home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Usenet 1994 October
/
usenetsourcesnewsgroupsinfomagicoctober1994disk2.iso
/
misc
/
volume10
/
tec
/
part02
< prev
next >
Wrap
Text File
|
1990-02-20
|
64KB
|
1,619 lines
Newsgroups: comp.sources.misc
organization: MIT Lincoln Laboratory, Lexington MA
subject: v10i078: Continental Drift Simulator part 2/2
from: davea@ll-vlsi.arpa (Dave Allen)
Sender: allbery@uunet.UU.NET (Brandon S. Allbery - comp.sources.misc)
Posting-number: Volume 10, Issue 78
Submitted-by: davea@ll-vlsi.arpa (Dave Allen)
Archive-name: tec/part02
#! /bin/sh
# This is a shell archive. Remove anything before this line, then unpack
# it by saving it into a file and typing "sh file". To overwrite existing
# files, type "sh file -c". You can also feed this as standard input via
# unshar, or by typing "sh <file", e.g.. If this archive is complete, you
# will see the following message at the end:
# "End of shell archive."
# Contents: tec-v3/var.h tec-v3/ibmpc.c tec-v3/tec.mak tec-v3/tec1.c
# tec-v3/tec2.c
# Wrapped by davea@vdd on Fri Feb 16 08:39:20 1990
PATH=/bin:/usr/bin:/usr/ucb ; export PATH
if test -f 'tec-v3/var.h' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'tec-v3/var.h'\"
else
echo shar: Extracting \"'tec-v3/var.h'\" \(440 characters\)
sed "s/^X//" >'tec-v3/var.h' <<'END_OF_FILE'
X/* These variables are the adjustable parameters; they are described and
given default values in tec3.c */
X
extern long XSIZE, YSIZE, MAXSTEP;
extern long MAXLIFE, MAXBUMP, BUMPTOL;
extern long DRAWEVERY, BLOBLEVEL, DRAWMODE;
extern long ZINIT, ZSUBSUME, ZCOAST;
extern long ZSHELF, ZMOUNTAIN;
extern long RIFTPCT, DOERODE, ERODERND;
extern long MAXCTRTRY, RIFTDIST, BENDEVERY;
extern long BENDBY, SPEEDBASE, SPEEDRNG;
extern double MR[];
END_OF_FILE
if test 440 -ne `wc -c <'tec-v3/var.h'`; then
echo shar: \"'tec-v3/var.h'\" unpacked with wrong size!
fi
# end of 'tec-v3/var.h'
fi
if test -f 'tec-v3/ibmpc.c' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'tec-v3/ibmpc.c'\"
else
echo shar: Extracting \"'tec-v3/ibmpc.c'\" \(22685 characters\)
sed "s/^X//" >'tec-v3/ibmpc.c' <<'END_OF_FILE'
X/* Modified for IBM PC/XT/AT, 9/12/89..9/01/90 from file ami.c:
X Peter C. Lind, M.Sc., lind@maccs.ca
X McMaster University,
X 1280 Main St. W.,
X Hamilton, ON
X Canada L8S 4K1
X
X This file contains only functions which are specific to the IBM PC/XT/AT
X under Turbo C 2.00+. It connects to the other source files via a small
X number of functions. main() is here. It calls init() and onestep().
X The other source files can call rnd(), draw() and panic() from this file;
X these are at the end of the file. */
X
X#include "const.h"
X#include "var.h"
X
X#include <conio.h>
X#include <dos.h>
X#include <graphics.h>
X#include <stdlib.h>
X#include <stdio.h>
X#include <time.h>
X
X#define TRUE !0
X#define FALSE 0
X
X#define STDOUT_HANDLE 1 /* DOS file handle for stdout */
X
extern unsigned long RangeSeed; /* TC random number generator */
extern unsigned char t[2][MAXX][MAXY]; /* Defined in tec1.c */
extern short step; /* Also defined in tec1.c */
X
unsigned long class;
unsigned short code;
X
X/* EGA: 16 colors used: Black, 2 shades of blue (dark, light), 2 of green,
X 2 of red, 2 of purple (magenta), 2 white (light gray, white), and
X 2 yellow (brown, yellow). */
X#define NUMCOLORS 13
X#define MAXCOLOR 12
unsigned short colors [NUMCOLORS] = {
X BLACK,
X BLUE,LIGHTBLUE,GREEN,LIGHTGREEN,
X YELLOW,MAGENTA,LIGHTMAGENTA,
X RED,LIGHTRED,BROWN,
X LIGHTGRAY,WHITE
X };
X
unsigned short CellXsize,CellYsize; /* Size of a tec pixel */
int MaxX,MaxY,CentX,CentY; /* Screen parameters */
int LastVideoMode; /* Video mode at program start up */
int gdriver; /* Graphics driver used for plotting */
int BrightColor,DimColor,BorderColor,BackgroundColor,BarColor;
int Bar3Dcolor,PlotBackColor;
int wx1,wy1,wx2,wy2,winMaxX,winMaxY,origY2; /* Map window coords */
X
int LegCellWid,LegCellHgt,LegHalfWid; /* Legend parameters */
int legX1,legY1,legX2,legY2,legCY;
X
short InColor; /* TRUE if mode is EGA or VGA */
short Mode3D; /* TRUE when plotting in 3d mode */
short Slow3D; /* TRUE for slow 3d plotting */
short AllStop; /* TRUE if user wants to quit */
short WantPrint; /* TRUE if user wants to print */
short WantPause; /* TRUE if user wants to pause */
short WantChangePlot; /* TRUE if user wants to change
X plotting style */
short NeedLegend; /* TRUE if legend should be drawn */
short NoLegend; /* TRUE if legend should be erased */
X
int msgY; /* Y coord of message line top */
X
X#define xaddon 5 /* Width of 3-d bars */
int ix; /* Initial X coord for 3-d */
int iy; /* Initial Y coord for 3-d */
int yaddon; /* Y increment for 3-d plotting */
X
X#define ESC 27 /* ASCII code for ESC */
X
X#define NUM_CREDITS 5
static char title[] = "TEC Continental Drift Simulator";
static char credit[NUM_CREDITS][42] =
X {
X "Version 3",
X "originally written by David Allen",
X "adapted for IBM PC/XT/AT by Peter C. Lind",
X "Copyright (c) 1989,1990",
X "press any key to begin"
X };
int CredFont,TitleSize,CredSize;
X
void TakeMax (a,b)
X /* `a' gets maximum of `a' and `b'. */
X int *a,b;
X {
X if (b > *a)
X *a = b;
X }
X
void panic (s)
X char *s;
X /* Used when some fatal inconsistency is found in the database;
X its function is to immediately free all graphics memory and exit. */
X {
X closegraph();
X textmode(LastVideoMode);
X printf("TEC PANIC: %s\n",s);
X exit(0);
X }
X
void message (s)
X char *s;
X /* Displays message `s' at the bottom of the screen. */
X {
X struct viewporttype ov;
X
X getviewsettings(&ov); /* Save current viewport */
X setviewport(0,0,MaxX,MaxY,TRUE); /* Select entire screen */
X setfillstyle(SOLID_FILL,BarColor);
X bar(0,msgY,MaxX,MaxY); /* Blank bottom line */
X settextjustify(CENTER_TEXT,TOP_TEXT);
X setcolor(DimColor);
X outtextxy(CentX,msgY+1,s); /* Output message */
X setviewport(ov.left,ov.top,ov.right, /* Select old viewport */
X ov.bottom,ov.clip);
X }
X
void WaitKeyPress ()
X /* Wait for user to press a key. */
X {
X while (!kbhit())
X ;
X if (!(getch())) /* Consume any extended code */
X getch();
X }
X
void Intro ()
X /* Displays the introductory credits panel. */
X {
X int th,tw,x1,y1,x2,y2,y,ht,hc,cx,i,TwoEms;
X
X /* Calculate dimensions of panel required */
X settextstyle(CredFont,HORIZ_DIR,TitleSize); /* Measure title line */
X ht = textheight(title); th = (ht * 3);
X tw = textwidth(title) + (textwidth("M") << 1);
X settextstyle(CredFont,HORIZ_DIR,CredSize); /* Measure credit lines */
X TwoEms = textwidth("M") << 1;
X hc = 0;
X for (i = 0; i < NUM_CREDITS; i++) /* Find max. height, width */
X {
X TakeMax(&hc,textheight(credit[i]));
X TakeMax(&tw,textwidth(credit[i])+TwoEms);
X }
X hc <<= 1;
X th += (hc * NUM_CREDITS);
X x1 = (MaxX - tw) >> 1; x2 = x1 + tw - 1;
X y1 = (MaxY - th) >> 1; y2 = y1 + th - 1;
X cx = (tw >> 1) - 1;
X
X /* Draw panel and display title and credits */
X setfillstyle(SOLID_FILL,BarColor); setcolor(BarColor);
X bar3d(x1,y1,x2,y2,4,TRUE);
X setviewport(x1+1,y1+1,x2-1,y2-1,TRUE);
X y = ht;
X settextstyle(CredFont,HORIZ_DIR,TitleSize);
X settextjustify(CENTER_TEXT,TOP_TEXT);
X setcolor(BrightColor);
X outtextxy(cx,y,title);
X y += (ht << 1);
X settextstyle(CredFont,HORIZ_DIR,CredSize);
X for (i = 0; i < NUM_CREDITS; i++, y += hc)
X outtextxy(cx,y,credit[i]);
X WaitKeyPress();
X setviewport(0,0,MaxX,MaxY,TRUE);
X cleardevice();
X }
X
void CGAdefaults ()
X /* Common routine to set CGA/MCGA defaults. */
X {
X BarColor = 1; BrightColor = 0; DimColor = 0;
X BorderColor = 1; BackgroundColor = 0; Bar3Dcolor = 1; PlotBackColor = 0;
X InColor = FALSE; Mode3D = TRUE; Slow3D = FALSE;
X }
X
int initCGA ()
X /* Initialize CGA mode. */
X {
X CGAdefaults();
X CredFont = SMALL_FONT; TitleSize = 6; CredSize = 4;
X return(CGAHI);
X }
X
int initMCGA ()
X /* Initialize MCGA mode. */
X {
X CGAdefaults();
X CredFont = SMALL_FONT; TitleSize = 6; CredSize = 4;
X return(MCGAHI);
X }
X
void EGAdefaults ()
X /* Common routine to set EGA/VGA defaults. */
X {
X BarColor = DARKGRAY; BrightColor = WHITE; DimColor = LIGHTGRAY;
X PlotBackColor = BLACK;
X BorderColor = DARKGRAY; BackgroundColor = BLACK; Bar3Dcolor = LIGHTGRAY;
X InColor = TRUE; Mode3D = FALSE;
X LegCellWid = 20; LegHalfWid = 10;
X NeedLegend = TRUE;
X }
X
int initEGA ()
X /* Initialize EGA */
X {
X EGAdefaults();
X CellXsize = 7; CellYsize = 3;
X CredFont = TRIPLEX_FONT; TitleSize = 3; CredSize = 2;
X LegCellHgt = 16;
X return(EGAHI);
X }
X
int initVGA ()
X /* Initialize VGA */
X {
X EGAdefaults();
X CellXsize = 7; CellYsize = 5;
X CredFont = TRIPLEX_FONT; TitleSize = 4; CredSize = 3;
X LegCellHgt = 16;
X return(VGAHI);
X }
X
void grafinit ()
X /* Detect the video hardware and configure accordingly; display credits */
X {
X int gm,tw,th,rc;
X
X LastVideoMode = LASTMODE;
X detectgraph(&gdriver,&gm);
X switch (gdriver)
X {
X case CGA: gm = initCGA(); /* CGA high-res mode: 640 x 200, 2 colors */
X break;
X case MCGA: gm = initMCGA(); /* MCGA high-res mode: 640 x 480, 2 colors */
X break;
X case EGA: gm = initEGA(); /* EGA high-res mode: 640 x 350, 16 colors */
X break;
X case VGA: gm = initVGA(); /* VGA high-res mode: 640 x 480, 16 colors */
X break;
X default: printf("TEC 3:\n");
X printf("Unable to operate with detected display type\n");
X printf("Require CGA, MCGA, EGA or VGA to run\n");
X exit(0);
X }
X initgraph(&gdriver,&gm,"");
X if ((rc = graphresult()))
X {
X printf("TEC 3:\n");
X printf("BGI Error #%d: %s\n",rc,grapherrormsg(rc));
X textmode(LastVideoMode);
X exit(0);
X }
X MaxX = getmaxx(); MaxY = getmaxy();
X CentX = MaxX >> 1; CentY = MaxY >> 1;
X Intro(); /* Intro panel */
X settextstyle(DEFAULT_FONT,HORIZ_DIR,1); /* Choose font */
X tw = textwidth("M"); th = textheight("M"); /* Font's dimensions */
X msgY = MaxY - th - 2;
X
X setfillstyle(SOLID_FILL,BarColor); bar(0,0,MaxX,th+1); /* Top bar */
X bar(0,msgY,MaxX,MaxY); /* Bottom bar */
X setcolor(BrightColor);
X settextjustify(LEFT_TEXT,TOP_TEXT);
X moveto(tw,1); outtext("TEC ");
X setcolor(DimColor); outtext("Continental Drift Simulator");
X settextjustify(RIGHT_TEXT,TOP_TEXT);
X outtextxy(MaxX-tw,1,"David Allen, Peter C. Lind");
X
X setcolor(BorderColor); rectangle(0,th+1,MaxX,msgY); /* Map border */
X wx1 = 2; wy1 = th + 3; wx2 = MaxX - 2; wy2 = msgY - 2;
X winMaxX = wx2 - wx1; winMaxY = wy2 - wy1; origY2 = wy2;
X
X legX2 = winMaxX; legX1 = legX2 - (LegCellWid * NUMCOLORS); /* Legend coords */
X legY2 = winMaxY - 1; legY1 = legY2 - LegCellHgt;
X legCY = (legY2 + legY1) >> 1;
X
X setviewport(wx1,wy1,wx2,wy2,TRUE);
X
X ix = (wx2 - wx1) - (XSIZE * xaddon);
X yaddon = ((wy2 - wy1 + 1) / YSIZE) + 1;
X iy = (wy2 - wy1 + 1) - (YSIZE * yaddon);
X }
X
void grafexit ()
X /* Just close all the things that were opened, then exit(). */
X {
X closegraph();
X textmode(LastVideoMode);
X printf("TEC ended. Bye\n");
X exit(0);
X }
X
unsigned GetIOCTL (fh)
X /* Returns the IOCTL word for file handle `fh'. */
X int fh;
X {
X struct REGPACK regs;
X
X regs.r_ax = 0x4400; /* DOS Int. sub-function: "Get IOCTL info" */
X regs.r_bx = fh; /* File handle in BX */
X intr(33,®s); /* Call DOS */
X return(regs.r_dx); /* IOCTL info in DX */
X }
X
void PrintMenu ()
X /* Displays the print menu. */
X {
X message("Print to stdout: G)eneric T)ext P)ostscript ESC=No print");
X }
X
void TryToPrint ()
X /* Attempts to initiate printing, but first warns the user that stdout
X must have been redirected on the DOS command line. Also allows the
X user to choose the print format:
X
X G Generic
X T Text
X P Postscript
X ESC No print
X */
X {
X /* Disallow printing if stdout is still directed to the console screen,
X (ie. IOCTL for stdout indicates device with standard console output). */
X if ((GetIOCTL(STDOUT_HANDLE) & 0x0082) == 0x0082)
X {
X message("*** stdout not redirected. [ Press any key ] ***");
X do { /* Wait for keypress */
X } while (!kbhit());
X if (!getch()) /* Consume character */
X getch(); /* and extended code, if any */
X return;
X }
X
X PrintMenu();
X do {
X char c;
X
X if (!(c = getch()))
X getch();
X else
X switch (c)
X {
X case ESC: return;
X break;
X case 'g':
X case 'G': message("Sending Generic Mode to stdout...");
X tecst(step % 2,DRAWMODE_GENERIC);
X PrintMenu();
X break;
X case 't':
X case 'T': message("Sending Text Mode to stdout...");
X tecst(step % 2,DRAWMODE_TEXT);
X PrintMenu();
X break;
X case 'p':
X case 'P': message("Sending Postscript Mode to stdout...");
X tecst(step % 2,DRAWMODE_GRAY);
X PrintMenu();
X break;
X default: break;
X }
X } while (TRUE);
X }
X
void Set3Dstyle ()
X /* Allows user to choose fast or slow 3-D plotting. */
X {
X short OK;
X
X Mode3D = TRUE;
X message("3-D Style: S)low F)ast");
X do {
X OK = TRUE;
X switch (getch())
X {
X case 's':
X case 'S': Slow3D = TRUE;
X break;
X case 'f':
X case 'F': Slow3D = FALSE;
X break;
X default: OK = FALSE;
X break;
X }
X } while (!OK);
X }
X
void ChangePlotStyle ()
X /* Allows user to switch between standard plotting and 3-D plotting. Should
X only be called if program is running under EGA/VGA. */
X {
X short OK;
X
X message("Switch plotting style: S)tandard 3)D");
X do {
X OK = TRUE;
X switch (getch())
X {
X case '\0': getch();
X break;
X case '3': NoLegend = !Mode3D;
X Set3Dstyle();
X break;
X case 's':
X case 'S': NeedLegend = Mode3D;
X Mode3D = FALSE;
X break;
X default: OK = FALSE;
X break;
X }
X } while (!OK);
X }
X
void checkmouse ()
X /* Standard event handler. Currently on the IBM PC/XT/AT, can only poll the
X keyboard for user actions (no mouse support [yet!]):
X
X <ESC> Quit program right away
X <SPACE> Pause
X g or G Change plotting style
X p or P Print out the current values of t[src]
X using tecst() in tec1.c. */
X {
X short i,j,k;
X char c;
X
X if (!kbhit()) /* Key pressed? */
X return; /* No: Exit */
X if (!(c = getch())) /* Read the key. Is it '\0'? */
X {
X getch(); return; /* Yes: Consume extended code and exit */
X }
X switch (c) /* No: Look at key pressed */
X {
X case ESC: grafexit();
X break;
X case ' ': WantPause = TRUE;
X break;
X case 'g':
X case 'G': if (InColor)
X ChangePlotStyle();
X else
X Set3Dstyle();
X break;
X case 'p':
X case 'P': TryToPrint();
X break;
X default: break;
X }
X }
X
int rnd (top)
X int top;
X /* Returns a random number in the range 0..`top'-1. */
X {
X return(random(top));
X }
X
void ResetPlotSettings ()
X /* Resets the 3-D plot settings (used after message() calls). */
X {
X if (Mode3D)
X {
X setfillstyle(SOLID_FILL,PlotBackColor);
X setcolor(Bar3Dcolor);
X }
X }
X
void PlotMessage ()
X /* Prints the plot message */
X {
X message("Plotting... G)raphing style P)rint CR=Skip SP=Pause ESC=Quit");
X }
X
int PlotKeyCheck ()
X /* Called when a key is pressed while plotting. If the key was ESC or
X SPACE, then TRUE is returned. Otherwise, FALSE is returned. If the
X key pressed was ESC, 'p' or 'P', the key is not consumed. */
X {
X char c;
X
X switch (c = getch())
X {
X case '\0': getch(); /* Discard extended code */
X break;
X case ESC: AllStop = TRUE; /* Set quit flag... */
X case '\r': return(TRUE); /* Exit plot routine */
X break;
X case ' ': WantPause = TRUE;
X break;
X case 'g':
X case 'G': if (InColor) /* Defer in EGA/VGA */
X WantChangePlot = TRUE;
X else
X { /* Change on the fly in CGA/MCGA */
X Set3Dstyle();
X PlotMessage();
X ResetPlotSettings();
X }
X break;
X case 'p':
X case 'P': WantPrint = TRUE; /* Set print request flag */
X break;
X default: break; /* Ignore all else */
X }
X return(FALSE);
X }
X
void draw3d (src)
X /* Draws a 3-D picture of the t[src] in the center of the current viewport
X using Turbo C's bar3d() function. When `Slow3D' is TRUE, each "pixel" of
X t[src] is printed as a standing 3-D block; when `Slow3D' is FALSE,
X adjacent "pixels" in the same row with equal heights are merged and
X plotted as a wider standing 3-D block, thereby speeding up the plotting
X process (with a loss of attractiveness). */
X short src;
X {
X int boty,x1,x2,x3,x,y,cx,cy,h,nh,c;
X
X ResetPlotSettings();
X
X x = ix; y = iy;
X top: for (cx = 0; cx < XSIZE; cx++, y += yaddon)
X {
X x1 = x; x2 = x1 + xaddon; x3 = x + (xaddon * XSIZE);
X h = -1; c = 0;
X for (cy = 0; cy < YSIZE; cy++)
X {
X nh = t[src][cx][cy] >> 3;
X if ((nh != h) || Slow3D)
X {
X if ((c || Slow3D) && (h >= 0))
X bar3d(x1,y,x2,y-h,3,TRUE);
X h = nh; x1 = x2; c = 1;
X if (Slow3D || 1)
X x2 += xaddon;
X }
X else
X {
X x2 += xaddon; c++;
X }
X }
X if (c)
X bar3d(x1,y,x3,y-nh,3,TRUE);
X x -= (xaddon >> 1);
X
X if (kbhit())
X if (PlotKeyCheck())
X return;
X }
X }
X
void DisplayLegend ()
X /* Draws the colors legend for EGA/VGA modes. */
X {
X int i,x;
X char num[3];
X
X settextstyle(DEFAULT_FONT,HORIZ_DIR,1);
X settextjustify(CENTER_TEXT,CENTER_TEXT);
X
X /* Special case for black color */
X x = legX1;
X setcolor(DARKGRAY);
X setfillstyle(SOLID_FILL,colors[0]);
X bar3d(x,legY1,x+LegCellWid,legY2,0,FALSE);
X outtextxy(x+LegHalfWid,legCY,"0");
X x += LegCellWid;
X
X /* Draw other colors in a loop, with black numbers */
X setcolor(BLACK);
X for (i = 1; i < NUMCOLORS; i++, x += LegCellWid)
X {
X setfillstyle(SOLID_FILL,colors[i]);
X bar3d(x,legY1,x+LegCellWid,legY2,0,FALSE);
X sprintf(num,"%d",i);
X outtextxy(x+LegHalfWid,legCY,num);
X };
X wy2 = origY2 - LegCellHgt - 2; /* Resize viewport to protect legend */
X setviewport(wx1,wy1,wx2,wy2,TRUE);
X }
X
void RemoveLegend ()
X /* Effectively removes the colors legend by resetting the map viewport to
X full size. */
X {
X wy2 = origY2; setviewport(wx1,wy1,wx2,wy2,TRUE);
X }
X
void draw (src)
X short src;
X /* When `Mode3D' is TRUE, this function calls draw3d() and exits. Otherwise,
X this function takes the array m[src] and draws it on the screen, in a
X hopefully efficient way. The function tries to make long horizontal
X patches that are all the same color. Then they can be rendered by a
X graphics function that draws arbitrary rectangles quickly. */
X {
X register short i,j,k,x;
X
X checkmouse();
X PlotMessage();
X
X /* Erase the viewport first */
X if (NoLegend)
X {
X RemoveLegend(); NoLegend = FALSE;
X }
X setcolor(BackgroundColor); clearviewport();
X
X if (Mode3D) /* If in 3-D mode, then call draw3d() */
X {
X draw3d(src); return;
X }
X
X /* Draw color legend whenever it needs to be displayed. */
X if (NeedLegend)
X {
X DisplayLegend(); NeedLegend = FALSE;
X }
X
X /* For each scan line, start at the left edge */
X for (j = 0, i = 0; j < YSIZE; j++, i = 0)
X {
X int x1,y1,x2,y2;
X
X /* If the current square is not ocean, set x to its color */
X top: if ((x = t[src][i][j] >> 2) > 1)
X {
X /* Go as far along to the right as you can in this color */
X k = i + 1;
X while (((t[src][k][j] >> 2) == x) && (k < XSIZE-1))
X k++;
X
X /* Draw a short, wide rectangle */
X if (x > 27)
X x = 27;
X x1 = i * CellXsize; y1 = j * CellYsize;
X x2 = k * CellXsize; y2 = y1 + CellYsize - 1;
X setfillstyle(SOLID_FILL,colors[x]);
X bar(x1,y1,x2,y2);
X i = k-1;
X
X if (kbhit())
X if (PlotKeyCheck())
X return;
X }
X
X /* If not at end of scanline, do more; else start next scanline */
X if (i < XSIZE-1)
X {
X i++;
X goto top;
X }
X }
X }
X
void main (argc,argv)
X /* Initializes everything and enters a (finite) loop that repeatedly calls
X onestep() and checkmouse() until the maximum step is reached or the user
X quits. */
X int argc;
X char **argv;
X {
X char menu[80];
X
X randomize(); /* Randomize random number generator using DOS time */
X
X /* Initialize everything */
X AllStop = WantPrint = WantPause = WantChangePlot = FALSE; /* Clear deferrals */
X NoLegend = FALSE;
X grafinit();
X message("Setting up...");
X init(*++argv); /* Perform major initialization */
X checkmouse(); /* Give user a chance to do something */
X
X /* Call onestep() once per step; then check for user key actions */
X for (step = 0; step < MAXSTEP; step++)
X {
X /* Check for deferred commands */
X if (AllStop)
X grafexit();
X if (WantPrint)
X TryToPrint();
X if (WantChangePlot)
X ChangePlotStyle();
X if (WantPause)
X {
X message("[ Pausing -- Press any Key ]");
X WaitKeyPress();
X }
X WantPrint = WantPause = WantChangePlot = FALSE; /* Clear deferrals */
X
X /* Do some work */
X sprintf(menu,"Thinking [%d]... G)raphing style P)rint SP=Pause ESC=Quit",
X step);
X message(menu);
X onestep();
X checkmouse();
X }
X
X /* Reached end of simulation without error or user quit signal. */
X message("Execution terminated -- Press any key");
X
X WaitKeyPress(); /* Loop forever until user pressed a key */
X
X closegraph(); /* Shut down */
X textmode(LastVideoMode);
X }
END_OF_FILE
if test 22685 -ne `wc -c <'tec-v3/ibmpc.c'`; then
echo shar: \"'tec-v3/ibmpc.c'\" unpacked with wrong size!
fi
# end of 'tec-v3/ibmpc.c'
fi
if test -f 'tec-v3/tec.mak' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'tec-v3/tec.mak'\"
else
echo shar: Extracting \"'tec-v3/tec.mak'\" \(1500 characters\)
sed "s/^X//" >'tec-v3/tec.mak' <<'END_OF_FILE'
X# Make file for TEC under Turbo C 2.0
X# Peter C. Lind, Elec. & Comp. Eng., McMaster University, Hamilton, ON., 1990.
X# NOTE: Read the comments in this file before proceeding; the macros defining
X# directories may need to be modified to work properly on your system;
X# also, certain macros may be altered to produce 80186/80286 code and/or
X# 80x87 code.
X
X# Turbo C Directory (Change as needed; DOS path \ must be specified
X# as \\ at the end of a line)
TCD=\TC\\
X
X# Memory Model (Change c to l for large, or h for huge)
MDL=c
X
X# Path to libraries (Change as needed; DOS path \ must be specified
X# as \\ at the end of a line)
LIB=\TC\LIB\\
X
X# Instruction Set (Add -1 after = to enable 80186/80286)
INST=
X
X# 80x87 Support (Add -f87 after = to enable 80x87 code generation, and...)
XFLP=
X
X# 80x87 Support (...change emu to fp87)
XFLT=emu
X
X# Compiler options:
X# -c Compile to OBJ
X# -G Optimize for speed
X# -w- Suppress warnings
X# -a Align on word boundary
OPTS=-c -m$(MDL) -G -w- -a $(INST) $(FLP)
X
X
tec.exe: ibmpc.obj tec1.obj tec2.obj tec3.obj
X $(TCD)tlink $(LIB)c0$(MDL) ibmpc tec1 tec2 tec3, tec, , \
X $(LIB)graphics $(LIB)$(FLT) $(LIB)math$(MDL) $(LIB)c$(MDL)
X
ibmpc.obj: ibmpc.c const.h var.h
X $(TCD)tcc $(OPTS) ibmpc.c
X
tec1.obj: tec1.c const.h var.h
X $(TCD)tcc $(OPTS) tec1.c
X
tec2.obj: tec2.c const.h var.h
X $(TCD)tcc $(OPTS) tec2.c
X
tec3.obj: tec3.c const.h var.h
X $(TCD)tcc $(OPTS) tec3.c
END_OF_FILE
if test 1500 -ne `wc -c <'tec-v3/tec.mak'`; then
echo shar: \"'tec-v3/tec.mak'\" unpacked with wrong size!
fi
# end of 'tec-v3/tec.mak'
fi
if test -f 'tec-v3/tec1.c' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'tec-v3/tec1.c'\"
else
echo shar: Extracting \"'tec-v3/tec1.c'\" \(21292 characters\)
sed "s/^X//" >'tec-v3/tec1.c' <<'END_OF_FILE'
X/* This program is Copyright (c) 1990 David Allen. It may be freely
X distributed as long as you leave my name and copyright notice on it.
X I'd really like your comments and feedback; send e-mail to
X davea@vlsi.ll.mit.edu, or send us-mail to David Allen, 10 O'Moore Ave,
X Maynard, MA 01754. */
X
X/* This is the file containing all of the important functions except for
X trysplit (), which splits a continent into pieces. Also, all of the main
X arrays are declared here, even a couple that are only used by functions in
X tec2.c. The array declarations are first, followed by the sequencing
X function onestep () and some miscellaneous routines including the text
X output routines; initialization routines and the routines that do all
X the interesting stuff are last. */
X
X
X#include "const.h"
X#include "var.h"
X
X#include <stdio.h>
X
X/* These defines are used for the PostScript output section of tecst(). */
X#define D ((double) 432 / ((XSIZE > YSIZE) ? XSIZE : YSIZE))
X#define ZMAX 128
X#define XX(x) (108 + ((x) * D))
X#define YY(y) (612 - ((y) * D))
X#define ZZ(z) (1 - (float) ((z > ZMAX) ? ZMAX : z) / (ZMAX))
X
X
X/* The following arrays are global and most are used by functions in both
X source files. The two main ones are m and t. Each is set up to be two
X 2-d arrays, where each array is the size of the whole world. M is the
X map; elements in m are indices of plates, showing which squares are
X covered by which plate. T is the topography; elements in t are altitudes. */
X
char m[2][MAXX][MAXY]; unsigned char t[2][MAXX][MAXY];
X
X/* Several arrays are used by the binary blob segmenter, segment() in tec2.c.
X These include r, which is used to store fragment indices; many fragments
X make up one region during a segmentation. Kid is a lookup table; fragment
X k belongs to region kid[k] after a segmentation is finished. Karea[k]
X is the area of fragment k. */
X
char r[MAXX][MAXY], kid[MAXFRAG]; short karea [MAXFRAG];
X
X/* The merge routine gets information from the move routine; when the move
X routine puts a square of one plate on top of another plate, that information
X is recorded in the merge matrix mm. */
X
char mm[MAXPLATE][MAXPLATE];
X
X/* The erosion routine needs an array to store delta information; during an
X erosion, the increases or decreases in elevation are summed in e and then
X applied all at once to the topography. */
X
char e[MAXX][MAXY];
X
X/* Several routines need temporary storage for areas and plate identifiers. */
X
short tarea[MAXPLATE]; short ids[MAXPLATE];
X
X/* The plates in use are stored in this data structure. Dx,dy are the
X values to move by THIS STEP ONLY; odx,ody are the permanent move
X values; rx,ry are the remainder x and y values used by newdxy() to
X determine dx,dy; age is the age of the plate, in steps; area is the
X area of the plate, in squares; id is the value in the m array which
X corresponds to this plate; next is a pointer to the next occupied
X element of the plate array. */
X
struct plate p [MAXPLATE];
X
X/* The linked list header for available plates and used plates are global,
X as is the step counter. */
X
short pavail, phead, step;
X
X
onestep () {
X /* This is the sequencing routine called by main once per step.
X It just calls the important subfunctions in order:
X - trysplit finds a plate to break up, and computes new velocities
X - newdxy computes the deltas to move each plate this step
X - move moves the plates
X - merge determines results when plates rub together
X - erode erodes the terrain, adding or subtracting at the margins
X - draw draw the resulting array once every DRAWEVERY steps
X The m and t arrays are double-buffered in the sense that operations go
X from m[0] to m[1] or vice-versa; src and dest determine which is which. */
X
X short src, dest;
X
X src = step % 2; dest = 1 - src;
X if (rnd (100) < RIFTPCT) trysplit (src);
X newdxy ();
X move (src, dest);
X merge (dest);
X if (DOERODE) erode (dest);
X if (step && !(step % DRAWEVERY)) draw (dest); }
X
X
palloc () {
X /* Allocate a plate from the array and return its index. All the fields
X of the plate are initialized to 0, except `next'. That field is used to
X link together the plate structures in use. */
X
X short x;
X
X if (!pavail) panic ("No more objects");
X x = pavail; pavail = p[x].next;
X p[x].next = phead; phead = x;
X p[x].area = 0; p[x].age = 0;
X p[x].rx = 0; p[x].ry = 0;
X p[x].odx = 0; p[x].ody = 0;
X p[x].dx = 0; p[x].dy = 0;
X return ((int) x); }
X
X
pfree (n) short n; {
X /* Return a plate array element to the pool of available elements.
X To check for infinite loops, the variable guard is incremented
X at each operation; if the number of operations exceeds the maximum
X possible number, the program panics. */
X
X short i, guard = 0;
X
X if (phead == n) phead = p[n].next;
X else {
X for (i=phead; p[i].next!=n; i=p[i].next)
X if (++guard > MAXPLATE) panic ("Infinite loop in pfree");
X p[i].next = p[n].next; }
X p[n].next = pavail; pavail = n; }
X
X
tecst (src, drawmode) short src, drawmode; {
X /* This function is called whenever map output is called for. It looks
X at the parameter `drawmode' to decide between long text, simple text,
X and PostScript output formats. Note that the default for this
X function is no output at all, corresponding to DRAWMODE_NONE. */
X
X register short i,j,k;
X
X if (drawmode == DRAWMODE_GENERIC)
X for (j=0; j<YSIZE; j++) for (i=0, k=0; i<XSIZE; i++) {
X printf ("%4d", t[src][i][j]);
X if (!(++k % 18)) printf ("\n"); }
X else if (drawmode == DRAWMODE_TEXT) {
X for (j=0; j<YSIZE; j++) {
X for (i=0; i<XSIZE; i++) {
X if ((k = t[src][i][j]) < ZCOAST) k = 0;
X else if (k > ZMOUNTAIN) k = 2; else k = 1;
X printf ("%d", k); }
X printf ("\n"); }
X printf ("\n"); }
X else if (drawmode == DRAWMODE_GRAY) {
X printf ("%%!PS-Adobe-1.0\n/d %4.2f def\n", D);
X printf ("37.5 45 { dup mul exch dup mul add 1 exch sub } setscreen\n");
X printf ("/r { setgray moveto d 0 rlineto 0 d rlineto ");
X printf ("d neg 0 rlineto fill } bind def\n");
X printf ("%6.2f %6.2f moveto\n", XX(-1), YY(-1));
X printf ("%6.2f %6.2f lineto\n", XX(XSIZE), YY(-1));
X printf ("%6.2f %6.2f lineto\n", XX(XSIZE), YY(YSIZE));
X printf ("%6.2f %6.2f lineto\n", XX(-1), YY(YSIZE));
X printf ("%6.2f %6.2f lineto\nstroke\n", XX(-1), YY(-1));
X
X for (j=0; j<YSIZE;j++) for (i=0; i<XSIZE; i++)
X if ((k = t[src][i][j]) > ZCOAST)
X printf ("%6.2f %6.2f %5.4f r\n", XX(i), YY(j), ZZ(k));
X printf ("\nshowpage\n"); } }
X
X
init (s) char *s; {
X /* This is the catchall function that initializes everything. First,
X it calls getparams() in tec3.c to allow the user to set parameters. Next,
X it links together the plates onto the free list and starts the used list
X at empty. The first plate is created by a fractal technique and then
X improved. Finally, the fractal is copied to the data array and drawn.
X There are two kinds of improvement done here. First, islands are
X eliminated by segmenting the blob and erasing all the regions except
X for the biggest. Second, oceans inside the blob (holes) are eliminated
X by segmenting the _ocean_ and filling in all regions except the biggest. */
X
X short besti, x; register short i, j;
X
X if (s) if (*s) getparams (s);
X
X for (i=1; i<MAXPLATE; i++) p[i].next = i + 1;
X p[MAXPLATE-1].next = 0;
X pavail = 1; phead = 0;
X
X /* Allocate a plate structure for the first plate and make a blob */
X x = palloc (); makefrac (0, x);
X
X /* Segment m[0] looking for x, set besti to the largest region, */
X /* and zero out all the other regions. This eliminates islands. */
X besti = singlefy (0, x);
X if (besti > 0) for (i=1; i<XSIZE; i++) for (j=1; j<YSIZE; j++)
X if (kid[r[i][j]] != besti) m[0][i][j] = 0;
X
X /* Segment m[0] looking for 0 (ocean), set besti to the largest region, */
X /* and fill in all the other regions. This eliminates holes in the blob. */
X besti = singlefy (0, 0);
X if (besti > 0) for (i=1; i<XSIZE; i++) for (j=1; j<YSIZE; j++)
X if (kid[r[i][j]] != besti) m[0][i][j] = x;
X
X /* Fill the topo structure with the blob shape while finding its area */
X for (i=0; i<XSIZE; i++) for (j=0; j<YSIZE; j++)
X if (m[0][i][j]) { t[0][i][j] = ZINIT; p[x].area++; }
X
X /* Draw the blob */
X draw (0); }
X
X
makefrac (src, match) short src, match; {
X /* This function uses a very simple fractal technique to draw a blob. Four
X one-dimensional fractals are created and stored in array x, then the
X fractals are superimposed on a square array, summed and thresholded to
X produce a binary blob. Squares in the blob are set to the value in `match'.
X A one-dimensional fractal of length n is computed like this. First,
X set x [n/2] to some height and set the endpoints (x[0] and x[n]) to 0.
X Then do log-n iterations. The first iteration computes 2 more values:
X x[n/4] = average of x[0] and x[n/2], plus some random number, and
X x[3n/4] = average of x[n/2] and x[n], plus some random number. The second
X iteration computes 4 more values (x[n/8], x[3n/8], ...) and so on. The
X random number gets smaller by a factor of two each time also.
X
X Anyway, you wind up with a number sequence that looks like the cross-section
X of a mountain. If you sum two fractals, one horizontal and one vertical,
X you get a 3-d mountain; but it looks too symmetric. If you sum four,
X including the two 45 degree diagonals, you get much better results. */
X
X register short xy, dist, n, inc, i, j, k; char x[4][65];
X short xofs, yofs, xmin, ymin, xmax, ymax;
X
X /* Compute offsets to put center of blob in center of the world, and
X compute array limits to clip blob to world size */
X xofs = (XSIZE - 64) >> 1; yofs = (YSIZE - 64) >> 1;
X if (xofs < 0) { xmin = -xofs; xmax = 64 + xofs; }
X else { xmin = 0; xmax = 64; }
X if (yofs < 0) { ymin = -yofs; ymax = 64 + yofs; }
X else { ymin = 0; ymax = 64; }
X
X for (xy=0; xy<4; xy++) {
X /* Initialize loop values and fractal endpoints */
X x [xy] [0] = 0; x [xy] [64] = 0; dist = 32;
X x [xy] [32] = 24 + rnd (16); n = 2; inc = 16;
X
X /* Loop log-n times, each time halving distance and doubling iterations */
X for (i=0; i<5; i++, dist>>=1, n<<=1, inc>>=1)
X for (j=0, k=0; j<n; j++, k+=dist)
X x[xy][k+inc] = ((x[xy][k]+x[xy][k+dist])>>1) + rnd (dist) - inc; }
X
X /* Superimpose fractals; if sum is greater than BLOBLEVEL, there will be */
X /* land there. x[0] is horizontal, x[1] vertical, x[2] diagonal from */
X /* top left to bottom right, x[3] diagonal from TR to BL. */
X for (i=xmin; i<xmax; i++) for (j=ymin; j<ymax; j++) {
X k = x[0][i] + x[1][j] + x[2][(i - j + 64) >> 1] + x[3][(i + j) >> 1];
X if (k > BLOBLEVEL) m[src][i+xofs][j+yofs] = match; } }
X
X
singlefy (src, match) short src, match; {
X /* This is a subfunction of init() which is called twice to improve the
X fractal blob. It calls segment() and then interprets the result. If
X only one region was found, no improvement is needed; otherwise, the
X area of each region must be computed by summing the areas of all its
X fragments, and the index of the largest region is returned. */
X
X short i, reg, frag, besti, besta;
X
X segment (src, match, &frag, ®);
X if (reg == 1) return (-1); /* No improvement needed */
X
X /* Initialize the areas to zero, then sum frag areas */
X for (i=1; i<=reg; i++) tarea[i] = 0;
X for (i=1; i<=frag; i++) tarea [kid[i]] += karea [i];
X
X /* Pick largest area of all regions and return it */
X for (i=1, besta=0, besti=0; i<=reg; i++)
X if (besta < tarea[i]) { besti = i; besta = tarea[i]; }
X return ((int) besti); }
X
X
newdxy () {
X /* For each plate, compute how many squares it should move this step.
X Multiply the plate's basic movement vector odx,ody by the age modifier
X MR[], then add the remainders rx,ry from the last move to get some large
X integers. Then turn the large integers into small ones by dividing by
X REALSCALE and putting the remainders back into rx,ry. This function also
X increases the age of each plate, but doesn't let the age of any plate
X go above MAXLIFE. This is done to make sure that MR[] does not need to
X be a long vector. */
X
X register short i, a;
X
X for (i=phead; i; i=p[i].next) {
X a = (p[i].odx * MR[p[i].age]) + p[i].rx;
X p[i].dx = a / REALSCALE; p[i].rx = a % REALSCALE;
X a = (p[i].ody * MR[p[i].age]) + p[i].ry;
X p[i].dy = a / REALSCALE; p[i].ry = a % REALSCALE;
X if (p[i].age < MAXLIFE-1) (p[i].age)++; } }
X
X
move (src, dest) short src, dest; {
X /* This function moves all the plates that are drifting. The amount to
X move by is determined in newdxy(). The function simply steps through
X every square in the array; if there's a plate in a square, its new location
X is found and the topography is moved there. Overlaps between plates are
X detected and recorded so that merge() can resolve the collision; mountain
X growing is performed. If two land squares wind up on top of each other,
X folded mountains are produced. If a land square winds up where ocean was
X previously, that square is the leading edge of a continent and grows a
X mountain by subsuming the ocean basin. */
X
X register short i, j; short a, b, c, x, y;
X
X /* Clear out the merge matrix and the destination arrays */
X for (i=1; i<MAXPLATE; i++) for (j=1; j<MAXPLATE; j++) mm[i][j] = 0;
X for (i=0; i<XSIZE; i++) for (j=0; j<YSIZE; j++) {
X m[dest][i][j] = 0; t[dest][i][j] = 0; }
X
X /* Look at every square which belongs to a plate */
X for (i=0; i<XSIZE; i++) for (j=0; j<YSIZE; j++) if ((a = m[src][i][j]) > 0) {
X
X /* Add the plate's dx,dy to the position to get the square's new */
X /* location; if it is off the map, throw it away */
X x = p[a].dx + i; y = p[a].dy + j;
X if ((x >= XSIZE) || (x < 0) || (y >= YSIZE) || (y < 0)) p[a].area--;
X else { /* It IS on the map */
X
X /* If the destination is occupied, remove the other guy but */
X /* remember that the two plates overlapped; set the new height */
X /* to the larger height plus half the smaller. */
X if (c = m[dest][x][y]) {
X (mm[a][c])++; (p[c].area)--;
X b = t[src][i][j]; c = t[dest][x][y];
X t[dest][x][y] = (b > c) ? b + (c>>1) : c + (b>>1); }
X
X /* The destination isn't occupied. Just copy the height. */
X else t[dest][x][y] = t[src][i][j];
X
X /* If this square is over ocean, increase its height. */
X if (t[src][x][y] < ZCOAST) t[dest][x][y] += ZSUBSUME;
X
X /* Plate A now owns this square */
X m[dest][x][y] = a; } } }
X
X
merge (dest) short dest; {
X /* Since move has set up the merge matrix, most of the work is done. This
X function calls bump once for each pair of plates which are rubbing; note
X that a and b below loop through the lower diagonal part of the matrix.
X One subtle feature is that a plate can bump with several other plates in
X a step; suppose that the plate is merged with the first plate it bumped.
X The loop will try to bump the vanished plate with the other plates, which
X would be wrong. To avoid this, the lookup table lut is used to provide
X a level of indirection. When a plate is merged with another, its lut
X entry is changed to indicate that future merges with the vanished plate
X should be applied to the plate it has just been merged with. */
X
X char lut[MAXPLATE]; short a, aa, b, bb, i;
X
X for (a=1; a<MAXPLATE; a++) lut[a] = a;
X for (a=2; a<MAXPLATE; a++) for (b=1; b<a; b++) if (mm[a][b] || mm[b][a]) {
X aa = lut [a]; bb = lut[b];
X if (aa != bb) if (bump (dest, aa, bb)) {
X lut[aa] = bb;
X for (i=1; i<MAXPLATE; i++) if (lut[i] == aa) lut[i] = bb; } } }
X
X
bump (dest, a, b) short dest, a, b; {
X /* Plates a and b have been moved on top of each other by some amount;
X alter their movement rates for a slow collision, possibly merging them.
X The collision "strength" is a ratio of the area overlap (provided by
X move ()) to the total area of the plates involved. A fraction of each
X plate's current movement vector is subtracted from the movement vector
X of the other plate. If the two vectors are now within some tolerance
X of each other, they are almost at rest so merge them with each other. */
X
X double maa, mab, ta, tb, rat, area; register short i, j, x;
X
X /* Find a ratio describing how strong the collision is */
X x = mm[a][b] + mm[b][a]; area = p[a].area + p[b].area;
X rat = x / (MAXBUMP + (area / 20)); if (rat > 1.0) rat = 1.0;
X
X /* Do some math to update the move vectors. This looks complicated */
X /* because a plate's actual movement vector must be multiplied by */
X /* MR[age], and because I have rewritten the equations to maximize */
X /* use of common factors. Trust me, it's just inelastic collision. */
X maa = p[a].area * MR[p[a].age]; mab = p[b].area * MR[p[b].age];
X ta = MR[p[a].age] * area;
X p[a].odx = (p[a].odx * maa + p[b].odx * mab * rat) / ta;
X p[a].ody = (p[a].ody * maa + p[b].ody * mab * rat) / ta;
X tb = MR[p[b].age] * area;
X p[b].odx = (p[b].odx * mab + p[a].odx * maa * rat) / tb;
X p[b].ody = (p[b].ody * mab + p[a].ody * maa * rat) / tb;
X
X /* For each axis, compute the remaining relative velocity. If it is */
X /* too large, return without merging the plates */
X if (ABS (p[a].odx*MR[p[a].age] - p[b].odx*MR[p[b].age]) > BUMPTOL) return(0);
X if (ABS (p[a].ody*MR[p[a].age] - p[b].ody*MR[p[b].age]) > BUMPTOL) return(0);
X
X /* The relative velocity is small enough, so merge the plates. Replace */
X /* all references to a with b, free a, and tell merge() a was freed. */
X for (i=0; i<XSIZE; i++) for (j=0; j<YSIZE; j++)
X if (m[dest][i][j] == a) m[dest][i][j] = b;
X p[b].area += p[a].area; pfree (a);
X return ((int) a); }
X
X
X/* The following is defined as a macro for efficiency; erosion is still
X the slowest function in the simulation. ERODE is called four times per
X pixel by erode. A and b are altitudes of two adjacent squares, while c
X and d are the corresponding delta values for those squares. The amount
X each square loses to an adjacent but lower square in each step is
X one-eighth the difference in altitude. This is coded as a shift right 3
X bits, but since -1 >> 3 is still -1, the code must be repeated to avoid
X negative deltas. */
X#define ERODE(a,b,c,d) \
if (((a > ZSHELF) || (b > ZSHELF))) { \
X if ( a > b) { x = (a - b + ERODERND) >> 3; c -= x; d += x; } \
X else { x = (b - a + ERODERND) >> 3; c += x; d -= x; } }
X
X
erode (dest) short dest; {
X /* This function takes the topography in t[dest] and smooths it, lowering
X mountains and raising lowlands and continental margins. It does this by
X stepping across the entire array and doing a computation once for each
X pair of 8-connected pixels. The computation is done by ERODE, above.
X The computation result for a pair is a small delta for each square, which
X is summed in the array e. When the computation is finished, the delta
X is applied; if this pushes an ocean square high enough, it is added to
X an adjacent plate if one can be found. Also, if a land square is eroded
X low enough, it is turned into ocean and removed from its plate. */
X
X register short i, j, t1, x, z; short ii, jj, xx;
X
X /* Zero out the array for the deltas first */
X for (i=0; i<XSIZE; i++) for (j=0; j<YSIZE; j++) e[i][j] = 0;
X
X /* Step across the entire array; each pixel is adjacent to 8 others, and */
X /* it turns out that if four pairs are considered for each pixel, each */
X /* pair is considered exactly once. This is important for even erosion */
X for (i=1; i<XSIZE; i++) for (j=1; j<YSIZE; j++) {
X t1 = t[dest][i][j];
X ERODE (t1, t[dest][i][j-1], e[i][j], e[i][j-1])
X ERODE (t1, t[dest][i-1][j-1], e[i][j], e[i-1][j-1])
X ERODE (t1, t[dest][i-1][j], e[i][j], e[i-1][j])
X if (j < YSIZE-1) {
X ERODE (t1, t[dest][i-1][j+1], e[i][j], e[i-1][j+1]) } }
X
X /* Now go back across the array, applying the delta values from e[][] */
X for (i=0; i<XSIZE; i++) for (j=0; j<YSIZE; j++) {
X z = t[dest][i][j] + e[i][j]; if (z < 0) z = 0; if (z > 255) z = 255;
X
X /* If the square just rose above shelf level, look at the four */
X /* adjacent squares. If one is a plate, add the square to that plate */
X if ((z >= ZSHELF) && (t[dest][i][j] < ZSHELF)) {
X if (i > 1) if (xx = m[dest][i-1][j]) { ii = i-1; jj = j; }
X if (i < XSIZE-1) if (xx = m[dest][i-1][j]) { ii = i+1; jj = j; }
X if (j > 1) if (xx = m[dest][i][j-1]) { ii = i; jj = j-1; }
X if (j < YSIZE-1) if (xx = m[dest][i][j+1]) { ii = i; jj = j+1; }
X p[xx].area++; m[dest][i][j] = xx; }
X
X /* If the square is lower than shelf level but belongs to a plate, */
X /* remove it from the plate */
X if (((t[dest][i][j] = z) < ZSHELF) && (x = m[dest][i][j])) {
X p[x].area--; m[dest][i][j] = 0; } } }
X
X
X
X
END_OF_FILE
if test 21292 -ne `wc -c <'tec-v3/tec1.c'`; then
echo shar: \"'tec-v3/tec1.c'\" unpacked with wrong size!
fi
# end of 'tec-v3/tec1.c'
fi
if test -f 'tec-v3/tec2.c' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'tec-v3/tec2.c'\"
else
echo shar: Extracting \"'tec-v3/tec2.c'\" \(14274 characters\)
sed "s/^X//" >'tec-v3/tec2.c' <<'END_OF_FILE'
X/* This program is Copyright (c) 1990 David Allen. It may be freely
X distributed as long as you leave my name and copyright notice on it.
X I'd really like your comments and feedback; send e-mail to
X davea@vlsi.ll.mit.edu, or send us-mail to David Allen, 10 O'Moore Ave,
X Maynard, MA 01754. */
X
X/* This file contains the function trysplit(), which is called from
X onestep() in tec1.c, and its subfunctions. One of its subfunctions,
X segment(), is also called from init() in tec1.c. Trysplit is the
X function in charge of splitting one plate into smaller plates. */
X
X
X#include "const.h"
X#include "var.h"
X
X#define PI 3.14159
X#define TWOPI 6.28318
X#define TWOMILLIPI 0.00628318
X
X/* RIFTMARK is the temporary indicator placed in the arrays to indicate
X the squares a rift has just appeared. The function stoprift() puts
X them in, and trysplit() takes them out before anybody can see them. */
X#define RIFTMARK -1
X
X/* These are all defined in tec1.c */
extern char m[2][MAXX][MAXY], r[MAXX][MAXY], kid[MAXFRAG];
extern unsigned char t[2][MAXX][MAXY];
extern short karea[MAXFRAG], tarea[MAXPLATE], ids[MAXPLATE], step;
extern struct plate p [MAXPLATE];
X
X
trysplit (src) short src; {
X /* Trysplit is called at most once per step in only 40% of the steps.
X It first draws a rift on one of the plates, then it segments the result
X into some number of new plates and some splinters. If exactly two new
X non-splinter plates are found, new plate structures are allocated, new
X dx and dy values are computed, and the old plate is freed. If anything
X goes wrong, the rift is erased from the array, returning the array to its
X previous state. The functions newrift, segment and newplates do most
X of the work. */
X
X register short i, j, a; short count, old, frag, reg;
X
X if (old = newrift (src)) if (segment (src, old, &frag, ®)) if (reg > 1) {
X
X /* Set tarea[i] to areas of the final segmented regions */
X for (i=0; i<=MAXPLATE; i++) tarea[i] = 0;
X for (i=1; i<=frag; i++) tarea[kid[i]] += karea[i];
X
X /* Give up unless exactly two regions are large enough */
X for (i=1, count=0; i<=reg; i++) if (tarea[i] > MAXSPLINTER) count++;
X if (count == 2) {
X
X /* Compute new dx,dy, then update m with the ids of the new plates */
X newplates (src, old);
X for (i=0, count=0; i<XSIZE; i++) for (j=0; j<YSIZE; j++) {
X if (a = r[i][j]) m[src][i][j] = ids[kid[a]];
X if (m[src][i][j] == RIFTMARK) {
X m[src][i][j] = 0; t[src][i][j] = 0; } }
X pfree (old); return (0); } }
X
X /* If execution reaches here, the split operation failed; remove rift */
X for (i=0; i<XSIZE; i++) for (j=0; j<YSIZE; j++)
X if (m[src][i][j] == RIFTMARK) m[src][i][j] = old; }
X
X
newrift (src) short src; {
X /* This function randomly picks a center for a new rift, and draws in
X a curving line until the line hits either the coast or another plate.
X If another plate is hit, the rift is invalid and the function returns 0.
X To find a center, the function generates random x,y values until it
X finds one that is at least RIFTDIST squares from any ocean square. If a
X center is found, a random angle is generated; the rift will pass through
X the center at that angle. Next, halfrift() is called twice. Each call
X generates the rift leaving the center in one direction. If everything
X works out, the function returns the id of the plate the rift is on. */
X
X short x, y, lx, rx, ty, by, i, j, tries = 0, which; double t;
X
X /* Generate a random x, y value */
X getctr: if (tries > MAXCTRTRY) return (0);
X x = rnd (XSIZE); y = rnd (YSIZE);
X
X /* If the location is ocean, try again */
X if (!m[src][x][y]) { tries++; goto getctr; }
X
X /* Set lx,rx,ty,by to the coordinate values of a box 2*RIFTDIST on a side */
X /* centered on the center. Clip the values to make sure they are on the */
X /* array. Loop through the box; if a point is ocean, try another center. */
X lx = (x < RIFTDIST) ? 0 : x - RIFTDIST;
X rx = (x > XSIZE - RIFTDIST - 1) ? XSIZE - 1 : x + RIFTDIST;
X ty = (y < RIFTDIST) ? 0 : y - RIFTDIST;
X by = (y > YSIZE - RIFTDIST - 1) ? YSIZE - 1 : y + RIFTDIST;
X for (i=lx; i<rx; i++) for (j=ty; j<by; j++)
X if (!m[src][i][j]) { tries++; goto getctr; }
X
X /* Found a good center, on plate `which'. Put a rift indicator in the */
X /* center. Generate a random angle t, which is really an integer in the */
X /* range 0-499 multiplied by 2 PI / 1000. Call halfrift once for each */
X /* half of the rift; t is the initial angle for the first call, and */
X /* t + PI is the initial angle for the second call. If halfrift() */
X /* returns zero, abort and return 0; otherwise, return the plate id. */
X which = m[src][x][y]; m[src][x][y] = RIFTMARK;
X t = rnd (500) * TWOMILLIPI;
X if (!halfrift (src, x, y, which, t)) return (0);
X t += PI; if (t > TWOPI) t -= TWOPI;
X if (!halfrift (src, x, y, which, t)) return (0);
X return ((int) which); }
X
X
halfrift (src, cx, cy, which, t) short src, cx, cy, which; double t; {
X /* Draw a rift from cx,cy on plate `which' at angle t. At the beginning,
X digitize the angle using Bresenham's algorithm; once in a while thereafter,
X modify the angle randomly and digitize it again. For each square travelled,
X call stoprift() to see if the rift has left the plate. */
X
X short ddx, ddy, rdx, rdy, draw, i, a; double dx, dy, adx, ady;
X
X /* For-loop against SIZE to guard against infinite loops */
X for (i=0; i<XSIZE; i++) {
X
X /* If first square or 1/6 chance at each step, digitize */
X if (!i || !rnd (BENDEVERY)) {
X
X /* If not first step, modify angle a little */
X if (i) t = t + (rnd (BENDBY<<1) * TWOMILLIPI) - (BENDBY * TWOMILLIPI);
X if (t > TWOPI) t -= TWOPI; if (t < 0) t += TWOPI;
X
X /* Compute dx and dy, scaled so that larger is exactly +1.0 or -1.0 */
X dy = sin (t); dx = cos (t); adx = ABS(dx); ady = ABS(dy);
X if (adx > ady) { dy = dy / adx; dx = (dx < 0) ? -1.0: 1.0; }
X else { dx = dx / ady; dy = (dy < 0) ? -1.0: 1.0; }
X
X /* Convert to integer value and initialize remainder */
X /* for each coordinate to half value */
X ddx = REALSCALE * dx; ddy = REALSCALE * dy;
X rdx = ddx >> 1; rdy = ddy >> 1; }
X
X /* Main part of loop, draws one square along line. The basic idea */
X /* of Bresenham's algorithm is that if the slope of the line is less */
X /* than 45 degrees, each time you step one square in X and maybe step */
X /* one square in Y. If the slope is greater than 45, step one square */
X /* in Y and maybe one square in X. Here, if the slope is less than 45 */
X /* then ddx == REALSCALE (or -REALSCALE) and the first call to */
X /* stoprift() is guaranteed. If stoprift returns <0, all is ok; */
X /* if zero, the rift ran into the ocean, so stop now; if positive, the */
X /* rift ran into another plate, which is a perverse condition and the */
X /* rift must be abandoned. */
X rdx += ddx; rdy += ddy;
X if (rdx >= REALSCALE) { cx++; rdx -= REALSCALE; draw = 1; }
X if (rdx <= -REALSCALE) { cx--; rdx += REALSCALE; draw = 1; }
X if (draw == 1) {
X a = stoprift (src, cx, cy, which); if (a >= 0) return (a == 0); }
X if (rdy >= REALSCALE) { cy++; rdy -= REALSCALE; draw = 2; }
X if (rdy <= -REALSCALE) { cy--; rdy += REALSCALE; draw = 2; }
X if (draw == 2) {
X a = stoprift (src, cx, cy, which); if (a >= 0) return (a == 0); } }
X return (1); }
X
X
stoprift (src, x, y, which) short src, x, y, which; {
X /* This function is called once for each square the rift enters. It
X puts a rift marker into m[src] and decides whether the rift can go on.
X It looks at all four adjacent squares. If one of them contains ocean
X or another plate, return immediately so that the rift stops (if ocean)
X or aborts (if another plate). If none of them do, then return ok. */
X
X register short w, a;
X
X w = which; p[w].area--; m[src][x][y] = RIFTMARK;
X a = m[src][x][y+1]; if ((a != w) && (a!= RIFTMARK)) return ((int) a);
X a = m[src][x][y-1]; if ((a != w) && (a!= RIFTMARK)) return ((int) a);
X a = m[src][x+1][y]; if ((a != w) && (a!= RIFTMARK)) return ((int) a);
X a = m[src][x-1][y]; if ((a != w) && (a!= RIFTMARK)) return ((int) a);
X return (-1); }
X
X
segment (src, match, frag, reg) short src, match, *frag, *reg; {
X /* This routine implements a standard binary-blob segmentation. It looks
X at the array m[src]; match is the value of the blob, and everything else
X is background. The result is placed into array r and vectors kid and karea.
X One 8-connected region can be made up of many fragments; each fragment is
X assigned a unique index. Array r contains the frag indices k, while kid[k]
X is the region frag k belongs to and karea[k] is the area of frag k.
X Variables frag and reg are set on output to the number of fragments and
X regions found during the segmentation. The private vector kk provides one
X level of indirection for merging fragments; fragment k is merged with
X fragment kk[k] where kk[k] is the smallest frag index in the region. */
X
X register short i, j, k, k1, k2, k3, l;
X char kk [MAXFRAG];
X
X /* Initialize all frag areas to zero and every frag to merge with itself */
X for (k=0; k<MAXFRAG; k++) { kk[k] = k; karea[k] = 0; }
X
X /* Look at every point in the array */
X for (k=0, i=0; i<XSIZE; i++) for (j=0; j<YSIZE; j++) {
X /* If too many fragments, give up */
X if (k == MAXFRAG) return (0);
X
X /* If this square isn't part of the blob, try the next square */
X if (m[src][i][j] != match) { r[i][j] = 0; goto bottom; }
X
X /* It is part of the blob. Set k1 to the frag id of the square to */
X /* its left, and set k2 to the frag id of the square above it. Note */
X /* that because of the for-loop direction, both of these squares have */
X /* already been processed. */
X k1 = i ? kk [r [i-1] [j]] : 0; k2 = j ? kk [r [i] [j-1]] : 0;
X
X /* If k1 and k2 are both background, start a new fragment */
X if (!k1 && !k2) { r[i][j] = ++k; karea[k]++; goto bottom; }
X
X /* If k1 and k2 are part of the same frag, add this square to it */
X if (k1 && (k1 == k2)) { r[i][j] = k1; karea[k1]++; goto bottom; }
X
X /* If k1 and k2 belong to different frags, merge them by finding */
X /* all the frags merged with max(k1,k2) and merging them instead */
X /* with min(k1,k2). Add k to that fragment as well. */
X if (k1 && k2) {
X if (k2 < k1) { k3 = k1; k1 = k2; k2 = k3; }
X for (l=1; l<=k; l++) if (kk[l] == k2) kk[l] = k1;
X r[i][j] = k1; karea[k1]++; goto bottom; }
X
X /* Default case is that one of k1,k2 is a fragment and the other is */
X /* background. Add k to the fragment. */
X k3 = (k1) ? k1 : k2; r[i][j] = k3; karea[k3]++;
X bottom: continue; }
X
X /* Set up vector kid to map from fragments to regions by using i to count */
X /* unique groups of fragments. A unique group of fragments is */
X /* characterized by kk[k] == k; otherwise, frag k is merged with some */
X /* other fragment. */
X for (i=0, j=1; j<=k; j++) {
X if (j == kk[j]) kid[j] = ++i;
X else kid[j] = kid [kk [j]]; }
X
X /* Make sure the id of the background is zero; set up return values */
X kid[0] = 0; *frag = k; *reg = i; return (1); }
X
X
X
newplates (src, old) short src, old; {
X /* Compute new dx and dy values for plates right after fragmentation. This
X function looks at the rift markers in m[src]; variable old is the index of
X the plate from which the new plates were created. For each plate adjacent
X to the rift, this function subtracts the number of plate squares to the left
X of the rift from the number to the right; this gives some indication of
X whether the plate should move left or right, and how fast. The same is done
X for squares above and below the rift. The results are put into dx[] and
X dy[]. At this point some unscaled movement vector is available for both of
X the new plates. The vectors are then scaled by the relative sizes of the
X plates. The idea is that if one plate is much larger than the other, the
X small one should move faster. New plate structures are allocated for the
X new plates, and the computed dx and dy values are put in them. */
X
X short dx[MAXPLATE], dy[MAXPLATE];
X register short i, j, a; short totarea=0, maxmag=0; double scale, b;
X
X for (i=1; i<MAXPLATE; i++) { dx[i] = 0; dy[i] = 0; ids[i] = 0; }
X
X /* For every point in the array, set a to the region id (kid is the */
X /* lookup table and r contains frag indices); if a is nonzero and */
X /* the rift is adjacent, adjust counters appropriately */
X for (i=0; i<XSIZE; i++) for (j=0; j<YSIZE; j++) if (a = kid[r[i][j]]) {
X if ((i-1 > -1) && (m[src][i-1][j] == RIFTMARK)) (dx[a])++;
X if ((i+1 < XSIZE) && (m[src][i+1][j] == RIFTMARK)) (dx[a])--;
X if ((j-1 > -1) && (m[src][i][j-1] == RIFTMARK)) (dy[a])++;
X if ((j+1 < XSIZE) && (m[src][i][j+1] == RIFTMARK)) (dy[a])--; }
X
X /* For those regions larger than splinters (tarea is set up in trysplit), */
X /* allocate a new plate structure and initialize its area; compute the */
X /* magnitude of the dx dy vector and remember the maximum magnitude; also */
X /* record the total area of new regions */
X for (i=1; i<MAXPLATE; i++) if (tarea[i] > MAXSPLINTER) {
X ids[i] = palloc (); p[ids[i]].area = tarea[i];
X totarea += tarea[i];
X a =sqrt ((double) ((dx[i]*dx[i]) + (dy[i]*dy[i])));
X if (a > maxmag) maxmag = a; }
X
X /* Generate a random speed and predivide so that all speeds computed */
X /* below are less than the random speed. */
X scale = (double) (rnd (SPEEDRNG) + SPEEDBASE) / (maxmag * totarea);
X
X /* Compute the dx and dy for each new plate; note that the speed the */
X /* plate was moving at before splitting is given by p[old].odx,ody */
X /* but those must be multiplied by MR to get the actual values */
X for (i=1; i<MAXPLATE; i++) if (ids[i]) {
X b = scale * (totarea - tarea[i]);
X p[ids[i]].odx = p[old].odx * MR [p[old].age] + dx[i] * b;
X p[ids[i]].ody = p[old].ody * MR [p[old].age] + dy[i] * b; } }
END_OF_FILE
if test 14274 -ne `wc -c <'tec-v3/tec2.c'`; then
echo shar: \"'tec-v3/tec2.c'\" unpacked with wrong size!
fi
# end of 'tec-v3/tec2.c'
fi
echo shar: End of shell archive.
exit 0