home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Usenet 1994 October
/
usenetsourcesnewsgroupsinfomagicoctober1994disk2.iso
/
misc
/
volume34
/
newmat06
/
part01
/
example.cxx
next >
Wrap
C/C++ Source or Header
|
1992-12-06
|
10KB
|
276 lines
//$$ example.cxx Example of use of matrix package
#define WANT_STREAM // include.h will get stream fns
#define WANT_MATH // include.h will get math fns
#include "include.h" // include standard files
#include "newmatap.h" // need matrix applications
Real t3(Real); // round to 3 decimal places
// demonstration of matrix package on linear regression problem
void test1(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
cout << "\n\nTest 1 - traditional\n";
// traditional sum of squares and products method of calculation
// with subtraction of means
// make matrix of predictor values
Matrix X(nobs,npred);
// load x1 and x2 into X
// [use << rather than = with submatrices and/or loading arrays]
X.Column(1) << x1; X.Column(2) << x2;
// vector of Y values
ColumnVector Y(nobs); Y << y;
// make vector of 1s
ColumnVector Ones(nobs); Ones = 1.0;
// calculate means (averages) of x1 and x2 [ .t() takes transpose]
RowVector M = Ones.t() * X / nobs;
// and subtract means from x1 and x1
Matrix XC(nobs,npred);
XC = X - Ones * M;
// do the same to Y [need "Real" to convert 1x1 matrix to scalar]
ColumnVector YC(nobs);
Real m = (Ones.t() * Y).AsScalar() / nobs; YC = Y - Ones * m;
// form sum of squares and product matrix
// [use << rather than = for copying Matrix into SymmetricMatrix]
SymmetricMatrix SSQ; SSQ << XC.t() * XC;
// calculate estimate
// [bracket last two terms to force this multiplication first]
// [ .i() means inverse, but inverse is not explicity calculated]
ColumnVector A = SSQ.i() * (XC.t() * YC);
// calculate estimate of constant term
Real a = m - (M * A).AsScalar();
// Get variances of estimates from diagonal elements of invoice of SSQ
// [ we are taking inverse of SSQ; would have been better to use
// CroutMatrix method - see documentation ]
Matrix ISSQ = SSQ.i(); DiagonalMatrix D; D << ISSQ;
ColumnVector V = D.AsColumn();
Real v = 1.0/nobs + (M * ISSQ * M.t()).AsScalar();
// for calc variance const
// Calculate fitted values and residuals
int npred1 = npred+1;
ColumnVector Fitted = X * A + a;
ColumnVector Residual = Y - Fitted;
Real ResVar = Residual.SumSquare() / (nobs-npred1);
// Get diagonals of Hat matrix (an expensive way of doing this)
Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X;
DiagonalMatrix Hat; Hat << X1 * (X1.t() * X1).i() * X1.t();
// print out answers
cout << "\nEstimates and their standard errors\n\n";
cout << a <<"\t"<< sqrt(v*ResVar) << "\n";
for (int i=1; i<=npred; i++)
cout << A(i) <<"\t"<< sqrt(V(i)*ResVar) << "\n";
cout << "\nObservations, fitted value, residual value, hat value\n";
for (i=1; i<=nobs; i++)
cout << X(i,1) <<"\t"<< X(i,2) <<"\t"<< Y(i) <<"\t"<<
t3(Fitted(i)) <<"\t"<< t3(Residual(i)) <<"\t"<< t3(Hat(i)) <<"\n";
cout << "\n\n";
}
void test2(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
cout << "\n\nTest 2 - Cholesky\n";
// traditional sum of squares and products method of calculation
// with subtraction of means - using Cholesky decomposition
Matrix X(nobs,npred);
X.Column(1) << x1; X.Column(2) << x2;
ColumnVector Y(nobs); Y << y;
ColumnVector Ones(nobs); Ones = 1.0;
RowVector M = Ones.t() * X / nobs;
Matrix XC(nobs,npred);
XC = X - Ones * M;
ColumnVector YC(nobs);
Real m = (Ones.t() * Y).AsScalar() / nobs; YC = Y - Ones * m;
SymmetricMatrix SSQ; SSQ << XC.t() * XC;
// Cholesky decomposition of SSQ
LowerTriangularMatrix L = Cholesky(SSQ);
// calculate estimate
ColumnVector A = L.t().i() * (L.i() * (XC.t() * YC));
// calculate estimate of constant term
Real a = m - (M * A).AsScalar();
// Get variances of estimates from diagonal elements of invoice of SSQ
DiagonalMatrix D; D << L.t().i() * L.i();
ColumnVector V = D.AsColumn();
Real v = 1.0/nobs + (L.i() * M.t()).SumSquare();
// Calculate fitted values and residuals
int npred1 = npred+1;
ColumnVector Fitted = X * A + a;
ColumnVector Residual = Y - Fitted;
Real ResVar = Residual.SumSquare() / (nobs-npred1);
// Get diagonals of Hat matrix (an expensive way of doing this)
Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X;
DiagonalMatrix Hat; Hat << X1 * (X1.t() * X1).i() * X1.t();
// print out answers
cout << "\nEstimates and their standard errors\n\n";
cout << a <<"\t"<< sqrt(v*ResVar) << "\n";
for (int i=1; i<=npred; i++)
cout << A(i) <<"\t"<< sqrt(V(i)*ResVar) << "\n";
cout << "\nObservations, fitted value, residual value, hat value\n";
for (i=1; i<=nobs; i++)
cout << X(i,1) <<"\t"<< X(i,2) <<"\t"<< Y(i) <<"\t"<<
t3(Fitted(i)) <<"\t"<< t3(Residual(i)) <<"\t"<< t3(Hat(i)) <<"\n";
cout << "\n\n";
}
void test3(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
cout << "\n\nTest 3 - Householder triangularisation\n";
// Householder triangularisation method
// load data - 1s into col 1 of matrix
int npred1 = npred+1;
Matrix X(nobs,npred1); ColumnVector Y(nobs);
X.Column(1) << 1.0; X.Column(2) << x1; X.Column(3) << x2; Y << y;
// do Householder triangularisation
// no need to deal with constant term separately
Matrix XT = X.t(); // Want data to be along rows
RowVector YT = Y.t();
LowerTriangularMatrix L; RowVector M;
HHDecompose(XT, L); HHDecompose(XT, YT, M); // YT now contains resids
ColumnVector A = L.t().i() * M.t();
ColumnVector Fitted = X * A;
Real ResVar = YT.SumSquare() / (nobs-npred1);
// get variances of estimates
L = L.i(); DiagonalMatrix D; D << L.t() * L;
// Get diagonals of Hat matrix
DiagonalMatrix Hat; Hat << XT.t() * XT;
// print out answers
cout << "\nEstimates and their standard errors\n\n";
for (int i=1; i<=npred1; i++)
cout << A(i) <<"\t"<< sqrt(D(i)*ResVar) << "\n";
cout << "\nObservations, fitted value, residual value, hat value\n";
for (i=1; i<=nobs; i++)
cout << X(i,2) <<"\t"<< X(i,3) <<"\t"<< Y(i) <<"\t"<<
t3(Fitted(i)) <<"\t"<< t3(YT(i)) <<"\t"<< t3(Hat(i)) <<"\n";
cout << "\n\n";
}
void test4(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
cout << "\n\nTest 4 - singular value\n";
// Singular value decomposition method
// load data - 1s into col 1 of matrix
int npred1 = npred+1;
Matrix X(nobs,npred1); ColumnVector Y(nobs);
X.Column(1) << 1.0; X.Column(2) << x1; X.Column(3) << x2; Y << y;
// do SVD
Matrix U, V; DiagonalMatrix D;
SVD(X,D,U,V); // X = U * D * V.t()
ColumnVector Fitted = U.t() * Y;
ColumnVector A = V * ( D.i() * Fitted );
Fitted = U * Fitted;
ColumnVector Residual = Y - Fitted;
Real ResVar = Residual.SumSquare() / (nobs-npred1);
// get variances of estimates
D << V * (D * D).i() * V.t();
// Get diagonals of Hat matrix
DiagonalMatrix Hat; Hat << U * U.t();
// print out answers
cout << "\nEstimates and their standard errors\n\n";
for (int i=1; i<=npred1; i++)
cout << A(i) <<"\t"<< sqrt(D(i)*ResVar) << "\n";
cout << "\nObservations, fitted value, residual value, hat value\n";
for (i=1; i<=nobs; i++)
cout << X(i,2) <<"\t"<< X(i,3) <<"\t"<< Y(i) <<"\t"<<
t3(Fitted(i)) <<"\t"<< t3(Residual(i)) <<"\t"<< t3(Hat(i)) <<"\n";
cout << "\n\n";
}
main()
{
cout << "\nDemonstration of Matrix package\n\n";
// Test for any memory not deallocated after running this program
Real* s1; { ColumnVector A(8000); s1 = A.Store(); }
{
// the data
// you may need to read this data using cin if you are using a
// compiler that doesn't understand aggregates
#ifndef ATandT
Real y[] = { 8.3, 5.5, 8.0, 8.5, 5.7, 4.4, 6.3, 7.9, 9.1 };
Real x1[] = { 2.4, 1.8, 2.4, 3.0, 2.0, 1.2, 2.0, 2.7, 3.6 };
Real x2[] = { 1.7, 0.9, 1.6, 1.9, 0.5, 0.6, 1.1, 1.0, 0.5 };
#else
Real y[9], x1[9], x2[9];
y[0]=8.3; y[1]=5.5; y[2]=8.0; y[3]=8.5; y[4]=5.7;
y[5]=4.4; y[6]=6.3; y[7]=7.9; y[8]=9.1;
x1[0]=2.4; x1[1]=1.8; x1[2]=2.4; x1[3]=3.0; x1[4]=2.0;
x1[5]=1.2; x1[6]=2.0; x1[7]=2.7; x1[8]=3.6;
x2[0]=1.7; x2[1]=0.9; x2[2]=1.6; x2[3]=1.9; x2[4]=0.5;
x2[5]=0.6; x2[6]=1.1; x2[7]=1.0; x2[8]=0.5;
#endif
int nobs = 9; // number of observations
int npred = 2; // number of predictor values
// we want to find the values of a,a1,a2 to give the best
// fit of y[i] with a0 + a1*x1[i] + a2*x2[i]
// Also print diagonal elements of hat matrix, X*(X.t()*X).i()*X.t()
// this example demonstrates four methods of calculation
Try
{
test1(y, x1, x2, nobs, npred);
test2(y, x1, x2, nobs, npred);
test3(y, x1, x2, nobs, npred);
test4(y, x1, x2, nobs, npred);
}
Catch(DataException) { cout << "\nInvalid data\n"; }
Catch(SpaceException) { cout << "\nMemory exhausted\n"; }
CatchAll { cout << "\nUnexpected program failure\n"; }
}
#ifdef DO_FREE_CHECK
FreeCheck::Status();
#endif
Real* s2; { ColumnVector A(8000); s2 = A.Store(); }
cout << "\n\nChecking for lost memory: "
<< (unsigned long)s1 << " " << (unsigned long)s2 << " ";
if (s1 != s2) cout << " - error\n"; else cout << " - ok\n";
return 0;
}
Real t3(Real r) { return int(r*1000) / 1000.0; }