home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Usenet 1994 October
/
usenetsourcesnewsgroupsinfomagicoctober1994disk2.iso
/
unix
/
volume15
/
moontool
/
moontool.c
< prev
next >
Wrap
C/C++ Source or Header
|
1988-06-02
|
25KB
|
804 lines
/*
A Moon for the Sun
Release 2.0
Designed and implemented by John Walker in December 1987,
revised and updated in February of 1988.
Make with:
cc -O moontool.c -o moontool -lm -lsuntool -lsunwindow -lpixrect
Adding appropriate floating point options to your hardware. This
program is a SunView tool which displays, as the icon for a closed
window, the current phase of the Moon. A subtitle in the icon gives
the age of the Moon in days and hours. If called with the "-t"
switch, it rapidly increments forward through time to display the
cycle of phases.
If you open the window, additional information is displayed regarding
the Moon. The information is generally accurate to within ten
minutes.
The algorithms used in this program to calculate the positions Sun and
Moon as seen from the Earth are given in the book "Practical Astronomy
With Your Calculator" by Peter Duffett-Smith, Second Edition,
Cambridge University Press, 1981. Ignore the word "Calculator" in the
title; this is an essential reference if you're interested in
developing software which calculates planetary positions, orbits,
eclipses, and the like. If you're interested in pursuing such
programming, you should also obtain:
"Astronomical Formulae for Calculators" by Jean Meeus, Third Edition,
Willmann-Bell, 1985. A must-have.
"Planetary Programs and Tables from -4000 to +2800" by Pierre
Bretagnon and Jean-Louis Simon, Willmann-Bell, 1986. If you want the
utmost (outside of JPL) accuracy for the planets, it's here.
"Celestial BASIC" by Eric Burgess, Revised Edition, Sybex, 1985. Very
cookbook oriented, and many of the algorithms are hard to dig out of
the turgid BASIC code, but you'll probably want it anyway.
Many of these references can be obtained from Willmann-Bell, P.O. Box
35025, Richmond, VA 23235, USA. Phone: (804) 320-7016. In addition
to their own publications, they stock most of the standard references
for mathematical and positional astronomy.
This program was written by:
John Walker
Autodesk, Inc.
2320 Marinship Way
Sausalito, CA 94965
(415) 332-2344 Ext. 829
Usenet: {sun!well}!acad!kelvin
This program is in the public domain: "Do what thou wilt shall be the
whole of the law". I'd appreciate receiving any bug fixes and/or
enhancements, which I'll incorporate in future versions of the
program. Please leave the original attribution information intact so
that credit and blame may be properly apportioned.
*/
/* Astronomical constants */
#define epoch 2444238.5 /* 1980 January 0.0 */
/* Constants defining the Sun's apparent orbit */
#define elonge 278.833540 /* Ecliptic longitude of the Sun
at epoch 1980.0 */
#define elongp 282.596403 /* Ecliptic longitude of the Sun at
perigee */
#define eccent 0.016718 /* Eccentricity of Earth's orbit */
#define sunsmax 1.495985e8 /* Semi-major axis of Earth's orbit, km */
#define sunangsiz 0.533128 /* Sun's angular size, degrees, at
semi-major axis distance */
/* Elements of the Moon's orbit, epoch 1980.0 */
#define mmlong 64.975464 /* Moon's mean lonigitude at the epoch */
#define mmlongp 349.383063 /* Mean longitude of the perigee at the
epoch */
#define mlnode 151.950429 /* Mean longitude of the node at the
epoch */
#define minc 5.145396 /* Inclination of the Moon's orbit */
#define mecc 0.054900 /* Eccentricity of the Moon's orbit */
#define mangsiz 0.5181 /* Moon's angular size at distance a
from Earth */
#define msmax 384401.0 /* Semi-major axis of Moon's orbit in km */
#define mparallax 0.9507 /* Parallax at distance a from Earth */
#define synmonth 29.53058868 /* Synodic month (new Moon to new Moon) */
#define lunatbase 2423436.0 /* Base date for E. W. Brown's numbered
series of lunations (1923 January 16) */
/* Properties of the Earth */
#define earthrad 6378.16 /* Radius of Earth in kilometres */
#include <stdio.h>
#include <math.h>
#include <suntool/sunview.h>
#include <suntool/canvas.h>
/* Icon definition. This is just a black field with rounded corners
that blend into the root desktop pattern. The image of the moon and
the text are added by the program later. */
static short moon_img[64][4] = {
/* Format_version=1, Width=64, Height=64, Depth=1, Valid_bits_per_item=16 */
0x8FFF,0xFFFF,0xFFFF,0xFFE8,0x9FFF,0xFFFF,0xFFFF,0xFFF8,
0x3FFF,0xFFFF,0xFFFF,0xFFFE,0x7FFF,0xFFFF,0xFFFF,0xFFFE,
0xFFFF,0xFFFF,0xFFFF,0xFFFE,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0x7FFF,0xFFFF,0xFFFF,0xFFFE,
0xFFFF,0xFFFF,0xFFFF,0xFFFE,0xBFFF,0xFFFF,0xFFFF,0xFFFC,
0x3FFF,0xFFFF,0xFFFF,0xFFFA,0x27FF,0xFFFF,0xFFFF,0xFFE2
};
DEFINE_ICON_FROM_IMAGE(moon_icon, moon_img);
mpr_static(icon_mpr, 64, 64, 1, moon_img);
static Frame frame;
static Pixfont *pfont;
static Canvas canvas;
static Pixwin *cpw;
static int charhgt, charwid;
#define PI 3.14159265358979323846 /* Assume not near black hole nor in
Tennessee */
/* Handy mathematical functions */
#define sgn(x) (((x) < 0) ? -1 : ((x) > 0 ? 1 : 0)) /* Extract sign */
#define abs(x) ((x) < 0 ? (-(x)) : (x)) /* Absolute val */
#define fixangle(a) ((a) - 360.0 * (floor((a) / 360.0))) /* Fix angle */
#define torad(d) ((d) * (PI / 180.0)) /* Deg->Rad */
#define todeg(d) ((d) * (180.0 / PI)) /* Rad->Deg */
#define dsin(x) (sin(torad((x)))) /* Sin from deg */
#define dcos(x) (cos(torad((x)))) /* Cos from deg */
static int testmode = FALSE; /* Rapid warp through time for debugging */
/* Forward functions */
double jtime(), phase();
void phasehunt();
Notify_value ringgg();
void drawmoon(), jyear(), jhms();
/* Main program */
main(argc, argv)
int argc;
char *argv[];
{
int i;
struct itimerval kickme;
struct pixfont *font;
for (i = 1; i < argc; i++) {
if (*argv[i] == '-' && argv[i][1] == 't')
testmode = TRUE;
}
pfont = pf_open("/usr/lib/fonts/fixedwidthfonts/screen.r.7");
frame = window_create(NULL, FRAME,
FRAME_LABEL,
"A Moon for the Sun by John Walker, Autodesk, Inc. v2.0",
FRAME_ICON, &moon_icon,
FRAME_ARGS, argc, argv,
FRAME_CLOSED, 1,
WIN_ERROR_MSG, "Can't create window.",
0);
canvas = window_create(frame, CANVAS, CANVAS_RETAINED, TRUE, 0);
cpw = canvas_pixwin(canvas);
font = (struct pixfont *) window_get(canvas, WIN_FONT);
charwid = font->pf_defaultsize.x;
charhgt = font->pf_defaultsize.y;
window_set(frame, WIN_WIDTH, charwid * 70,
WIN_HEIGHT, charhgt * 19, 0);
ringgg((Notify_client) NULL, 0);
kickme.it_interval.tv_usec = kickme.it_value.tv_usec =
testmode ? 125000 : 0;
kickme.it_interval.tv_sec = kickme.it_value.tv_sec =
testmode ? 0 : 1;
notify_set_itimer_func(frame, ringgg, ITIMER_REAL,
&kickme, NULL);
window_main_loop(frame);
}
/* DRAWMOON -- Construct icon for moon, given phase of moon. */
static void drawmoon(ph)
double ph;
{
int i, j, lx, rx;
int lb[4];
double cp, xscale;
xscale = cos(2 * PI * ph);
for (i = 0; i < 24; i++) {
lb[0] = lb[1] = lb[2] = lb[3] = 0xFFFF;
cp = 24.0 * cos(asin(i / 24.0));
if (ph < 0.5) {
rx = 32 + cp;
lx = 32 + xscale * cp;
} else {
lx = 33 - cp;
rx = 33 - xscale * cp;
}
for (j = lx; j <= rx; j++) {
lb[j >> 4] &= (0x8000 >> (j & 0xF)) ^ 0xFFFF;
}
for (j = 0; j < 4; j++)
moon_img[28 + i][j] = moon_img[28 - i][j] = lb[j];
}
}
/* RINGGG -- Update status on interval timer ticks and redraw
window if needed. */
static Notify_value ringgg(client, itimer_type)
Notify_client client;
int itimer_type;
{
int lunation, wclosed;
long t;
double jd, p, aom, cphase, cdist, cangdia, csund, csuang, lptime;
double phasar[5];
static double nptime = 0.0; /* Next new moon time */
static int updyet = 0; /* Update interval when window closed */
static int firstime = TRUE; /* Calculate text page first time */
struct pr_prpos tloc;
char amsg[12], tbuf[80];
static double faketime = 0.0;
static short moonilast[64][4] = {0};
int yy, mm, dd, hh, mmm, ss;
struct tm *gm;
static char *moname[] = {"January", "February", "March",
"April", "May", "June", "July", "August", "September",
"October", "November", "December"};
#define CUPDINT 120 /* Update the icon every CUPDINT seconds
when the window is iconic */
/* If the window is closed, only update the icon every
two minutes */
wclosed = (int) window_get(frame, FRAME_CLOSED);
if (wclosed && (--updyet > 0) && !testmode)
return;
updyet = CUPDINT;
(void) time(&t);
jd = jtime((gm = gmtime(&t)));
if (testmode) {
if (faketime == 0.0)
faketime = jd + 1;
else
faketime += 1.0 / 24;
jd = faketime;
}
p = phase(jd, &cphase, &aom, &cdist, &cangdia, &csund, &csuang);
drawmoon(p);
sprintf(amsg, " %dd %dh ",
(int) aom, ((int) (24 * (aom - floor(aom)))));
tloc.pr = (Pixrect *) icon_get(&moon_icon, ICON_IMAGE);
tloc.pos.x = 2;
tloc.pos.y = 62;
pf_text(tloc, PIX_NOT(PIX_SRC), pfont, amsg);
/* Only update icon if it changed (this eliminates gratuitous
flashing of the icon on-screen). */
if (bcmp(moonilast, moon_img, sizeof moon_img) != 0) {
bcopy(moon_img, moonilast, sizeof moon_img);
window_set(frame, FRAME_ICON, &moon_icon, 0);
}
/* If we're iconic, there's nothing more to do. */
if (wclosed && !firstime)
return;
/* Update textual information for open window */
#define prt(x) pw_text(cpw, charwid, charhgt * (x), PIX_SRC, NULL, tbuf)
#define prtxy(x,y) pw_text(cpw,charwid*(y+1),charhgt*(x),PIX_SRC,NULL,tbuf)
firstime = FALSE;
sprintf(tbuf, "Julian date: %.5f", jd + 0.5);
prt(1);
if (testmode) {
jyear(jd, &yy, &mm, &dd);
jhms(jd, &hh, &mmm, &ss);
sprintf(tbuf,
"Universal time: %02d:%02d:%02d %d %s %d ",
hh, mmm, ss, dd, moname[mm - 1], yy);
} else {
sprintf(tbuf,
"Universal time: %02d:%02d:%02d %d %s %d ",
gm->tm_hour, gm->tm_min, gm->tm_sec,
gm->tm_mday, moname[gm->tm_mon], gm->tm_year + 1900);
}
prt(2);
gm = localtime(&t);
sprintf(tbuf, "Local time: %02d:%02d:%02d %d %s %d ",
gm->tm_hour, gm->tm_min, gm->tm_sec,
gm->tm_mday, moname[gm->tm_mon], gm->tm_year + 1900);
if (!testmode) { /* Ignore local time in test mode */
prt(3);
}
sprintf(tbuf, "Moon phase: %d%% 0%% = New, 100%% = Full ",
(int) (cphase * 100));
prt(5);
/* Information about the Moon */
#define EPL(x) (x), (x) == 1 ? "" : "s"
sprintf(tbuf,
"Age of moon: %d day%s, %d hour%s, %d minute%s. ",
EPL((int) aom), EPL(((int) (24 * (aom - floor(aom))))),
EPL(((int) (1440 * (aom - floor(aom)))) % 60));
prt(6);
sprintf(tbuf,
"Moon's distance: %ld kilometres, %.1f Earth radii. ",
(long) cdist, cdist / earthrad);
prt(7);
sprintf(tbuf,
"Moon subtends: %.4f degrees. ", cangdia);
prt(8);
/* Draw the moon icon in the text window */
pw_rop(cpw, 60 * charwid, 4 * charhgt, 64, 64, PIX_SRC,
&icon_mpr, 0, 0);
/* Edit information about the Sun */
sprintf(tbuf,
"Sun's distance: %.0f kilometres, %.3f astronomical units. ",
csund, csund / sunsmax);
prt(10);
sprintf(tbuf,
"Sun subtends: %.4f degrees. ", csuang);
prt(11);
/* Calculate times of phases of this lunation. This is sufficiently
time-consuming that we only do it once a month. */
if (jd > nptime) {
#define APOS(x) (x + 13)
phasehunt(jd, phasar);
lptime = phasar[0];
lunation = floor(((lptime + 7) - lunatbase) / synmonth) + 1;
jyear(lptime, &yy, &mm, &dd);
jhms(lptime, &hh, &mmm, &ss);
sprintf(tbuf,
"Last new moon: %02d:%02d UTC %d %s %d ",
hh, mmm, dd, moname[mm - 1], yy);
prt(APOS(0));
sprintf(tbuf, "Lunation %d ", lunation);
prtxy(APOS(0), 47);
lptime = phasar[1];
jyear(lptime, &yy, &mm, &dd);
jhms(lptime, &hh, &mmm, &ss);
sprintf(tbuf,
"First quarter: %02d:%02d UTC %d %s %d ",
hh, mmm, dd, moname[mm - 1], yy);
prt(APOS(1));
lptime = phasar[2];
jyear(lptime, &yy, &mm, &dd);
jhms(lptime, &hh, &mmm, &ss);
sprintf(tbuf,
"Full moon: %02d:%02d UTC %d %s %d ",
hh, mmm, dd, moname[mm - 1], yy);
prt(APOS(2));
lptime = phasar[3];
jyear(lptime, &yy, &mm, &dd);
jhms(lptime, &hh, &mmm, &ss);
sprintf(tbuf,
"Last quarter: %02d:%02d UTC %d %s %d ",
hh, mmm, dd, moname[mm - 1], yy);
prt(APOS(3));
nptime = phasar[4];
jyear(nptime, &yy, &mm, &dd);
jhms(nptime, &hh, &mmm, &ss);
sprintf(tbuf,
"Next new moon: %02d:%02d UTC %d %s %d ",
hh, mmm, dd, moname[mm - 1], yy);
prt(APOS(4));
sprintf(tbuf, "Lunation %d ", lunation + 1);
prtxy(APOS(4), 47);
}
#undef APOS
}
/* JDATE -- Convert internal GMT date and time to Julian day
and fraction. */
static long jdate(t)
struct tm *t;
{
long c, m, y;
y = t->tm_year + 1900;
m = t->tm_mon + 1;
if (m > 2)
m = m - 3;
else {
m = m + 9;
y--;
}
c = y / 100L; /* Compute century */
y -= 100L * c;
return t->tm_mday + (c * 146097L) / 4 + (y * 1461L) / 4 +
(m * 153L + 2) / 5 + 1721119L;
}
/* JTIME -- Convert internal GMT date and time to astronomical Julian
time (i.e. Julian date plus day fraction, expressed as
a double). */
static double jtime(t)
struct tm *t;
{
return (jdate(t) - 0.5) +
(t->tm_sec + 60 * (t->tm_min + 60 * t->tm_hour)) / 86400.0;
}
/* JYEAR -- Convert Julian date to year, month, day, which are
returned via integer pointers to integers. */
static void jyear(td, yy, mm, dd)
double td;
int *yy, *mm, *dd;
{
double j, d, y, m;
td += 0.5; /* Astronomical to civil */
j = floor(td);
j = j - 1721119.0;
y = floor(((4 * j) - 1) / 146097.0);
j = (j * 4.0) - (1.0 + (146097.0 * y));
d = floor(j / 4.0);
j = floor(((4.0 * d) + 3.0) / 1461.0);
d = ((4.0 * d) + 3.0) - (1461.0 * j);
d = floor((d + 4.0) / 4.0);
m = floor(((5.0 * d) - 3) / 153.0);
d = (5.0 * d) - (3.0 + (153.0 * m));
d = floor((d + 5.0) / 5.0);
y = (100.0 * y) + j;
if (m < 10.0)
m = m + 3;
else {
m = m - 9;
y = y + 1;
}
*yy = y;
*mm = m;
*dd = d;
}
/* JHMS -- Convert Julian time to hour, minutes, and seconds. */
static void jhms(j, h, m, s)
double j;
int *h, *m, *s;
{
long ij;
j += 0.5; /* Astronomical to civil */
ij = (j - floor(j)) * 86400.0;
*h = ij / 3600L;
*m = (ij / 60L) % 60L;
*s = ij % 60L;
}
/* MEANPHASE -- Calculates mean phase of the Moon for a given
base date and desired phase:
0.0 New Moon
0.25 First quarter
0.5 Full moon
0.75 Last quarter
Beware!!! This routine returns meaningless
results for any other phase arguments. Don't
attempt to generalise it without understanding
that the motion of the moon is far more complicated
that this calculation reveals. */
static double meanphase(sdate, phase, usek)
double sdate, phase;
double *usek;
{
int yy, mm, dd;
double k, t, t2, t3, nt1;
jyear(sdate, &yy, &mm, &dd);
k = (yy + ((mm - 1) * (1.0 / 12.0)) - 1900) * 12.3685;
/* Time in Julian centuries from 1900 January 0.5 */
t = (sdate - 2415020.0) / 36525;
t2 = t * t; /* Square for frequent use */
t3 = t2 * t; /* Cube for frequent use */
*usek = k = floor(k) + phase;
nt1 = 2415020.75933 + synmonth * k
+ 0.0001178 * t2
- 0.000000155 * t3
+ 0.00033 * dsin(166.56 + 132.87 * t - 0.009173 * t2);
return nt1;
}
/* TRUEPHASE -- Given a K value used to determine the
mean phase of the new moon, and a phase
selector (0.0, 0.25, 0.5, 0.75), obtain
the true, corrected phase time. */
static double truephase(k, phase)
double k, phase;
{
double t, t2, t3, pt, m, mprime, f;
int apcor = FALSE;
k += phase; /* Add phase to new moon time */
t = k / 1236.85; /* Time in Julian centuries from
1900 January 0.5 */
t2 = t * t; /* Square for frequent use */
t3 = t2 * t; /* Cube for frequent use */
pt = 2415020.75933 /* Mean time of phase */
+ synmonth * k
+ 0.0001178 * t2
- 0.000000155 * t3
+ 0.00033 * dsin(166.56 + 132.87 * t - 0.009173 * t2);
m = 359.2242 /* Sun's mean anomaly */
+ 29.10535608 * k
- 0.0000333 * t2
- 0.00000347 * t3;
mprime = 306.0253 /* Moon's mean anomaly */
+ 385.81691806 * k
+ 0.0107306 * t2
+ 0.00001236 * t3;
f = 21.2964 /* Moon's argument of latitude */
+ 390.67050646 * k
- 0.0016528 * t2
- 0.00000239 * t3;
if ((phase < 0.01) || (abs(phase - 0.5) < 0.01)) {
/* Corrections for New and Full Moon */
pt += (0.1734 - 0.000393 * t) * dsin(m)
+ 0.0021 * dsin(2 * m)
- 0.4068 * dsin(mprime)
+ 0.0161 * dsin(2 * mprime)
- 0.0004 * dsin(3 * mprime)
+ 0.0104 * dsin(2 * f)
- 0.0051 * dsin(m + mprime)
- 0.0074 * dsin(m - mprime)
+ 0.0004 * dsin(2 * f + m)
- 0.0004 * dsin(2 * f - m)
- 0.0006 * dsin(2 * f + mprime)
+ 0.0010 * dsin(2 * f - mprime)
+ 0.0005 * dsin(m + 2 * mprime);
apcor = TRUE;
} else if ((abs(phase - 0.25) < 0.01 || (abs(phase - 0.75) < 0.01))) {
pt += (0.1721 - 0.0004 * t) * dsin(m)
+ 0.0021 * dsin(2 * m)
- 0.6280 * dsin(mprime)
+ 0.0089 * dsin(2 * mprime)
- 0.0004 * dsin(3 * mprime)
+ 0.0079 * dsin(2 * f)
- 0.0119 * dsin(m + mprime)
- 0.0047 * dsin(m - mprime)
+ 0.0003 * dsin(2 * f + m)
- 0.0004 * dsin(2 * f - m)
- 0.0006 * dsin(2 * f + mprime)
+ 0.0021 * dsin(2 * f - mprime)
+ 0.0003 * dsin(m + 2 * mprime)
+ 0.0004 * dsin(m - 2 * mprime)
- 0.0003 * dsin(2 * m + mprime);
if (phase < 0.5)
/* First quarter correction */
pt += 0.0028 - 0.0004 * dcos(m) + 0.0003 * dcos(mprime);
else
/* Last quarter correction */
pt += -0.0028 + 0.0004 * dcos(m) - 0.0003 * dcos(mprime);
apcor = TRUE;
}
if (!apcor) {
fprintf(stderr, "TRUEPHASE called with invalid phase selector.\n");
abort();
}
return pt;
}
/* PHASEHUNT -- Find time of phases of the moon which surround
the current date. Five phases are found, starting
and ending with the new moons which bound the
current lunation. */
static void phasehunt(sdate, phases)
double sdate;
double phases[5];
{
double adate, k1, k2, nt1, nt2;
adate = sdate - 45;
nt1 = meanphase(adate, 0.0, &k1);
while (TRUE) {
adate += synmonth;
nt2 = meanphase(adate, 0.0, &k2);
if (nt1 <= sdate && nt2 > sdate)
break;
nt1 = nt2;
k1 = k2;
}
phases[0] = truephase(k1, 0.0);
phases[1] = truephase(k1, 0.25);
phases[2] = truephase(k1, 0.5);
phases[3] = truephase(k1, 0.75);
phases[4] = truephase(k2, 0.0);
}
/* KEPLER -- Solve the equation of Kepler. */
static double kepler(m, ecc)
double m, ecc;
{
double e, delta;
#define EPSILON 1E-6
e = m = torad(m);
do {
delta = e - ecc * sin(e) - m;
e -= delta / (1 - ecc * cos(e));
} while (abs(delta) > EPSILON);
return e;
}
/* PHASE -- Calculate phase of moon as a fraction:
The argument is the time for which the phase is requested,
expressed as a Julian date and fraction. Returns the terminator
phase angle as a percentage of a full circle (i.e., 0 to 1),
and stores into pointer arguments the illuminated fraction of
the Moon's disc, the Moon's age in days and fraction, the
distance of the Moon from the centre of the Earth, and the
angular diameter subtended by the Moon as seen by an observer
at the centre of the Earth.
*/
static double phase(pdate, pphase, mage, dist, angdia, sudist, suangdia)
double pdate;
double *pphase; /* Illuminated fraction */
double *mage; /* Age of moon in days */
double *dist; /* Distance in kilometres */
double *angdia; /* Angular diameter in degrees */
double *sudist; /* Distance to Sun */
double *suangdia; /* Sun's angular diameter */
{
double Day, N, M, Ec, Lambdasun, ml, MM, MN, Ev, Ae, A3, MmP,
mEc, A4, lP, V, lPP, NP, y, x, Lambdamoon, BetaM,
MoonAge, MoonPhase,
MoonDist, MoonDFrac, MoonAng, MoonPar,
F, SunDist, SunAng;
/* Calculation of the Sun's position */
Day = pdate - epoch; /* Date within epoch */
N = fixangle((360 / 365.2422) * Day); /* Mean anomaly of the Sun */
M = fixangle(N + elonge - elongp); /* Convert from perigee
co-ordinates to epoch 1980.0 */
Ec = kepler(M, eccent); /* Solve equation of Kepler */
Ec = sqrt((1 + eccent) / (1 - eccent)) * tan(Ec / 2);
Ec = 2 * todeg(atan(Ec)); /* True anomaly */
Lambdasun = fixangle(Ec + elongp); /* Sun's geocentric ecliptic
longitude */
/* Orbital distance factor */
F = ((1 + eccent * cos(torad(Ec))) / (1 - eccent * eccent));
SunDist = sunsmax / F; /* Distance to Sun in km */
SunAng = F * sunangsiz; /* Sun's angular size in degrees */
/* Calculation of the Moon's position */
/* Moon's mean longitude */
ml = fixangle(13.1763966 * Day + mmlong);
/* Moon's mean anomaly */
MM = fixangle(ml - 0.1114041 * Day - mmlongp);
/* Moon's ascending node mean longitude */
MN = fixangle(mlnode - 0.0529539 * Day);
/* Evection */
Ev = 1.2739 * sin(torad(2 * (ml - Lambdasun) - MM));
/* Annual equation */
Ae = 0.1858 * sin(torad(M));
/* Correction term */
A3 = 0.37 * sin(torad(M));
/* Corrected anomaly */
MmP = MM + Ev - Ae - A3;
/* Correction for the equation of the centre */
mEc = 6.2886 * sin(torad(MmP));
/* Another correction term */
A4 = 0.214 * sin(torad(2 * MmP));
/* Corrected longitude */
lP = ml + Ev + mEc - Ae + A4;
/* Variation */
V = 0.6583 * sin(torad(2 * (lP - Lambdasun)));
/* True longitude */
lPP = lP + V;
/* Corrected longitude of the node */
NP = MN - 0.16 * sin(torad(M));
/* Y inclination coordinate */
y = sin(torad(lPP - NP)) * cos(torad(minc));
/* X inclination coordinate */
x = cos(torad(lPP - NP));
/* Ecliptic longitude */
Lambdamoon = todeg(atan2(y, x));
Lambdamoon += NP;
/* Ecliptic latitude */
BetaM = todeg(asin(sin(torad(lPP - NP)) * sin(torad(minc))));
/* Calculation of the phase of the Moon */
/* Age of the Moon in degrees */
MoonAge = lPP - Lambdasun;
/* Phase of the Moon */
MoonPhase = (1 - cos(torad(MoonAge))) / 2;
/* Calculate distance of moon from the centre of the Earth */
MoonDist = (msmax * (1 - mecc * mecc)) /
(1 + mecc * cos(torad(MmP + mEc)));
/* Calculate Moon's angular diameter */
MoonDFrac = MoonDist / msmax;
MoonAng = mangsiz / MoonDFrac;
/* Calculate Moon's parallax */
MoonPar = mparallax / MoonDFrac;
*pphase = MoonPhase;
*mage = synmonth * (fixangle(MoonAge) / 360.0);
*dist = MoonDist;
*angdia = MoonAng;
*sudist = SunDist;
*suangdia = SunAng;
return fixangle(MoonAge) / 360.0;
}