home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Usenet 1994 October
/
usenetsourcesnewsgroupsinfomagicoctober1994disk2.iso
/
unix
/
volume27
/
top-3.2
/
part05
< prev
next >
Wrap
Text File
|
1993-08-08
|
53KB
|
2,049 lines
Newsgroups: comp.sources.unix
From: phil@eecs.nwu.edu (William LeFebvre)
Subject: v27i005: top - a top process display, version 3.2, Part05/13
References: <1.744843136.4744@gw.home.vix.com>
Sender: unix-sources-moderator@gw.home.vix.com
Approved: vixie@gw.home.vix.com
Submitted-By: phil@eecs.nwu.edu (William LeFebvre)
Posting-Number: Volume 27, Issue 5
Archive-Name: top-3.2/part05
#! /bin/sh
# This is a shell archive. Remove anything before this line, then unpack
# it by saving it into a file and typing "sh file". To overwrite existing
# files, type "sh file -c". You can also feed this as standard input via
# unshar, or by typing "sh <file", e.g.. If this archive is complete, you
# will see the following message at the end:
# "End of archive 5 (of 13)."
# Contents: machine/m_mtxinu.c machine/m_umax.c machine/m_utek.c
# Wrapped by phil@pex on Wed Aug 4 14:22:42 1993
PATH=/bin:/usr/bin:/usr/ucb ; export PATH
if test -f 'machine/m_mtxinu.c' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'machine/m_mtxinu.c'\"
else
echo shar: Extracting \"'machine/m_mtxinu.c'\" \(16168 characters\)
sed "s/^X//" >'machine/m_mtxinu.c' <<'END_OF_FILE'
X/*
X * top - a top users display for Unix
X *
X * SYNOPSIS: any VAX Running Mt. Xinu MORE/bsd
X *
X * DESCRIPTION:
X * This is the machine-dependent module for Sequent Dynix 3
X * This makes top work on the following systems:
X * Mt. Xinu MORE/bsd
X *
X * AUTHOR: Daniel Trinkle <trinkle@cs.purdue.edu>
X */
X
X#include <sys/types.h>
X#include <sys/signal.h>
X#include <sys/param.h>
X
X#include <stdio.h>
X#include <nlist.h>
X#include <math.h>
X#include <sys/dir.h>
X#include <sys/user.h>
X#include <sys/proc.h>
X#include <sys/dk.h>
X#include <sys/vm.h>
X#include <sys/file.h>
X#include <machine/pte.h>
X
X#include "top.h"
X#include "machine.h"
X
X/* get_process_info passes back a handle. This is what it looks like: */
X
Xstruct handle
X{
X struct proc **next_proc; /* points to next valid proc pointer */
X int remaining; /* number of pointers remaining */
X};
X
X/* declarations for load_avg */
Xtypedef long load_avg;
Xtypedef long pctcpu;
X#define loaddouble(la) ((double)(la) / FSCALE)
X#define intload(i) ((int)((i) * FSCALE))
X#define pctdouble(p) ((double)(p) / FSCALE)
X
X/* what we consider to be process size: */
X#define PROCSIZE(pp) ((pp)->p_tsize + (pp)->p_dsize + (pp)->p_ssize)
X
X/* definitions for indices in the nlist array */
X#define X_AVENRUN 0
X#define X_CCPU 1
X#define X_MPID 2
X#define X_NPROC 3
X#define X_PROC 4
X#define X_TOTAL 5
X#define X_CP_TIME 6
X
Xstatic struct nlist nlst[] = {
X { "_avenrun" }, /* 0 */
X { "_ccpu" }, /* 1 */
X { "_mpid" }, /* 2 */
X { "_nproc" }, /* 3 */
X { "_proc" }, /* 4 */
X { "_total" }, /* 5 */
X { "_cp_time" }, /* 6 */
X { 0 }
X};
X
X/*
X * These definitions control the format of the per-process area
X */
X
Xstatic char header[] =
X " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
X/* 0123456 -- field to fill in starts at header+6 */
X#define UNAME_START 6
X
X#define Proc_format \
X "%5d %-8.8s %3d %4d%6dK %4dK %-5s%4d:%02d %5.2f%% %5.2f%% %.14s"
X
X
X/* process state names for the "STATE" column of the display */
X/* the extra nulls in the string "run" are for adding a slash and
X the processor number when needed */
X
Xchar *state_abbrev[] =
X{
X "", "sleep", "WAIT", "run", "start", "zomb", "stop"
X};
X
X/* values that we stash away in _init and use in later routines */
X
Xstatic double logcpu;
X
X#define VMUNIX "/vmunix"
X#define KMEM "/dev/kmem"
X#define MEM "/dev/mem"
X
Xstatic int kmem = -1;
Xstatic int mem = -1;
X
Xstruct vmtotal total;
X
X/* these are retrieved from the kernel in _init */
X
Xstatic unsigned long proc;
Xstatic int nproc;
Xstatic load_avg ccpu;
X
X/* these are offsets obtained via nlist and used in the get_ functions */
X
Xstatic unsigned long mpid_offset;
Xstatic unsigned long avenrun_offset;
Xstatic unsigned long total_offset;
Xstatic unsigned long cp_time_offset;
X
X/* these are for calculating cpu state percentages */
X
Xstatic long cp_time[CPUSTATES];
Xstatic long cp_old[CPUSTATES];
Xstatic long cp_diff[CPUSTATES];
X
X/* these are for detailing the process states */
X
Xint process_states[7];
Xchar *procstatenames[] = {
X "", " sleeping, ", " ABANDONED, ", " running, ", " starting, ",
X " zombie, ", " stopped, ",
X NULL
X};
X
X/* these are for detailing the cpu states */
X
Xint cpu_states[CPUSTATES];
Xchar *cpustatenames[] = {
X "user", "nice", "system", "idle",
X NULL
X};
X
X/* these are for detailing the memory statistics */
X
Xint memory_stats[5];
Xchar *memorynames[] = {
X "K (", "K) real, ", "K (", "K) virtual, ", "K free", NULL
X};
X
X/* these are for keeping track of the proc array */
X
Xstatic int bytes;
Xstatic int pref_len;
Xstatic struct proc *pbase;
Xstatic struct proc **pref;
X
X#define pagetok(size) ((size) >> (LOG1024 - PGSHIFT))
X
X/* useful externals */
Xextern int errno;
Xextern char *sys_errlist[];
X
Xlong lseek();
Xlong percentages();
X
Xmachine_init(statics)
X
Xstruct statics *statics;
X
X{
X register int i;
X
X /* open kernel memory */
X if ((kmem = open(KMEM, 0)) < 0)
X {
X perror(KMEM);
X exit(20);
X }
X if ((mem = open(MEM, 0)) < 0)
X {
X perror(MEM);
X exit(21);
X }
X
X /* get the list of symbols we want to access in the kernel */
X if ((i = nlist(VMUNIX, nlst)) < 0)
X {
X fprintf(stderr, "top: nlist failed\n");
X return(-1);
X }
X
X /* make sure they were all found */
X if (i > 0 && check_nlist(nlst) > 0)
X {
X return(-1);
X }
X
X /* get the symbol values out of kmem */
X (void) getkval(nlst[X_PROC].n_value, (int *)(&proc), sizeof(proc),
X nlst[X_PROC].n_name);
X (void) getkval(nlst[X_NPROC].n_value, &nproc, sizeof(nproc),
X nlst[X_NPROC].n_name);
X (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
X nlst[X_CCPU].n_name);
X
X /* stash away certain offsets for later use */
X mpid_offset = nlst[X_MPID].n_value;
X avenrun_offset = nlst[X_AVENRUN].n_value;
X total_offset = nlst[X_TOTAL].n_value;
X cp_time_offset = nlst[X_CP_TIME].n_value;
X
X /* this is used in calculating WCPU -- calculate it ahead of time */
X logcpu = log(loaddouble(ccpu));
X
X /* allocate space for proc structure array and array of pointers */
X bytes = nproc * sizeof(struct proc);
X pbase = (struct proc *)malloc(bytes);
X pref = (struct proc **)malloc(nproc * sizeof(struct proc *));
X
X /* Just in case ... */
X if (pbase == (struct proc *)NULL || pref == (struct proc **)NULL)
X {
X fprintf(stderr, "top: can't allocate sufficient memory\n");
X return(-1);
X }
X
X /* fill in the statics information */
X statics->procstate_names = procstatenames;
X statics->cpustate_names = cpustatenames;
X statics->memory_names = memorynames;
X
X /* all done! */
X return(0);
X}
X
Xchar *format_header(uname_field)
X
Xregister char *uname_field;
X
X{
X register char *ptr;
X
X ptr = header + UNAME_START;
X while (*uname_field != '\0')
X {
X *ptr++ = *uname_field++;
X }
X
X return(header);
X}
X
Xget_system_info(si)
X
Xstruct system_info *si;
X
X{
X load_avg avenrun[3];
X
X /* get the cp_time array */
X (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
X "_cp_time");
X
X /* get load average array */
X (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
X "_avenrun");
X
X /* get mpid -- process id of last process */
X (void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid),
X "_mpid");
X
X /* convert load averages to doubles */
X {
X register int i;
X register double *infoloadp;
X register load_avg *sysloadp;
X
X infoloadp = si->load_avg;
X sysloadp = avenrun;
X for (i = 0; i < 3; i++)
X {
X *infoloadp++ = loaddouble(*sysloadp++);
X }
X }
X
X /* convert cp_time counts to percentages */
X (void) percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
X
X /* get total -- systemwide main memory usage structure */
X (void) getkval(total_offset, (int *)(&total), sizeof(total),
X "_total");
X /* convert memory stats to Kbytes */
X memory_stats[0] = pagetok(total.t_rm);
X memory_stats[1] = pagetok(total.t_arm);
X memory_stats[2] = pagetok(total.t_vm);
X memory_stats[3] = pagetok(total.t_avm);
X memory_stats[4] = pagetok(total.t_free);
X
X /* set arrays and strings */
X si->cpustates = cpu_states;
X si->memory = memory_stats;
X}
X
Xstatic struct handle handle;
X
Xcaddr_t get_process_info(si, sel, compare)
X
Xstruct system_info *si;
Xstruct process_select *sel;
Xint (*compare)();
X
X{
X register int i;
X register int total_procs;
X register int active_procs;
X register struct proc **prefp;
X register struct proc *pp;
X
X /* these are copied out of sel for speed */
X int show_idle;
X int show_system;
X int show_uid;
X
X /* read all the proc structures in one fell swoop */
X (void) getkval(proc, (int *)pbase, bytes, "proc array");
X
X /* get a pointer to the states summary array */
X si->procstates = process_states;
X
X /* set up flags which define what we are going to select */
X show_idle = sel->idle;
X show_system = sel->system;
X show_uid = sel->uid != -1;
X
X /* count up process states and get pointers to interesting procs */
X total_procs = 0;
X active_procs = 0;
X bzero((char *)process_states, sizeof(process_states));
X prefp = pref;
X for (pp = pbase, i = 0; i < nproc; pp++, i++)
X {
X /*
X * Place pointers to each valid proc structure in pref[].
X * Process slots that are actually in use have a non-zero
X * status field. Processes with SSYS set are system
X * processes---these get ignored unless show_sysprocs is set.
X */
X if (pp->p_stat != 0 &&
X (show_system || ((pp->p_flag & SSYS) == 0)))
X {
X total_procs++;
X process_states[pp->p_stat]++;
X if ((pp->p_stat != SZOMB) &&
X (show_idle || (pp->p_pctcpu != 0) || (pp->p_stat == SRUN)) &&
X (!show_uid || pp->p_uid == (uid_t)sel->uid))
X {
X *prefp++ = pp;
X active_procs++;
X }
X }
X }
X
X /* if requested, sort the "interesting" processes */
X if (compare != NULL)
X {
X qsort((char *)pref, active_procs, sizeof(struct proc *), compare);
X }
X
X /* remember active and total counts */
X si->p_total = total_procs;
X si->p_active = pref_len = active_procs;
X
X /* pass back a handle */
X handle.next_proc = pref;
X handle.remaining = active_procs;
X return((caddr_t)&handle);
X}
X
Xchar fmt[128]; /* static area where result is built */
X
X/* define what weighted cpu is. */
X#define weighted_cpu(pct, pp) ((pp)->p_time == 0 ? 0.0 : \
X ((pct) / (1.0 - exp((pp)->p_time * logcpu))))
X
Xchar *format_next_process(handle, get_userid)
X
Xcaddr_t handle;
Xchar *(*get_userid)();
X
X{
X register struct proc *pp;
X register long cputime;
X register double pct;
X struct user u;
X struct handle *hp;
X
X /* find and remember the next proc structure */
X hp = (struct handle *)handle;
X pp = *(hp->next_proc++);
X hp->remaining--;
X
X
X /* get the process's user struct and set cputime */
X if (getu(pp, &u) == -1)
X {
X (void) strcpy(u.u_comm, "<swapped>");
X cputime = 0;
X }
X else
X {
X /* set u_comm for system processes */
X if (u.u_comm[0] == '\0')
X {
X if (pp->p_pid == 0)
X {
X (void) strcpy(u.u_comm, "Swapper");
X }
X else if (pp->p_pid == 2)
X {
X (void) strcpy(u.u_comm, "Pager");
X }
X }
X
X cputime = u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec;
X }
X
X /* calculate the base for cpu percentages */
X pct = pctdouble(pp->p_pctcpu);
X
X /* format this entry */
X sprintf(fmt,
X Proc_format,
X pp->p_pid,
X (*get_userid)(pp->p_uid),
X pp->p_pri - PZERO,
X pp->p_nice - NZERO,
X pagetok(PROCSIZE(pp)),
X pagetok(pp->p_rssize),
X state_abbrev[pp->p_stat],
X cputime / 60l,
X cputime % 60l,
X 100.0 * weighted_cpu(pct, pp),
X 100.0 * pct,
X printable(u.u_comm));
X
X /* return the result */
X return(fmt);
X}
X
X/*
X * getu(p, u) - get the user structure for the process whose proc structure
X * is pointed to by p. The user structure is put in the buffer pointed
X * to by u. Return 0 if successful, -1 on failure (such as the process
X * being swapped out).
X */
X
Xgetu(p, u)
X
Xregister struct proc *p;
Xstruct user *u;
X
X{
X struct pte uptes[UPAGES];
X register caddr_t upage;
X register struct pte *pte;
X register nbytes, n;
X
X /*
X * Check if the process is currently loaded or swapped out. The way we
X * get the u area is totally different for the two cases. For this
X * application, we just don't bother if the process is swapped out.
X */
X if ((p->p_flag & SLOAD) == 0)
X {
X return(-1);
X }
X
X /*
X * Process is currently in memory, we hope!
X */
X if (!getkval((unsigned long)p->p_addr, (int *)uptes, sizeof(uptes),
X "!p->p_addr"))
X {
X /* we can't seem to get to it, so pretend it's swapped out */
X return(-1);
X }
X upage = (caddr_t)u;
X pte = uptes;
X for (nbytes = sizeof(struct user); nbytes > 0; nbytes -= NBPG)
X {
X (void) lseek(mem, (long)(pte++->pg_pfnum * NBPG), 0);
X n = MIN(nbytes, NBPG);
X if (read(mem, upage, n) != n)
X {
X /* we can't seem to get to it, so pretend it's swapped out */
X return(-1);
X }
X upage += n;
X }
X return(0);
X}
X
X/*
X * check_nlist(nlst) - checks the nlist to see if any symbols were not
X * found. For every symbol that was not found, a one-line
X * message is printed to stderr. The routine returns the
X * number of symbols NOT found.
X */
X
Xint check_nlist(nlst)
X
Xregister struct nlist *nlst;
X
X{
X register int i;
X
X /* check to see if we got ALL the symbols we requested */
X /* this will write one line to stderr for every symbol not found */
X
X i = 0;
X while (nlst->n_name != NULL)
X {
X if (nlst->n_type == 0)
X {
X /* this one wasn't found */
X fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name);
X i = 1;
X }
X nlst++;
X }
X
X return(i);
X}
X
X
X/*
X * getkval(offset, ptr, size, refstr) - get a value out of the kernel.
X * "offset" is the byte offset into the kernel for the desired value,
X * "ptr" points to a buffer into which the value is retrieved,
X * "size" is the size of the buffer (and the object to retrieve),
X * "refstr" is a reference string used when printing error meessages,
X * if "refstr" starts with a '!', then a failure on read will not
X * be fatal (this may seem like a silly way to do things, but I
X * really didn't want the overhead of another argument).
X *
X */
X
Xgetkval(offset, ptr, size, refstr)
X
Xunsigned long offset;
Xint *ptr;
Xint size;
Xchar *refstr;
X
X{
X if (lseek(kmem, (long)offset, 0) == -1)
X {
X if (*refstr == '!')
X {
X refstr++;
X }
X fprintf(stderr, "%s: lseek to %s: %s\n",
X KMEM, refstr, sys_errlist[errno]);
X quit(22);
X }
X if (read(kmem, (char *)ptr, size) == -1)
X {
X if (*refstr == '!')
X {
X /* we lost the race with the kernel, process isn't in memory */
X return(0);
X }
X else
X {
X fprintf(stderr, "%s: reading %s: %s\n",
X KMEM, refstr, sys_errlist[errno]);
X quit(23);
X }
X }
X return(1);
X}
X
X/* comparison routine for qsort */
X
X/*
X * proc_compare - comparison function for "qsort"
X * Compares the resource consumption of two processes using five
X * distinct keys. The keys (in descending order of importance) are:
X * percent cpu, cpu ticks, state, resident set size, total virtual
X * memory usage. The process states are ordered as follows (from least
X * to most important): WAIT, zombie, sleep, stop, start, run. The
X * array declaration below maps a process state index into a number
X * that reflects this ordering.
X */
X
Xstatic unsigned char sorted_state[] =
X{
X 0, /* not used */
X 3, /* sleep */
X 1, /* ABANDONED (WAIT) */
X 6, /* run */
X 5, /* start */
X 2, /* zombie */
X 4 /* stop */
X};
X
Xproc_compare(pp1, pp2)
X
Xstruct proc **pp1;
Xstruct proc **pp2;
X
X{
X register struct proc *p1;
X register struct proc *p2;
X register int result;
X register pctcpu lresult;
X
X /* remove one level of indirection */
X p1 = *pp1;
X p2 = *pp2;
X
X /* compare percent cpu (pctcpu) */
X if ((lresult = p2->p_pctcpu - p1->p_pctcpu) == 0)
X {
X /* use cpticks to break the tie */
X if ((result = p2->p_cpticks - p1->p_cpticks) == 0)
X {
X /* use process state to break the tie */
X if ((result = sorted_state[p2->p_stat] -
X sorted_state[p1->p_stat]) == 0)
X {
X /* use priority to break the tie */
X if ((result = p2->p_pri - p1->p_pri) == 0)
X {
X /* use resident set size (rssize) to break the tie */
X if ((result = p2->p_rssize - p1->p_rssize) == 0)
X {
X /* use total memory to break the tie */
X result = PROCSIZE(p2) - PROCSIZE(p1);
X }
X }
X }
X }
X }
X else
X {
X result = lresult < 0 ? -1 : 1;
X }
X
X return(result);
X}
X
X
X/*
X * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
X * the process does not exist.
X * It is EXTREMLY IMPORTANT that this function work correctly.
X * If top runs setuid root (as in SVR4), then this function
X * is the only thing that stands in the way of a serious
X * security problem. It validates requests for the "kill"
X * and "renice" commands.
X */
X
Xint proc_owner(pid)
X
Xint pid;
X
X{
X register int cnt;
X register struct proc **prefp;
X register struct proc *pp;
X
X prefp = pref;
X cnt = pref_len;
X while (--cnt >= 0)
X {
X if ((pp = *prefp++)->p_pid == (pid_t)pid)
X {
X return((int)pp->p_uid);
X }
X }
X return(-1);
X}
END_OF_FILE
if test 16168 -ne `wc -c <'machine/m_mtxinu.c'`; then
echo shar: \"'machine/m_mtxinu.c'\" unpacked with wrong size!
fi
# end of 'machine/m_mtxinu.c'
fi
if test -f 'machine/m_umax.c' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'machine/m_umax.c'\"
else
echo shar: Extracting \"'machine/m_umax.c'\" \(16146 characters\)
sed "s/^X//" >'machine/m_umax.c' <<'END_OF_FILE'
X/*
X * top - a top users display for Unix
X *
X * SYNOPSIS: Encore Multimax running any release of UMAX 4.3
X *
X * DESCRIPTION:
X * This module makes top work on the following systems:
X * Encore Multimax running UMAX 4.3 release 4.0 and later
X *
X * AUTHOR: William LeFebvre <phil@eecs.nwu.edu>
X */
X
X/*
X * The winner of the "wow what a hack" award:
X * We don't really need the proc structure out of sys/proc.h, but we do
X * need many of the #defines. So, we define a bogus "queue" structure
X * so that we don't have to include that mess of stuff in machine/*.h
X * just so that the proc struct will get defined cleanly.
X */
X
Xstruct queue { int x };
X
X#include <stdio.h>
X#include <sys/types.h>
X#include <sys/param.h>
X#include <sys/time.h>
X#include <sys/resource.h>
X#include <sys/proc.h>
X#include <machine/cpu.h>
X#include <inq_stats/statistics.h>
X#include <inq_stats/cpustats.h>
X#include <inq_stats/procstats.h>
X#include <inq_stats/vmstats.h>
X
X#include "top.h"
X#include "display.h"
X#include "machine.h"
X
Xstruct handle
X{
X struct proc **next_proc; /* points to next valid proc pointer */
X int remaining; /* number of pointers remaining */
X};
X
X/* Log base 2 of 1024 is 10 (2^10 == 1024) */
X#define LOG1024 10
X
X/* Convert clicks (kernel pages) to kbytes ... */
X#if PGSHIFT>10
X#define pagetok(size) ((size) << (PGSHIFT - LOG1024))
X#else
X#define pagetok(size) ((size) >> (LOG1024 - PGSHIFT))
X#endif
X
X/* what we consider to be process size: */
X#define PROCSIZE(pp) ((pp)->pd_tsize + (pp)->pd_dsize + (pp)->pd_ssize)
X
X/* the ps_nrun array index is incremented every 12th of a minute */
X#define MINUTES(x) ((x) * 12)
X
X/* convert a tv structure (seconds, microseconds) to a double */
X#define TVTODOUBLE(tv) ((double)(tv).tv_sec + ((double)(tv).tv_usec / 1000000))
X
X/*
X * These definitions control the format of the per-process area
X */
X
Xstatic char header[] =
X " PID X PRI NICE SIZE RES STATE TIME %CPU COMMAND";
X/* 0123456 -- field to fill in starts at header+6 */
X#define UNAME_START 6
X
X#define Proc_format \
X "%5d %-8.8s %3d %4d%6dK %4dK %-5s%5d:%02d %6.2f%% %.14s"
X
X/* process state names for the "STATE" column of the display */
X
Xchar *state_abbrev[] =
X{
X "", "", "wait", "run", "start", "stop", "exec", "event"
X};
X
X/* these are for detailing the process states */
X
Xint process_states[5];
Xchar *procstatenames[] = {
X " waiting, ",
X#define P_SLEEP 0
X " running, ",
X#define P_RUN 1
X " zombie, ",
X#define P_ZOMBIE 2
X " stopped, ",
X#define P_STOP 3
X " free slots",
X#define P_FREE 4
X NULL
X};
X
X/* these are for detailing the cpu states */
X
Xint cpu_states[4];
Xchar *cpustatenames[] = {
X "user", "nice", "system", "idle", NULL
X};
X
X/* these are for detailing the memory statistics */
X
Xint memory_stats[4];
Xchar *memorynames[] = {
X "K available, ", "K free, ", "K locked, ", "K virtual", NULL
X};
X
X/* these detail per-process information */
X
Xstatic int nprocs;
Xstatic int pref_len;
Xstatic struct proc_detail *pd;
Xstatic struct proc_detail **pref;
X
X/* inq_stats structures and the STAT_DESCRs that use them */
X
Xstatic struct proc_config stat_pc;
Xstatic struct vm_config stat_vm;
Xstatic struct class_stats stat_class;
Xstatic struct proc_summary stat_ps;
Xstatic struct cpu_stats stat_cpu;
X
Xstatic struct stat_descr sd_procconfig = {
X NULL, /* sd_next */
X SUBSYS_PROC, /* sd_subsys */
X PROCTYPE_CONFIG, /* sd_type */
X 0, /* sd_options */
X 0, /* sd_objid */
X &stat_pc, /* sd_addr */
X sizeof(stat_pc), /* sd_size */
X 0, /* sd_status */
X 0, /* sd_sizeused */
X 0 /* sd_time */
X};
X
Xstatic struct stat_descr sd_memory = {
X NULL, /* sd_next */
X SUBSYS_VM, /* sd_subsys */
X VMTYPE_SYSTEM, /* sd_type */
X 0, /* sd_options */
X 0, /* sd_objid */
X &stat_vm, /* sd_addr */
X sizeof(stat_vm), /* sd_size */
X 0, /* sd_status */
X 0, /* sd_sizeused */
X 0 /* sd_time */
X};
X
Xstatic struct stat_descr sd_class = {
X NULL, /* sd_next */
X SUBSYS_CPU, /* sd_subsys */
X CPUTYPE_CLASS, /* sd_type */
X 0, /* sd_options */
X UMAXCLASS, /* sd_objid */
X &stat_class, /* sd_addr */
X sizeof(stat_class), /* sd_size */
X 0, /* sd_status */
X 0, /* sd_sizeused */
X 0 /* sd_time */
X};
X
Xstatic struct stat_descr sd_procsummary = {
X NULL, /* sd_next */
X SUBSYS_PROC, /* sd_subsys */
X PROCTYPE_SUMMARY, /* sd_type */
X 0, /* sd_options */
X 0, /* sd_objid */
X &stat_ps, /* sd_addr */
X sizeof(stat_ps), /* sd_size */
X 0, /* sd_status */
X 0, /* sd_sizeused */
X 0 /* sd_time */
X};
X
Xstatic struct stat_descr sd_procdetail = {
X NULL, /* sd_next */
X SUBSYS_PROC, /* sd_subsys */
X PROCTYPE_DETAIL, /* sd_type */
X PROC_DETAIL_ALL | PROC_DETAIL_ALLPROC, /* sd_options */
X 0, /* sd_objid */
X NULL, /* sd_addr */
X 0, /* sd_size */
X 0, /* sd_status */
X 0, /* sd_sizeused */
X 0 /* sd_time */
X};
X
Xstatic struct stat_descr sd_cpu = {
X NULL, /* sd_next */
X SUBSYS_CPU, /* sd_subsys */
X CPUTYPE_CPU, /* sd_type */
X 0, /* sd_options */
X 0, /* sd_objid */
X &stat_cpu, /* sd_addr */
X sizeof(stat_cpu), /* sd_size */
X 0, /* sd_status */
X 0, /* sd_sizeused */
X 0 /* sd_time */
X};
X
X/* precomputed values */
Xstatic int numcpus;
X
Xmachine_init(statics)
X
Xstruct statics *statics;
X
X{
X if (inq_stats(2, &sd_procconfig, &sd_class) == -1)
X {
X perror("proc config");
X return(-1);
X }
X
X if (sd_procconfig.sd_status != 0)
X {
X fprintf(stderr, "stats status %d\n", sd_procconfig.sd_status);
X }
X
X#ifdef DEBUG
X printf("pc_nprocs = %d\n", stat_pc.pc_nprocs);
X printf("class_numcpus = %d\n", stat_class.class_numcpus);
X#endif
X
X /* things to remember */
X numcpus = stat_class.class_numcpus;
X
X /* space to allocate */
X nprocs = stat_pc.pc_nprocs;
X pd = (struct proc_detail *)malloc(nprocs * sizeof(struct proc_detail));
X pref = (struct proc_detail **)malloc(nprocs * sizeof(struct proc_detail *));
X if (pd == NULL || pref == NULL)
X {
X fprintf(stderr, "top: can't allocate sufficient memory\n");
X return(-1);
X }
X
X /* pointers to assign */
X sd_procdetail.sd_addr = pd;
X sd_procdetail.sd_size = nprocs * sizeof(struct proc_detail);
X
X /* fill in the statics stuff */
X statics->procstate_names = procstatenames;
X statics->cpustate_names = cpustatenames;
X statics->memory_names = memorynames;
X
X return(0);
X}
X
Xchar *format_header(uname_field)
X
Xregister char *uname_field;
X
X{
X register char *ptr;
X
X ptr = header + UNAME_START;
X while (*uname_field != '\0')
X {
X *ptr++ = *uname_field++;
X }
X
X return(header);
X}
X
Xget_system_info(si)
X
Xstruct system_info *si;
X
X{
X /* get all status information at once */
X inq_stats(1, &sd_memory);
X
X
X /* fill in the memory statistics, converting to K */
X memory_stats[0] = pagetok(stat_vm.vm_availmem);
X memory_stats[1] = pagetok(stat_vm.vm_freemem);
X memory_stats[2] = pagetok(stat_vm.vm_physmem - stat_vm.vm_availmem);
X memory_stats[3] = 0; /* ??? */
X
X /* set array pointers */
X si->cpustates = cpu_states;
X si->memory = memory_stats;
X}
X
Xstatic struct handle handle;
X
Xcaddr_t get_process_info(si, sel, compare)
X
Xstruct system_info *si;
Xstruct process_select *sel;
Xint (*compare)();
X
X{
X register int i;
X register int index;
X register int total;
X int active_procs;
X char show_idle;
X char show_system;
X char show_uid;
X char show_command;
X
X if (inq_stats(3, &sd_procsummary, &sd_cpu, &sd_procdetail) == -1)
X {
X perror("proc summary");
X return(NULL);
X }
X
X if (sd_procsummary.sd_status != 0)
X {
X fprintf(stderr, "stats status %d\n", sd_procsummary.sd_status);
X }
X
X#ifdef DEBUG
X printf("nfree = %d\n", stat_ps.ps_nfree);
X printf("nzombies = %d\n", stat_ps.ps_nzombies);
X printf("nnrunnable = %d\n", stat_ps.ps_nrunnable);
X printf("nwaiting = %d\n", stat_ps.ps_nwaiting);
X printf("nstopped = %d\n", stat_ps.ps_nstopped);
X printf("curtime0 = %d.%d\n", stat_cpu.cpu_curtime.tv_sec, stat_cpu.cpu_curtime.tv_usec);
X printf("starttime0 = %d.%d\n", stat_cpu.cpu_starttime.tv_sec, stat_cpu.cpu_starttime.tv_usec);
X printf("usertime0 = %d.%d\n", stat_cpu.cpu_usertime.tv_sec, stat_cpu.cpu_usertime.tv_usec);
X printf("systime0 = %d.%d\n", stat_cpu.cpu_systime.tv_sec, stat_cpu.cpu_systime.tv_usec);
X printf("idletime0 = %d.%d\n", stat_cpu.cpu_idletime.tv_sec, stat_cpu.cpu_idletime.tv_usec);
X printf("intrtime0 = %d.%d\n", stat_cpu.cpu_intrtime.tv_sec, stat_cpu.cpu_intrtime.tv_usec);
X#endif
X
X /* fill in the process related counts */
X process_states[P_SLEEP] = stat_ps.ps_nwaiting;
X process_states[P_RUN] = stat_ps.ps_nrunnable;
X process_states[P_ZOMBIE] = stat_ps.ps_nzombies;
X process_states[P_STOP] = stat_ps.ps_nstopped;
X process_states[P_FREE] = stat_ps.ps_nfree;
X si->procstates = process_states;
X si->p_total = stat_ps.ps_nzombies +
X stat_ps.ps_nrunnable +
X stat_ps.ps_nwaiting +
X stat_ps.ps_nstopped;
X si->p_active = 0;
X si->last_pid = -1;
X
X /* calculate load averages, the ENCORE way! */
X /* this code was inspiried by the program cpumeter */
X i = total = 0;
X index = stat_ps.ps_nrunidx;
X
X /* we go in three cumulative steps: one for each avenrun measure */
X /* we are (once again) sacrificing code size for speed */
X while (i < MINUTES(1))
X {
X if (index < 0)
X {
X index = PS_NRUNSIZE - 1;
X }
X total += stat_ps.ps_nrun[index--];
X i++;
X }
X si->load_avg[0] = (double)total / MINUTES(1);
X while (i < MINUTES(5))
X {
X if (index < 0)
X {
X index = PS_NRUNSIZE - 1;
X }
X total += stat_ps.ps_nrun[index--];
X i++;
X }
X si->load_avg[1] = (double)total / MINUTES(5);
X while (i < MINUTES(15))
X {
X if (index < 0)
X {
X index = PS_NRUNSIZE - 1;
X }
X total += stat_ps.ps_nrun[index--];
X i++;
X }
X si->load_avg[2] = (double)total / (double)MINUTES(15);
X
X /* grab flags out of process_select for speed */
X show_idle = sel->idle;
X show_system = sel->system;
X show_uid = sel->uid != -1;
X show_command = sel->command != NULL;
X
X /*
X * Build a list of pointers to interesting proc_detail structures.
X * inq_stats will return a proc_detail structure for every currently
X * existing process.
X */
X {
X register struct proc_detail *pp;
X register struct proc_detail **prefp;
X register double virttime;
X register double now;
X
X /* pointer to destination array */
X prefp = pref;
X active_procs = 0;
X
X /* calculate "now" based on inq_stats retrieval time */
X now = TVTODOUBLE(sd_procdetail.sd_time);
X
X /*
X * Note: we will calculate the number of processes from
X * procdetail.sd_sizeused just in case there is an inconsistency
X * between it and the procsummary information.
X */
X total = sd_procdetail.sd_sizeused / sizeof(struct proc_detail);
X for (pp = pd, i = 0; i < total; pp++, i++)
X {
X /*
X * Place pointers to each interesting structure in pref[]
X * and compute something akin to %cpu usage. Computing %cpu
X * is really hard with the information that inq_stats gives
X * us, so we do the best we can based on the "virtual time"
X * and cpu time fields. We also need a place to store this
X * computation so that we only have to do it once. So we will
X * borrow one of the int fields in the proc_detail, and set a
X * #define accordingly.
X *
X * We currently have no good way to determine if a process is
X * "idle", so we ignore the sel->idle flag.
X */
X#define pd_pctcpu pd_swrss
X
X if ((show_system || ((pp->pd_flag & SSYS) == 0)) &&
X ((pp->pd_flag & SZOMBIE) == 0) &&
X (!show_uid || pp->pd_uid == (uid_t)sel->uid) &&
X (!show_command || strcmp(sel->command, pp->pd_command) == 0))
X {
X /* calculate %cpu as best we can */
X /* first, calculate total "virtual" cputime */
X pp->pd_virttime = virttime = TVTODOUBLE(pp->pd_utime) +
X TVTODOUBLE(pp->pd_stime);
X
X /* %cpu is total cpu time over total wall time */
X /* we express this as a percentage * 10 */
X pp->pd_pctcpu = (int)(1000 * (virttime /
X (now - TVTODOUBLE(pp->pd_starttime))));
X
X /* store pointer to this record and move on */
X *prefp++ = pp;
X active_procs++;
X }
X }
X }
X
X /* if requested, sort the "interesting" processes */
X if (compare != NULL)
X {
X qsort((char *)pref, active_procs,
X sizeof(struct proc_detail *),
X compare);
X }
X
X si->p_active = pref_len = active_procs;
X
X /* pass back a handle */
X handle.next_proc = pref;
X handle.remaining = active_procs;
X return((caddr_t)&handle);
X}
X
Xchar fmt[128]; /* static area where result is built */
X
Xchar *format_next_process(handle, get_userid)
X
Xcaddr_t handle;
Xchar *(*get_userid)();
X
X{
X register struct proc_detail *pp;
X register long cputime;
X struct handle *hp;
X
X /* find and remember the next proc structure */
X hp = (struct handle *)handle;
X pp = *(hp->next_proc++);
X hp->remaining--;
X
X
X /* set the cputime */
X cputime = pp->pd_utime.tv_sec + pp->pd_stime.tv_sec;
X
X /* calculate the base for cpu percentages */
X
X#ifdef notyet
X /*
X * If there is more than one cpu then add the processor number to
X * the "run/" string. Note that this will only show up if the
X * process is in the run state. Also note: this will break for
X * systems with more than 9 processors since the string will then
X * be more than 5 characters. I'm still thinking about that one.
X */
X if (numcpus > 1)
X {
X??? state_abbrev[SRUN][4] = (pp->p_cpuid & 0xf) + '0';
X }
X#endif
X
X /* format this entry */
X sprintf(fmt,
X Proc_format,
X pp->pd_pid,
X (*get_userid)(pp->pd_uid),
X pp->pd_pri, /* PZERO ??? */
X pp->pd_nice, /* NZERO ??? */
X pagetok(PROCSIZE(pp)),
X pagetok(pp->pd_rssize),
X state_abbrev[pp->pd_state],
X (int)(pp->pd_virttime / 60),
X ((int)pp->pd_virttime % 60),
X (double)pp->pd_pctcpu / 10.,
X printable(pp->pd_command));
X
X /* return the result */
X return(fmt);
X}
X
X/*
X * proc_compare - comparison function for "qsort"
X * Compares the resource consumption of two processes using five
X * distinct keys. The keys (in descending order of importance) are:
X * percent cpu, cpu ticks, state, resident set size, total virtual
X * memory usage. The process states are ordered according to the
X * premutation array "sorted_state" with higher numbers being sorted
X * before lower numbers.
X */
X
Xstatic unsigned char sorted_state[] =
X{
X 0, /* not used */
X 0, /* not used */
X 1, /* wait */
X 6, /* run */
X 3, /* start */
X 4, /* stop */
X 5, /* exec */
X 2 /* event */
X};
X
Xproc_compare(pp1, pp2)
X
Xstruct proc **pp1;
Xstruct proc **pp2;
X
X{
X register struct proc_detail *p1;
X register struct proc_detail *p2;
X register int result;
X
X /* remove one level of indirection */
X p1 = *pp1;
X p2 = *pp2;
X
X /* compare percent cpu (pctcpu) */
X if ((result = p2->pd_pctcpu - p1->pd_pctcpu) == 0)
X {
X /* use process state to break the tie */
X if ((result = sorted_state[p2->pd_state] -
X sorted_state[p1->pd_state]) == 0)
X {
X /* use priority to break the tie */
X if ((result = p2->pd_pri - p1->pd_pri) == 0)
X {
X /* use resident set size (rssize) to break the tie */
X if ((result = p2->pd_rssize - p1->pd_rssize) == 0)
X {
X /* use total memory to break the tie */
X result = PROCSIZE(p2) - PROCSIZE(p1);
X }
X }
X }
X }
X
X return(result);
X}
X
X/*
X * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
X * the process does not exist.
X * It is EXTREMLY IMPORTANT that this function work correctly.
X * If top runs setuid root (as in SVR4), then this function
X * is the only thing that stands in the way of a serious
X * security problem. It validates requests for the "kill"
X * and "renice" commands.
X */
X
Xint proc_owner(pid)
X
Xint pid;
X
X{
X register int cnt;
X register struct proc_detail **prefp;
X register struct proc_detail *pp;
X
X prefp = pref;
X cnt = pref_len;
X while (--cnt >= 0)
X {
X if ((pp = *prefp++)->pd_pid == pid)
X {
X return(pp->pd_uid);
X }
X }
X return(-1);
X}
END_OF_FILE
if test 16146 -ne `wc -c <'machine/m_umax.c'`; then
echo shar: \"'machine/m_umax.c'\" unpacked with wrong size!
fi
# end of 'machine/m_umax.c'
fi
if test -f 'machine/m_utek.c' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'machine/m_utek.c'\"
else
echo shar: Extracting \"'machine/m_utek.c'\" \(16099 characters\)
sed "s/^X//" >'machine/m_utek.c' <<'END_OF_FILE'
X/*
X * top - a top users display for Unix
X *
X * SYNOPSIS: Tektronics 43xx running UTek 4.1
X *
X * DESCRIPTION:
X * This is the machine-dependent module for UTek 4.1
X * This makes top work on the following systems:
X * Tek4319 running UTek 4.1
X * Tek4325 running UTek 4.1
X * Tek4337 running UTek 4.1
X *
X * AUTHOR: Daniel Trinkle <trinkle@cs.purdue.edu>
X */
X
X#include <sys/types.h>
X#include <sys/param.h>
X
X#include <stdio.h>
X#include <nlist.h>
X#include <math.h>
X#include <sys/dir.h>
X#include <sys/user.h>
X/*
X** I don't know if this is always correct or not, but it was necessary to
X** get the correct proc structure size on the Tek 4319 running UTek 4.1.
X*/
X#define TEKVM
X#include <sys/proc.h>
X#undef TEKVM
X#include <sys/dk.h>
X#include <sys/vm.h>
X#include <sys/file.h>
X#include <machine/pte.h>
X
X#include "top.h"
X#include "machine.h"
X
X#define uid_t int
X#define FSCALE 100
X
X/* declarations for load_avg */
X#include "loadavg.h"
X
X/* get_process_info passes back a handle. This is what it looks like: */
X
Xstruct handle
X{
X struct proc **next_proc; /* points to next valid proc pointer */
X int remaining; /* number of pointers remaining */
X};
X
X/* what we consider to be process size: */
X#define PROCSIZE(pp) ((pp)->p_tsize + (pp)->p_dsize + (pp)->p_ssize)
X
X/* definitions for indices in the nlist array */
X#define X_AVENRUN 0
X#define X_MPID 1
X#define X_NPROC 2
X#define X_PROC 3
X#define X_TOTAL 4
X#define X_CP_TIME 5
X
Xstatic struct nlist nlst[] = {
X { "_avenrun" }, /* 0 */
X { "_mpid" }, /* 1 */
X { "_nproc" }, /* 2 */
X { "_proc" }, /* 3 */
X { "_total" }, /* 4 */
X { "_cp_time" }, /* 5 */
X { 0 }
X};
X
X/*
X * These definitions control the format of the per-process area
X */
X
Xstatic char header[] =
X " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
X/* 0123456 -- field to fill in starts at header+6 */
X#define UNAME_START 6
X
X#define Proc_format \
X "%5d %-8.8s %3d %4d%6dK %4dK %-5s%4d:%02d %5.2f%% %5.2f%% %.14s"
X
X
X/* process state names for the "STATE" column of the display */
X/* the extra nulls in the string "run" are for adding a slash and
X the processor number when needed */
X
Xchar *state_abbrev[] =
X{
X "", "sleep", "WAIT", "run", "start", "zomb", "stop"
X};
X
X/* values that we stash away in _init and use in later routines */
X
Xstatic double logcpu;
X
X#define VMUNIX "/vmunix"
X#define KMEM "/dev/kmem"
X#define MEM "/dev/mem"
X
Xstatic int kmem = -1;
Xstatic int mem = -1;
X
Xstruct vmtotal total;
X
X/* these are retrieved from the kernel in _init */
X
Xstatic unsigned long proc;
Xstatic int nproc;
X
X/* these are offsets obtained via nlist and used in the get_ functions */
X
Xstatic unsigned long mpid_offset;
Xstatic unsigned long avenrun_offset;
Xstatic unsigned long total_offset;
Xstatic unsigned long cp_time_offset;
X
X/* these are for calculating cpu state percentages */
X
Xstatic long cp_time[CPUSTATES];
Xstatic long cp_old[CPUSTATES];
Xstatic long cp_diff[CPUSTATES];
X
X/* these are for detailing the process states */
X
Xint process_states[7];
Xchar *procstatenames[] = {
X "", " sleeping, ", " ABANDONED, ", " running, ", " starting, ",
X " zombie, ", " stopped, ",
X NULL
X};
X
X/* these are for detailing the cpu states */
X
Xint cpu_states[CPUSTATES];
Xchar *cpustatenames[] = {
X "user", "nice", "system", "idle",
X NULL
X};
X
X/* these are for detailing the memory statistics */
X
Xint memory_stats[5];
Xchar *memorynames[] = {
X "K (", "K) real, ", "K (", "K) virtual, ", "K free", NULL
X};
X
X/* these are for keeping track of the proc array */
X
Xstatic int bytes;
Xstatic int pref_len;
Xstatic struct proc *pbase;
Xstatic struct proc **pref;
X
X#define pagetok(size) ((size) << (PGSHIFT - LOG1024))
X
X/* useful externals */
Xextern int errno;
Xextern char *sys_errlist[];
X
Xlong lseek();
Xlong percentages();
X
Xmachine_init(statics)
X
Xstruct statics *statics;
X
X{
X register int i;
X
X /* open kernel memory */
X if ((kmem = open(KMEM, 0)) < 0)
X {
X perror(KMEM);
X exit(20);
X }
X if ((mem = open(MEM, 0)) < 0)
X {
X perror(MEM);
X exit(21);
X }
X
X /* get the list of symbols we want to access in the kernel */
X if ((i = nlist(VMUNIX, nlst)) < 0)
X {
X fprintf(stderr, "top: nlist failed\n");
X return(-1);
X }
X
X /* make sure they were all found */
X if (i > 0 && check_nlist(nlst) > 0)
X {
X return(-1);
X }
X
X /* get the symbol values out of kmem */
X (void) getkval(nlst[X_PROC].n_value, (int *)(&proc), sizeof(proc),
X nlst[X_PROC].n_name);
X (void) getkval(nlst[X_NPROC].n_value, &nproc, sizeof(nproc),
X nlst[X_NPROC].n_name);
X
X /* stash away certain offsets for later use */
X mpid_offset = nlst[X_MPID].n_value;
X avenrun_offset = nlst[X_AVENRUN].n_value;
X total_offset = nlst[X_TOTAL].n_value;
X cp_time_offset = nlst[X_CP_TIME].n_value;
X
X /* this is used in calculating WCPU -- calculate it ahead of time */
X logcpu = log(0.95);
X
X /* allocate space for proc structure array and array of pointers */
X bytes = nproc * sizeof(struct proc);
X pbase = (struct proc *)malloc(bytes);
X pref = (struct proc **)malloc(nproc * sizeof(struct proc *));
X
X /* Just in case ... */
X if (pbase == (struct proc *)NULL || pref == (struct proc **)NULL)
X {
X fprintf(stderr, "top: can't allocate sufficient memory\n");
X return(-1);
X }
X
X /* fill in the statics information */
X statics->procstate_names = procstatenames;
X statics->cpustate_names = cpustatenames;
X statics->memory_names = memorynames;
X
X /* all done! */
X return(0);
X}
X
Xchar *format_header(uname_field)
X
Xregister char *uname_field;
X
X{
X register char *ptr;
X
X ptr = header + UNAME_START;
X while (*uname_field != '\0')
X {
X *ptr++ = *uname_field++;
X }
X
X return(header);
X}
X
Xget_system_info(si)
X
Xstruct system_info *si;
X
X{
X load_avg avenrun[3];
X
X /* get the cp_time array */
X (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
X "_cp_time");
X
X /* get load average array */
X (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
X "_avenrun");
X
X /* get mpid -- process id of last process */
X (void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid),
X "_mpid");
X
X /* convert load averages to doubles */
X {
X register int i;
X register double *infoloadp;
X register load_avg *sysloadp;
X
X infoloadp = si->load_avg;
X sysloadp = avenrun;
X for (i = 0; i < 3; i++)
X {
X *infoloadp++ = loaddouble(*sysloadp++);
X }
X }
X
X /* convert cp_time counts to percentages */
X (void) percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
X
X /* get total -- systemwide main memory usage structure */
X (void) getkval(total_offset, (int *)(&total), sizeof(total),
X "_total");
X /* convert memory stats to Kbytes */
X memory_stats[0] = pagetok(total.t_rm);
X memory_stats[1] = pagetok(total.t_arm);
X memory_stats[2] = pagetok(total.t_vm);
X memory_stats[3] = pagetok(total.t_avm);
X memory_stats[4] = pagetok(total.t_free);
X
X /* set arrays and strings */
X si->cpustates = cpu_states;
X si->memory = memory_stats;
X}
X
Xstatic struct handle handle;
X
Xcaddr_t get_process_info(si, sel, compare)
X
Xstruct system_info *si;
Xstruct process_select *sel;
Xint (*compare)();
X
X{
X register int i;
X register int total_procs;
X register int active_procs;
X register struct proc **prefp;
X register struct proc *pp;
X
X /* these are copied out of sel for speed */
X int show_idle;
X int show_system;
X int show_uid;
X
X /* read all the proc structures in one fell swoop */
X (void) getkval(proc, (int *)pbase, bytes, "proc array");
X
X /* get a pointer to the states summary array */
X si->procstates = process_states;
X
X /* set up flags which define what we are going to select */
X show_idle = sel->idle;
X show_system = sel->system;
X show_uid = sel->uid != -1;
X
X /* count up process states and get pointers to interesting procs */
X total_procs = 0;
X active_procs = 0;
X bzero((char *)process_states, sizeof(process_states));
X prefp = pref;
X for (pp = pbase, i = 0; i < nproc; pp++, i++)
X {
X /*
X * Place pointers to each valid proc structure in pref[].
X * Process slots that are actually in use have a non-zero
X * status field. Processes with SSYS set are system
X * processes---these get ignored unless show_sysprocs is set.
X */
X if (pp->p_stat != 0 && pp->p_pid != 0 &&
X (show_system || ((pp->p_flag & SSYS) == 0)))
X {
X total_procs++;
X process_states[pp->p_stat]++;
X if ((pp->p_stat != SZOMB) &&
X (show_idle || (pp->p_pctcpu != 0) || (pp->p_stat == SRUN)) &&
X (!show_uid || pp->p_uid == (uid_t)sel->uid))
X {
X *prefp++ = pp;
X active_procs++;
X }
X }
X }
X
X /* if requested, sort the "interesting" processes */
X if (compare != NULL)
X {
X qsort((char *)pref, active_procs, sizeof(struct proc *), compare);
X }
X
X /* remember active and total counts */
X si->p_total = total_procs;
X si->p_active = pref_len = active_procs;
X
X /* pass back a handle */
X handle.next_proc = pref;
X handle.remaining = active_procs;
X return((caddr_t)&handle);
X}
X
Xchar fmt[128] = ""; /* static area where result is built */
X
X/* define what weighted cpu is. */
X#define weighted_cpu(pct, pp) ((pp)->p_time == 0 ? 0.0 : \
X ((pct) / (1.0 - exp((pp)->p_time * logcpu))))
X
Xchar *format_next_process(handle, get_userid)
X
Xcaddr_t handle;
Xchar *(*get_userid)();
X
X{
X register struct proc *pp;
X register long cputime;
X register double pct;
X struct user u;
X struct handle *hp;
X
X /* find and remember the next proc structure */
X hp = (struct handle *)handle;
X pp = *(hp->next_proc++);
X hp->remaining--;
X
X
X /* get the process's user struct and set cputime */
X if (getu(pp, &u) == -1)
X {
X (void) strcpy(u.u_comm, "<swapped>");
X cputime = 0;
X }
X else
X {
X /* set u_comm for system processes */
X if (u.u_comm[0] == '\0')
X {
X if (pp->p_pid == 0)
X {
X (void) strcpy(u.u_comm, "Swapper");
X }
X else if (pp->p_pid == 2)
X {
X (void) strcpy(u.u_comm, "Pager");
X }
X }
X
X cputime = u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec;
X }
X
X /* calculate the base for cpu percentages */
X pct = pctdouble(pp->p_pctcpu);
X
X /* format this entry */
X sprintf(fmt,
X Proc_format,
X pp->p_pid,
X (*get_userid)(pp->p_uid),
X pp->p_pri - PZERO,
X pp->p_nice - NZERO,
X pagetok(PROCSIZE(pp)),
X pagetok(pp->p_rssize),
X state_abbrev[pp->p_stat],
X cputime / 60l,
X cputime % 60l,
X 100.0 * weighted_cpu(pct, pp),
X 100.0 * pct,
X printable(u.u_comm));
X
X /* return the result */
X return(fmt);
X}
X
X/*
X * getu(p, u) - get the user structure for the process whose proc structure
X * is pointed to by p. The user structure is put in the buffer pointed
X * to by u. Return 0 if successful, -1 on failure (such as the process
X * being swapped out).
X */
X
Xgetu(p, u)
X
Xregister struct proc *p;
Xstruct user *u;
X
X{
X struct pte uptes[UPAGES];
X register caddr_t upage;
X register struct pte *pte;
X register nbytes, n;
X
X /*
X * Check if the process is currently loaded or swapped out. The way we
X * get the u area is totally different for the two cases. For this
X * application, we just don't bother if the process is swapped out.
X */
X if ((p->p_flag & SLOAD) == 0)
X {
X return(-1);
X }
X
X /*
X * Process is currently in memory, we hope!
X */
X if (!getkval((unsigned long)p->p_addr, (int *)uptes, sizeof(uptes),
X "!p->p_addr"))
X {
X /* we can't seem to get to it, so pretend it's swapped out */
X return(-1);
X }
X upage = (caddr_t)u;
X pte = uptes;
X for (nbytes = sizeof(struct user); nbytes > 0; nbytes -= NBPG)
X {
X (void) lseek(mem, (long)(pte++->pg_pfnum * NBPG), 0);
X n = MIN(nbytes, NBPG);
X if (read(mem, upage, n) != n)
X {
X /* we can't seem to get to it, so pretend it's swapped out */
X return(-1);
X }
X upage += n;
X }
X return(0);
X}
X
X/*
X * check_nlist(nlst) - checks the nlist to see if any symbols were not
X * found. For every symbol that was not found, a one-line
X * message is printed to stderr. The routine returns the
X * number of symbols NOT found.
X */
X
Xint check_nlist(nlst)
X
Xregister struct nlist *nlst;
X
X{
X register int i;
X
X /* check to see if we got ALL the symbols we requested */
X /* this will write one line to stderr for every symbol not found */
X
X i = 0;
X while (nlst->n_name != NULL)
X {
X if (nlst->n_type == 0)
X {
X /* this one wasn't found */
X fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name);
X i = 1;
X }
X nlst++;
X }
X
X return(i);
X}
X
X
X/*
X * getkval(offset, ptr, size, refstr) - get a value out of the kernel.
X * "offset" is the byte offset into the kernel for the desired value,
X * "ptr" points to a buffer into which the value is retrieved,
X * "size" is the size of the buffer (and the object to retrieve),
X * "refstr" is a reference string used when printing error meessages,
X * if "refstr" starts with a '!', then a failure on read will not
X * be fatal (this may seem like a silly way to do things, but I
X * really didn't want the overhead of another argument).
X *
X */
X
Xgetkval(offset, ptr, size, refstr)
X
Xunsigned long offset;
Xint *ptr;
Xint size;
Xchar *refstr;
X
X{
X if (lseek(kmem, (long)offset, 0) == -1)
X {
X if (*refstr == '!')
X {
X refstr++;
X }
X fprintf(stderr, "%s: lseek to %s: %s\n",
X KMEM, refstr, sys_errlist[errno]);
X quit(22);
X }
X if (read(kmem, (char *)ptr, size) == -1)
X {
X if (*refstr == '!')
X {
X /* we lost the race with the kernel, process isn't in memory */
X return(0);
X }
X else
X {
X fprintf(stderr, "%s: reading %s: %s\n",
X KMEM, refstr, sys_errlist[errno]);
X quit(23);
X }
X }
X return(1);
X}
X
X/* comparison routine for qsort */
X
X/*
X * proc_compare - comparison function for "qsort"
X * Compares the resource consumption of two processes using five
X * distinct keys. The keys (in descending order of importance) are:
X * percent cpu, cpu ticks, state, resident set size, total virtual
X * memory usage. The process states are ordered as follows (from least
X * to most important): WAIT, zombie, sleep, stop, start, run. The
X * array declaration below maps a process state index into a number
X * that reflects this ordering.
X */
X
Xstatic unsigned char sorted_state[] =
X{
X 0, /* not used */
X 3, /* sleep */
X 1, /* ABANDONED (WAIT) */
X 6, /* run */
X 5, /* start */
X 2, /* zombie */
X 4 /* stop */
X};
X
Xproc_compare(pp1, pp2)
X
Xstruct proc **pp1;
Xstruct proc **pp2;
X
X{
X register struct proc *p1;
X register struct proc *p2;
X register int result;
X register pctcpu lresult;
X
X /* remove one level of indirection */
X p1 = *pp1;
X p2 = *pp2;
X
X /* compare percent cpu (pctcpu) */
X if ((lresult = p2->p_pctcpu - p1->p_pctcpu) == 0)
X {
X /* use cpticks to break the tie */
X if ((result = p2->p_cpticks - p1->p_cpticks) == 0)
X {
X /* use process state to break the tie */
X if ((result = sorted_state[p2->p_stat] -
X sorted_state[p1->p_stat]) == 0)
X {
X /* use priority to break the tie */
X if ((result = p2->p_pri - p1->p_pri) == 0)
X {
X /* use resident set size (rssize) to break the tie */
X if ((result = p2->p_rssize - p1->p_rssize) == 0)
X {
X /* use total memory to break the tie */
X result = PROCSIZE(p2) - PROCSIZE(p1);
X }
X }
X }
X }
X }
X else
X {
X result = lresult < 0 ? -1 : 1;
X }
X
X return(result);
X}
X
X/*
X * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
X * the process does not exist.
X * It is EXTREMLY IMPORTANT that this function work correctly.
X * If top runs setuid root (as in SVR4), then this function
X * is the only thing that stands in the way of a serious
X * security problem. It validates requests for the "kill"
X * and "renice" commands.
X */
X
Xint proc_owner(pid)
X
Xint pid;
X
X{
X register int cnt;
X register struct proc **prefp;
X register struct proc *pp;
X
X prefp = pref;
X cnt = pref_len;
X while (--cnt >= 0)
X {
X if ((pp = *prefp++)->p_pid == pid)
X {
X return((int)pp->p_uid);
X }
X }
X return(-1);
X}
END_OF_FILE
if test 16099 -ne `wc -c <'machine/m_utek.c'`; then
echo shar: \"'machine/m_utek.c'\" unpacked with wrong size!
fi
# end of 'machine/m_utek.c'
fi
echo shar: End of archive 5 \(of 13\).
cp /dev/null ark5isdone
MISSING=""
for I in 1 2 3 4 5 6 7 8 9 10 11 12 13 ; do
if test ! -f ark${I}isdone ; then
MISSING="${MISSING} ${I}"
fi
done
if test "${MISSING}" = "" ; then
echo You have unpacked all 13 archives.
echo "Now read README and INSTALL, then run Configure"
rm -f ark[1-9]isdone ark[1-9][0-9]isdone
else
echo You still need to unpack the following archives:
echo " " ${MISSING}
fi
## End of shell archive.
exit 0