress_info_ptr cinfo, JBLOCK *MCU_data)
- {
- short blkn, ci;
- jpeg_component_info * compptr;
- JCOEF temp;
-
- /* Account for restart interval, emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (cinfo->restarts_to_go == 0)
- emit_restart(cinfo);
- cinfo->restarts_to_go--;
- }
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- /* Convert DC value to difference, update last_dc_val */
- temp = MCU_data[blkn][0];
- MCU_data[blkn][0] -= cinfo->last_dc_val[ci];
- cinfo->last_dc_val[ci] = temp;
- encode_one_block(MCU_data[blkn],
- cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no],
- cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]);
- }
- }
-
-
- /*
- * Finish up at the end of a Huffman-compressed scan.
- */
-
- METHODDEF void
- huff_term (compress_info_ptr cinfo)
- {
- /* Flush out the last data */
- flush_bits();
- flush_bytes();
- /* Release the I/O buffer */
- (*cinfo->emethods->free_small) ((void *) output_buffer);
- }
-
-
-
-
- /*
- * Huffman coding optimization.
- *
- * This actually is optimization, in the sense that we find the best possible
- * Huffman table(s) for the given data. We first scan the supplied data and
- * count the number of uses of each symbol that is to be Huffman-coded.
- * (This process must agree with the code above.) Then we build an
- * optimal Huffman coding tree for the observed counts.
- */
-
- #ifdef ENTROPY_OPT_SUPPORTED
-
-
- /* These are static so htest_one_block can find 'em */
- static long * dc_count_ptrs[NUM_HUFF_TBLS];
- static long * ac_count_ptrs[NUM_HUFF_TBLS];
-
-
- LOCAL void
- gen_huff_coding (compress_info_ptr cinfo, HUFF_TBL *htbl, long freq[])
- /* Generate the optimal coding for the given counts */
- {
- #define MAX_CLEN 32 /* assumed maximum initial code length */
- UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
- short codesize[257]; /* codesize[k] = code length of symbol k */
- short others[257]; /* next symbol in current branch of tree */
- int c1, c2;
- int p, i, j;
- long v;
-
- /* This algorithm is explained in section K.2 of the JPEG standard */
-
- MEMZERO(bits, SIZEOF(bits));
- MEMZERO(codesize, SIZEOF(codesize));
- for (i = 0; i < 257; i++)
- others[i] = -1; /* init links to empty */
-
- freq[256] = 1; /* make sure there is a nonzero count */
- /* including the pseudo-symbol 256 in the Huffman procedure guarantees
- * that no real symbol is given code-value of all ones, because 256
- * will be placed in the largest codeword category.
- */
-
- /* Huffman's basic algorithm to assign optimal code lengths to symbols */
-
- for (;;) {
- /* Find the smallest nonzero frequency, set c1 = its symbol */
- /* In case of ties, take the larger symbol number */
- c1 = -1;
- v = 1000000000L;
- for (i = 0; i <= 256; i++) {
- if (freq[i] && freq[i] <= v) {
- v = freq[i];
- c1 = i;
- }
- }
-
- /* Find the next smallest nonzero frequency, set c2 = its symbol */
- /* In case of ties, take the larger symbol number */
- c2 = -1;
- v = 1000000000L;
- for (i = 0; i <= 256; i++) {
- if (freq[i] && freq[i] <= v && i != c1) {
- v = freq[i];
- c2 = i;
- }
- }
-
- /* Done if we've merged everything into one frequency */
- if (c2 < 0)
- break;
-
- /* Else merge the two counts/trees */
- freq[c1] += freq[c2];
- freq[c2] = 0;
-
- /* Increment the codesize of everything in c1's tree branch */
- codesize[c1]++;
- while (others[c1] >= 0) {
- c1 = others[c1];
- codesize[c1]++;
- }
-
- others[c1] = c2; /* chain c2 onto c1's tree branch */
-
- /* Increment the codesize of everything in c2's tree branch */
- codesize[c2]++;
- while (others[c2] >= 0) {
- c2 = others[c2];
- codesize[c2]++;
- }
- }
-
- /* Now count the number of symbols of each code length */
- for (i = 0; i <= 256; i++) {
- if (codesize[i]) {
- /* The JPEG standard seems to think that this can't happen, */
- /* but I'm paranoid... */
- if (codesize[i] > MAX_CLEN)
- ERREXIT(cinfo->emethods, "Huffman code size table overflow");
-
- bits[codesize[i]]++;
- }
- }
-
- /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
- * Huffman procedure assigned any such lengths, we must adjust the coding.
- * Here is what the JPEG spec says about how this next bit works:
- * Since symbols are paired for the longest Huffman code, the symbols are
- * removed from this length category two at a time. The prefix for the pair
- * (which is one bit shorter) is allocated to one of the pair; then,
- * skipping the BITS entry for that prefix length, a code word from the next
- * shortest nonzero BITS entry is converted into a prefix for two code words
- * one bit longer.
- */
-
- for (i = MAX_CLEN; i > 16; i--) {
- while (bits[i] > 0) {
- j = i - 2; /* find length of new prefix to be used */
- while (bits[j] == 0)
- j--;
-
- bits[i] -= 2; /* remove two symbols */
- bits[i-1]++; /* one goes in this length */
- bits[j+1] += 2; /* two new symbols in this length */
- bits[j]--; /* symbol of this length is now a prefix */
- }
- }
-
- /* Remove the count for the pseudo-symbol 256 from the largest codelength */
- while (bits[i] == 0) /* find largest codelength still in use */
- i--;
- bits[i]--;
-
- /* Return final symbol counts (only for lengths 0..16) */
- MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
-
- /* Return a list of the symbols sorted by code length */
- /* It's not real clear to me why we don't need to consider the codelength
- * changes made above, but the JPEG spec seems to think this works.
- */
- p = 0;
- for (i = 1; i <= MAX_CLEN; i++) {
- for (j = 0; j <= 255; j++) {
- if (codesize[j] == i) {
- htbl->huffval[p] = (UINT8) j;
- p++;
- }
- }
- }
- }
-
-
- /* Process a single block's worth of coefficients */
- /* Note that the DC coefficient has already been converted to a difference */
-
- LOCAL void
- htest_one_block (JBLOCK block, JCOEF block0,
- long dc_counts[], long ac_counts[])
- {
- register INT32 temp;
- register int nbits;
- register int k, r;
-
- /* Encode the DC coefficient difference per section F.1.2.1 */
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- temp = block0;
- if (temp < 0) temp = -temp;
-
- for (nbits = 0; temp; nbits++)
- temp >>= 1;
-
- /* Count the Huffman symbol for the number of bits */
- dc_counts[nbits]++;
-
- /* Encode the AC coefficients per section F.1.2.2 */
-
- r = 0; /* r = run length of zeros */
-
- for (k = 1; k < DCTSIZE2; k++) {
- if ((temp = block[k]) == 0) {
- r++;
- } else {
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- ac_counts[0xF0]++;
- r -= 16;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- if (temp < 0) temp = -temp;
-
- for (nbits = 0; temp; nbits++)
- temp >>= 1;
-
- /* Count Huffman symbol for run length / number of bits */
- ac_counts[(r << 4) + nbits]++;
-
- r = 0;
- }
- }
-
- /* If the last coef(s) were zero, emit an end-of-block code */
- if (r > 0)
- ac_counts[0]++;
- }
-
-
-
- /*
- * Trial-encode one MCU's worth of Huffman-compressed coefficients.
- */
-
- LOCAL void
- htest_encode (compress_info_ptr cinfo, JBLOCK *MCU_data)
- {
- short blkn, ci;
- jpeg_component_info * compptr;
-
- /* Take care of restart intervals if needed */
- if (cinfo->restart_interval) {
- if (cinfo->restarts_to_go == 0) {
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- cinfo->last_dc_val[ci] = 0;
- /* Update restart state */
- cinfo->restarts_to_go = cinfo->restart_interval;
- }
- cinfo->restarts_to_go--;
- }
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- /* NB: unlike the real entropy encoder, we may not change the input data */
- htest_one_block(MCU_data[blkn],
- (JCOEF) (MCU_data[blkn][0] - cinfo->last_dc_val[ci]),
- dc_count_ptrs[compptr->dc_tbl_no],
- ac_count_ptrs[compptr->ac_tbl_no]);
- cinfo->last_dc_val[ci] = MCU_data[blkn][0];
- }
- }
-
-
-
- /*
- * Find the best coding parameters for a Huffman-coded scan.
- * When called, the scan data has already been converted to a sequence of
- * MCU groups of quantized coefficients, which are stored in a "big" array.
- * The source_method knows how to iterate through that array.
- * On return, the MCU data is unmodified, but the Huffman tables referenced
- * by the scan components may have been altered.
- */
-
- METHODDEF void
- huff_optimize (compress_info_ptr cinfo, MCU_output_caller_ptr source_method)
- /* Optimize Huffman-coding parameters (Huffman symbol table) */
- {
- int i, tbl;
- HUFF_TBL **htblptr;
-
- /* Allocate and zero the count tables */
- /* Note that gen_huff_coding expects 257 entries in each table! */
-
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- dc_count_ptrs[i] = NULL;
- ac_count_ptrs[i] = NULL;
- }
-
- for (i = 0; i < cinfo->comps_in_scan; i++) {
- /* Create DC table */
- tbl = cinfo->cur_comp_info[i]->dc_tbl_no;
- if (dc_count_ptrs[tbl] == NULL) {
- dc_count_ptrs[tbl] = (long *) (*cinfo->emethods->alloc_small)
- (257 * SIZEOF(long));
- MEMZERO(dc_count_ptrs[tbl], 257 * SIZEOF(long));
- }
- /* Create AC table */
- tbl = cinfo->cur_comp_info[i]->ac_tbl_no;
- if (ac_count_ptrs[tbl] == NULL) {
- ac_count_ptrs[tbl] = (long *) (*cinfo->emethods->alloc_small)
- (257 * SIZEOF(long));
- MEMZERO(ac_count_ptrs[tbl], 257 * SIZEOF(long));
- }
- }
-
- /* Initialize DC predictions to 0 */
- for (i = 0; i < cinfo->comps_in_scan; i++) {
- cinfo->last_dc_val[i] = 0;
- }
- /* Initialize restart stuff */
- cinfo->restarts_to_go = cinfo->restart_interval;
-
- /* Scan the MCU data, count symbol uses */
- (*source_method) (cinfo, htest_encode);
-
- /* Now generate optimal Huffman tables */
- for (tbl = 0; tbl < NUM_HUFF_TBLS; tbl++) {
- if (dc_count_ptrs[tbl] != NULL) {
- htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
- if (*htblptr == NULL)
- *htblptr = (HUFF_TBL *) (*cinfo->emethods->alloc_small) (SIZEOF(HUFF_TBL));
- /* Set sent_table FALSE so updated table will be written to JPEG file. */
- (*htblptr)->sent_table = FALSE;
- /* Compute the optimal Huffman encoding */
- gen_huff_coding(cinfo, *htblptr, dc_count_ptrs[tbl]);
- /* Release the count table */
- (*cinfo->emethods->free_small) ((void *) dc_count_ptrs[tbl]);
- }
- if (ac_count_ptrs[tbl] != NULL) {
- htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
- if (*htblptr == NULL)
- *htblptr = (HUFF_TBL *) (*cinfo->emethods->alloc_small) (SIZEOF(HUFF_TBL));
- /* Set sent_table FALSE so updated table will be written to JPEG file. */
- (*htblptr)->sent_table = FALSE;
- /* Compute the optimal Huffman encoding */
- gen_huff_coding(cinfo, *htblptr, ac_count_ptrs[tbl]);
- /* Release the count table */
- (*cinfo->emethods->free_small) ((void *) ac_count_ptrs[tbl]);
- }
- }
- }
-
-
- #endif /* ENTROPY_OPT_SUPPORTED */
-
-
- /*
- * The method selection routine for Huffman entropy encoding.
- */
-
- GLOBAL void
- jselchuffman (compress_info_ptr cinfo)
- {
- if (! cinfo->arith_code) {
- cinfo->methods->entropy_encode_init = huff_init;
- cinfo->methods->entropy_encode = huff_encode;
- cinfo->methods->entropy_encode_term = huff_term;
- #ifdef ENTROPY_OPT_SUPPORTED
- cinfo->methods->entropy_optimize = huff_optimize;
- /* The standard Huffman tables are only valid for 8-bit data precision.
- * If the precision is higher, force optimization on so that usable
- * tables will be computed. This test can be removed if default tables
- * are supplied that are valid for the desired precision.
- */
- if (cinfo->data_precision > 8)
- cinfo->optimize_coding = TRUE;
- if (cinfo->optimize_coding)
- cinfo->total_passes++; /* one pass needed for entropy optimization */
- #endif
- }
- }
-