home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
AmigActive 6
/
AACD06.ISO
/
AACD
/
System
/
Mesa-3.1
/
src
/
shade_tmp.h
< prev
next >
Wrap
Text File
|
2000-01-07
|
24KB
|
881 lines
/* $Id: shade_tmp.h,v 1.3.2.3 1999/12/12 18:30:47 keithw Exp $ */
/*
* Mesa 3-D graphics library
* Version: 3.1
*
* Copyright (C) 1999 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* New (3.1) transformation code written by Keith Whitwell.
*/
static void TAG(shade_rgba_spec)( struct vertex_buffer *VB )
{
GLcontext *ctx = VB->ctx;
GLfloat (*base)[3] = ctx->Light.BaseColor;
GLubyte *sumA = ctx->Light.BaseAlpha;
GLuint j;
GLuint vstride = VB->Unprojected->stride;
const GLfloat *vertex = VB->Unprojected->start;
GLuint vertex_size = VB->Unprojected->size;
GLuint nstride = VB->NormalPtr->stride;
const GLfloat *normal = VB->NormalPtr->start;
CONST GLfloat (*first_normal)[3] = (CONST GLfloat (*)[3]) VB->NormalPtr->start;
/* Has stride 4 to help the drivers - and us...
*/
GLubyte (*CMcolor)[4] = 0;
GLubyte (*Fcolor)[4] = (GLubyte (*)[4])VB->LitColor[0]->start;
GLubyte (*Bcolor)[4] = (GLubyte (*)[4])VB->LitColor[1]->start;
GLubyte (*Fspec)[4] = VB->Spec[0] + VB->Start;
GLubyte (*Bspec)[4] = VB->Spec[1] + VB->Start;
GLubyte *mask = VB->CullMask + VB->Start;
GLubyte *cullmask = mask;
GLuint *flags = VB->Flag + VB->Start;
struct gl_material (*new_material)[2] = VB->Material + VB->Start;
GLuint *new_material_mask = VB->MaterialMask + VB->Start;
GLuint nr = VB->Count - VB->Start;
GLuint cm_flags = 0;
(void) cullmask;
(void) nstride;
(void) first_normal;
(void) flags;
if (ctx->Light.ColorMaterialEnabled) {
cm_flags = VERT_RGBA;
if (VB->ColorPtr->flags & VEC_BAD_STRIDE)
gl_clean_color(VB);
CMcolor = (GLubyte (*)[4])VB->ColorPtr->start;
}
VB->Color[0] = VB->LitColor[0];
VB->Color[1] = VB->LitColor[1];
VB->ColorPtr = VB->LitColor[0];
VB->Specular = VB->Spec[0];
for ( j=0 ; j<nr ; j++,STRIDE_F(vertex,vstride),NEXT_VERTEX_NORMAL)
{
GLfloat sum[2][3], spec[2][3];
struct gl_light *light;
if ( flags[j] & cm_flags )
gl_update_color_material( ctx, CMcolor[j] );
if ( flags[j] & VERT_MATERIAL )
gl_update_material( ctx, new_material[j], new_material_mask[j] );
if ( CULL(*mask) )
continue;
if (LIGHT_FRONT(*mask)) {
COPY_3V(sum[0], base[0]);
ZERO_3V(spec[0]);
}
if (LIGHT_REAR(*mask)) {
COPY_3V(sum[1], base[1]);
ZERO_3V(spec[1]);
}
/* Add contribution from each enabled light source */
foreach (light, &ctx->Light.EnabledList) {
GLfloat n_dot_h;
GLfloat correction;
GLint side;
GLfloat contrib[3];
GLfloat attenuation;
GLfloat VP[3]; /* unit vector from vertex to light */
GLfloat n_dot_VP; /* n dot VP */
GLfloat *h;
GLboolean normalized;
/* compute VP and attenuation */
if (!(light->Flags & LIGHT_POSITIONAL)) {
/* directional light */
COPY_3V(VP, light->VP_inf_norm);
attenuation = light->VP_inf_spot_attenuation;
}
else {
GLfloat d; /* distance from vertex to light */
if (vertex_size == 2) {
SUB_2V(VP, light->Position, vertex);
VP[2] = light->Position[2];
} else {
SUB_3V(VP, light->Position, vertex);
}
d = LEN_3FV( VP );
if (d > 1e-6) {
GLfloat invd = 1.0F / d;
SELF_SCALE_SCALAR_3V(VP, invd);
}
attenuation = 1.0F / (light->ConstantAttenuation + d *
(light->LinearAttenuation + d *
light->QuadraticAttenuation));
/* spotlight attenuation */
if (light->Flags & LIGHT_SPOT)
{
GLfloat PV_dot_dir = - DOT3(VP, light->NormDirection);
if (PV_dot_dir<light->CosCutoff) {
continue; /* this light makes no contribution */
}
else {
double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
int k = (int) x;
GLfloat spot = (light->SpotExpTable[k][0]
+ (x-k)*light->SpotExpTable[k][1]);
attenuation *= spot;
}
}
}
if (attenuation < 1e-3)
continue; /* this light makes no contribution */
/* Compute dot product or normal and vector from V to light pos */
n_dot_VP = DOT3( normal, VP );
/* Which side gets the diffuse & specular terms? */
if (n_dot_VP < 0.0F) {
if (LIGHT_FRONT(*mask)) {
ACC_SCALE_SCALAR_3V(sum[0], attenuation, light->MatAmbient[0]);
}
if (!LIGHT_REAR(*mask)) {
continue;
}
side = 1;
correction = -1;
n_dot_VP = -n_dot_VP;
} else {
if (LIGHT_REAR(*mask)) {
ACC_SCALE_SCALAR_3V( sum[1], attenuation, light->MatAmbient[1]);
}
if (!LIGHT_FRONT(*mask)) {
continue;
}
side = 0;
correction = 1;
}
/* diffuse term */
COPY_3V(contrib, light->MatAmbient[side]);
ACC_SCALE_SCALAR_3V(contrib, n_dot_VP, light->MatDiffuse[side]);
ACC_SCALE_SCALAR_3V(sum[side], attenuation, contrib );
if (!light->IsMatSpecular[side])
continue;
/* specular term - cannibalize VP... */
if (ctx->Light.Model.LocalViewer) {
GLfloat v[3];
COPY_3V(v, vertex);
if (vertex_size == 2) v[2] = 0;
NORMALIZE_3FV(v);
SUB_3V(VP, VP, v); /* h = VP + VPe */
h = VP;
normalized = 0;
}
else if (light->Flags & LIGHT_POSITIONAL) {
h = VP;
ACC_3V(h, ctx->EyeZDir);
normalized = 0;
} else {
h = light->h_inf_norm;
normalized = 1;
}
n_dot_h = correction * DOT3(normal, h);
if (n_dot_h > 0.0F)
{
GLfloat spec_coef;
struct gl_shine_tab *tab = ctx->ShineTable[side];
if (!normalized) {
n_dot_h *= n_dot_h;
n_dot_h /= LEN_SQUARED_3FV( h );
tab = ctx->ShineTable[side+2];
}
if (n_dot_h>1.0) {
spec_coef = pow( n_dot_h, tab->shininess );
} else
GET_SHINE_TAB_ENTRY( tab, n_dot_h, spec_coef );
if (spec_coef > 1.0e-10) {
spec_coef *= attenuation;
ACC_SCALE_SCALAR_3V( spec[side], spec_coef,
light->MatSpecular[side]);
}
}
} /*loop over lights*/
if (LIGHT_FRONT(*mask)) {
FLOAT_RGB_TO_UBYTE_RGB( Fcolor[j], sum[0] );
FLOAT_RGB_TO_UBYTE_RGB( Fspec[j], spec[0] );
Fcolor[j][3] = sumA[0];
}
if (LIGHT_REAR(*mask)) {
FLOAT_RGB_TO_UBYTE_RGB( Bcolor[j], sum[1] );
FLOAT_RGB_TO_UBYTE_RGB( Bspec[j], spec[1] );
Bcolor[j][3] = sumA[1];
}
}
if ( flags[j] & cm_flags )
gl_update_color_material( ctx, CMcolor[j] );
if ( flags[j] & VERT_MATERIAL )
gl_update_material( ctx, new_material[j], new_material_mask[j] );
}
static void TAG(shade_rgba)( struct vertex_buffer *VB )
{
GLuint j;
GLcontext *ctx = VB->ctx;
GLfloat (*base)[3] = ctx->Light.BaseColor;
GLubyte *sumA = ctx->Light.BaseAlpha;
GLuint vstride = VB->Unprojected->stride;
const GLfloat *vertex = (GLfloat *)VB->Unprojected->start;
GLuint vertex_size = VB->Unprojected->size;
GLuint nstride = VB->NormalPtr->stride;
const GLfloat *normal = VB->NormalPtr->start;
CONST GLfloat (*first_normal)[3] = (CONST GLfloat (*)[3])VB->NormalPtr->start;
GLubyte (*CMcolor)[4] = 0;
GLubyte (*Fcolor)[4] = (GLubyte (*)[4])VB->LitColor[0]->start;
GLubyte (*Bcolor)[4] = (GLubyte (*)[4])VB->LitColor[1]->start;
GLubyte *mask = VB->CullMask + VB->Start;
GLubyte *cullmask = mask;
GLuint *flags = VB->Flag + VB->Start;
GLuint cm_flags = 0;
struct gl_material (*new_material)[2] = VB->Material + VB->Start;
GLuint *new_material_mask = VB->MaterialMask + VB->Start;
GLuint nr = VB->Count - VB->Start;
(void) cullmask;
(void) nstride;
(void) first_normal;
(void) flags;
if (ctx->Light.ColorMaterialEnabled) {
cm_flags = VERT_RGBA;
if (VB->ColorPtr->flags & VEC_BAD_STRIDE)
gl_clean_color(VB);
CMcolor = (GLubyte (*)[4])VB->ColorPtr->start;
}
VB->ColorPtr = VB->LitColor[0];
VB->Color[0] = VB->LitColor[0];
VB->Color[1] = VB->LitColor[1];
for ( j=0 ; j<nr ; j++,STRIDE_F(vertex,vstride),NEXT_VERTEX_NORMAL)
{
GLfloat sum[2][3];
struct gl_light *light;
if ( flags[j] & cm_flags )
gl_update_color_material( ctx, CMcolor[j] );
if ( flags[j] & VERT_MATERIAL )
gl_update_material( ctx, new_material[j], new_material_mask[j] );
if ( CULL(*mask) )
continue;
COPY_3V(sum[0], base[0]);
if ( NR_SIDES == 2 )
COPY_3V(sum[1], base[1]);
/* Add contribution from each enabled light source */
foreach (light, &ctx->Light.EnabledList) {
GLfloat n_dot_h;
GLfloat correction;
GLint side;
GLfloat contrib[3];
GLfloat attenuation = 1.0;
GLfloat VP[3]; /* unit vector from vertex to light */
GLfloat n_dot_VP; /* n dot VP */
GLfloat *h;
GLboolean normalized;
/* compute VP and attenuation */
if (!(light->Flags & LIGHT_POSITIONAL)) {
/* directional light */
COPY_3V(VP, light->VP_inf_norm);
attenuation = light->VP_inf_spot_attenuation;
}
else {
GLfloat d; /* distance from vertex to light */
/* KW: fix me */
if (vertex_size == 2) {
SUB_2V(VP, light->Position, vertex);
VP[2] = light->Position[2];
} else {
SUB_3V(VP, light->Position, vertex);
}
d = LEN_3FV( VP );
if ( d > 1e-6) {
GLfloat invd = 1.0F / d;
SELF_SCALE_SCALAR_3V(VP, invd);
}
/* if (light->Flags & LIGHT_ATTENUATED) */
attenuation = 1.0F / (light->ConstantAttenuation + d *
(light->LinearAttenuation + d *
light->QuadraticAttenuation));
/* spotlight attenuation */
if (light->Flags & LIGHT_SPOT)
{
GLfloat PV_dot_dir = - DOT3(VP, light->NormDirection);
if (PV_dot_dir<light->CosCutoff) {
continue; /* this light makes no contribution */
}
else {
double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
int k = (int) x;
GLfloat spot = (light->SpotExpTable[k][0]
+ (x-k)*light->SpotExpTable[k][1]);
attenuation *= spot;
}
}
}
if (attenuation < 1e-3)
continue; /* this light makes no contribution */
/* Compute dot product or normal and vector from V to light pos */
n_dot_VP = DOT3( normal, VP );
/* which side are we lighting? */
if (n_dot_VP < 0.0F) {
if (LIGHT_FRONT(*mask)) {
ACC_SCALE_SCALAR_3V(sum[0], attenuation, light->MatAmbient[0]);
}
if (!LIGHT_REAR(*mask))
continue;
side = 1;
correction = -1;
n_dot_VP = -n_dot_VP;
} else {
if (LIGHT_REAR(*mask)) {
ACC_SCALE_SCALAR_3V( sum[1], attenuation, light->MatAmbient[1]);
}
if (!LIGHT_FRONT(*mask))
continue;
side = 0;
correction = 1;
}
COPY_3V(contrib, light->MatAmbient[side]);
/* diffuse term */
ACC_SCALE_SCALAR_3V(contrib, n_dot_VP, light->MatDiffuse[side]);
/* specular term - cannibalize VP... */
if (light->IsMatSpecular[side])
{
if (ctx->Light.Model.LocalViewer) {
GLfloat v[3];
COPY_3V(v, vertex);
if (vertex_size == 2) v[2] = 0;
NORMALIZE_3FV(v);
SUB_3V(VP, VP, v); /* h = VP + VPe */
h = VP;
normalized = 0;
}
else if (light->Flags & LIGHT_POSITIONAL) {
h = VP;
ACC_3V(h, ctx->EyeZDir);
normalized = 0;
} else {
h = light->h_inf_norm;
normalized = 1;
}
n_dot_h = correction * DOT3(normal, h);
if (n_dot_h > 0.0F)
{
GLfloat spec_coef;
struct gl_shine_tab *tab = ctx->ShineTable[side];
if (!normalized) {
n_dot_h *= n_dot_h;
n_dot_h /= LEN_SQUARED_3FV( h );
tab = ctx->ShineTable[side+2];
}
if (n_dot_h>1.0) {
spec_coef = pow( n_dot_h, tab->shininess );
} else {
GET_SHINE_TAB_ENTRY( tab, n_dot_h, spec_coef );
}
ACC_SCALE_SCALAR_3V( contrib, spec_coef,
light->MatSpecular[side]);
}
}
ACC_SCALE_SCALAR_3V( sum[side], attenuation, contrib );
}
if (LIGHT_FRONT(*mask)) {
FLOAT_RGB_TO_UBYTE_RGB( Fcolor[j], sum[0] );
Fcolor[j][3] = sumA[0];
}
if (LIGHT_REAR(*mask)) {
FLOAT_RGB_TO_UBYTE_RGB( Bcolor[j], sum[1] );
Bcolor[j][3] = sumA[1];
}
}
if ( flags[j] & cm_flags )
gl_update_color_material( ctx, CMcolor[j] );
if ( flags[j] & VERT_MATERIAL )
gl_update_material( ctx, new_material[j], new_material_mask[j] );
}
/* Vertex size doesn't matter - yay!
*/
static void TAG(shade_fast_rgba)( struct vertex_buffer *VB )
{
GLcontext *ctx = VB->ctx;
GLfloat (*base)[3] = ctx->Light.BaseColor;
GLubyte *sumA = ctx->Light.BaseAlpha;
GLuint nstride = VB->NormalPtr->stride;
const GLfloat *normal = VB->NormalPtr->start;
CONST GLfloat (*first_normal)[3] = (CONST GLfloat (*)[3])VB->NormalPtr->start;
GLubyte (*CMcolor)[4] = 0;
GLubyte (*Fcolor)[4] = (GLubyte (*)[4])VB->LitColor[0]->start;
GLubyte (*Bcolor)[4] = (GLubyte (*)[4])VB->LitColor[1]->start;
GLubyte *mask = VB->NormCullStart;
GLubyte *cullmask = mask;
GLuint *flags = VB->Flag + VB->Start;
GLuint cm_flags = 0;
GLuint interesting;
GLuint j = 0;
struct gl_material (*new_material)[2] = VB->Material + VB->Start;
GLuint *new_material_mask = VB->MaterialMask + VB->Start;
(void) cullmask;
(void) first_normal;
(void) flags;
(void) nstride;
if (ctx->Light.ColorMaterialEnabled)
{
cm_flags = VERT_RGBA;
if (VB->ColorPtr->flags & VEC_BAD_STRIDE)
gl_clean_color(VB);
CMcolor = (GLubyte (*)[4])VB->ColorPtr->start;
if ( *flags & VERT_RGBA )
gl_update_color_material( ctx, *CMcolor );
}
interesting = cm_flags | VERT_MATERIAL | VERT_END_VB | VERT_NORM;
VB->ColorPtr = VB->LitColor[0];
VB->Color[0] = VB->LitColor[0];
VB->Color[1] = VB->LitColor[1];
if ( flags[j] & VERT_MATERIAL )
gl_update_material( ctx, new_material[j], new_material_mask[j] );
do {
do {
if ( !CULL(*mask) )
{
struct gl_light *light;
GLfloat sum[2][3];
GLfloat spec;
COPY_3V(sum[0], base[0]);
if (NR_SIDES == 2) COPY_3V(sum[1], base[1]);
if (MESA_VERBOSE&VERBOSE_LIGHTING)
fprintf(stderr, "light normal %d/%d, %f %f %f\n",
j, VB->Start, normal[0], normal[1], normal[2]);
foreach (light, &ctx->Light.EnabledList) {
GLfloat n_dot_h;
GLint side = 0;
GLfloat n_dot_VP = DOT3(normal, light->VP_inf_norm);
if (n_dot_VP < 0.0F) {
if ( !LIGHT_REAR(*mask) ) continue;
ACC_SCALE_SCALAR_3V(sum[1], -n_dot_VP, light->MatDiffuse[1]);
if (!light->IsMatSpecular[1]) continue;
n_dot_h = -DOT3(normal, light->h_inf_norm);
side = 1;
} else {
if ( !LIGHT_FRONT(*mask) ) continue;
ACC_SCALE_SCALAR_3V(sum[0], n_dot_VP, light->MatDiffuse[0]);
if (!light->IsMatSpecular[0]) continue;
n_dot_h = DOT3(normal, light->h_inf_norm);
}
if (n_dot_h > 0.0F) {
struct gl_shine_tab *tab = ctx->ShineTable[side];
if (n_dot_h > 1.0)
spec = pow( n_dot_h, tab->shininess );
else
GET_SHINE_TAB_ENTRY( tab, n_dot_h, spec );
ACC_SCALE_SCALAR_3V( sum[side], spec,
light->MatSpecular[side]);
}
}
if (LIGHT_FRONT(*mask)) {
FLOAT_RGB_TO_UBYTE_RGB( Fcolor[j], sum[0] );
Fcolor[j][3] = sumA[0];
}
if (LIGHT_REAR(*mask)) {
FLOAT_RGB_TO_UBYTE_RGB( Bcolor[j], sum[1] );
Bcolor[j][3] = sumA[1];
}
}
j++;
NEXT_NORMAL;
} while ((flags[j] & interesting) == VERT_NORM);
if (COMPACTED) {
GLuint last = j-1;
for ( ; !(flags[j] & interesting) ; j++ )
{
COPY_4UBV(Fcolor[j], Fcolor[last]);
if (NR_SIDES==2)
COPY_4UBV(Bcolor[j], Bcolor[last]);
}
NEXT_NORMAL;
}
if ( flags[j] & cm_flags )
gl_update_color_material( ctx, CMcolor[j] );
if ( flags[j] & VERT_MATERIAL )
gl_update_material( ctx, new_material[j], new_material_mask[j] );
} while (!(flags[j] & VERT_END_VB));
}
/*
* Use current lighting/material settings to compute the color indexes
* for an array of vertices.
* Input: n - number of vertices to shade
* side - 0=use front material, 1=use back material
* vertex - array of [n] vertex position in eye coordinates
* normal - array of [n] surface normal vector
* Output: indexResult - resulting array of [n] color indexes
*/
static void TAG(shade_ci)( struct vertex_buffer *VB )
{
GLuint j;
GLcontext *ctx = VB->ctx;
GLuint vstride = VB->Unprojected->stride;
const GLfloat *vertex = (GLfloat *)VB->Unprojected->start;
GLuint vertex_size = VB->Unprojected->size;
GLuint nstride = VB->NormalPtr->stride;
const GLfloat *normal = VB->NormalPtr->start;
CONST GLfloat (*first_normal)[3] = (CONST GLfloat (*)[3])VB->NormalPtr->start;
GLubyte (*CMcolor)[4] = 0;
GLubyte *mask = VB->CullMask + VB->Start;
GLubyte *cullmask = mask;
GLuint *flags = VB->Flag + VB->Start;
GLuint cm_flags = 0;
GLuint *indexResult[2];
struct gl_material (*new_material)[2] = VB->Material + VB->Start;
GLuint *new_material_mask = VB->MaterialMask + VB->Start;
GLuint nr = VB->Count - VB->Start;
(void) cullmask;
(void) nstride;
(void) first_normal;
(void) flags;
VB->IndexPtr = VB->LitIndex[0];
VB->Index[0] = VB->LitIndex[0];
VB->Index[1] = VB->LitIndex[1];
indexResult[0] = VB->Index[0]->start;
indexResult[1] = VB->Index[1]->start;
/* loop over vertices */
if (ctx->Light.ColorMaterialEnabled) {
cm_flags = VERT_RGBA;
if (VB->ColorPtr->flags & VEC_BAD_STRIDE)
gl_clean_color(VB);
CMcolor = (GLubyte (*)[4])VB->ColorPtr->start;
}
for ( j=0 ; j<nr ; j++,STRIDE_F(vertex,vstride),NEXT_VERTEX_NORMAL)
{
GLfloat diffuse[2], specular[2];
GLuint side = 0;
struct gl_light *light;
if ( flags[j] & cm_flags )
gl_update_color_material( ctx, CMcolor[j] );
if ( flags[j] & VERT_MATERIAL )
gl_update_material( ctx, new_material[j], new_material_mask[j] );
if ( CULL(*mask) )
continue;
diffuse[0] = specular[0] = 0.0F;
if ( NR_SIDES == 2 ) {
diffuse[1] = specular[1] = 0.0F;
}
/* Accumulate diffuse and specular from each light source */
foreach (light, &ctx->Light.EnabledList) {
GLfloat attenuation = 1.0F;
GLfloat VP[3]; /* unit vector from vertex to light */
GLfloat n_dot_VP; /* dot product of l and n */
GLfloat *h, n_dot_h, correction = 1.0;
GLboolean normalized;
/* compute l and attenuation */
if (!(light->Flags & LIGHT_POSITIONAL)) {
/* directional light */
COPY_3V(VP, light->VP_inf_norm);
}
else {
GLfloat d; /* distance from vertex to light */
if (vertex_size == 2) {
SUB_2V(VP, light->Position, vertex);
VP[2] = light->Position[2];
} else {
SUB_3V(VP, light->Position, vertex);
}
d = (GLfloat) LEN_3FV( VP );
if ( d > 1e-6) {
GLfloat invd = 1.0F / d;
SELF_SCALE_SCALAR_3V(VP, invd);
}
attenuation = 1.0F / (light->ConstantAttenuation + d *
(light->LinearAttenuation + d *
light->QuadraticAttenuation));
/* spotlight attenuation */
if (light->Flags & LIGHT_SPOT)
{
GLfloat PV_dot_dir = - DOT3(VP, light->NormDirection);
if (PV_dot_dir<light->CosCutoff) {
continue; /* this light makes no contribution */
}
else {
double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
int k = (int) x;
GLfloat spot = (GLfloat) (light->SpotExpTable[k][0]
+ (x-k)*light->SpotExpTable[k][1]);
attenuation *= spot;
}
}
}
if (attenuation < 1e-3)
continue; /* this light makes no contribution */
n_dot_VP = DOT3( normal, VP );
/* which side are we lighting? */
if (n_dot_VP < 0.0F) {
if (!LIGHT_REAR(*mask))
continue;
side = 1;
correction = -1;
n_dot_VP = -n_dot_VP;
} else {
if (!LIGHT_FRONT(*mask))
continue;
}
/* accumulate diffuse term */
diffuse[side] += n_dot_VP * light->dli * attenuation;
/* specular term */
if (!(light->Flags & LIGHT_SPECULAR))
continue;
if (ctx->Light.Model.LocalViewer) {
GLfloat v[3];
COPY_3V(v, vertex);
if (vertex_size == 2) v[2] = 0;
NORMALIZE_3FV(v);
SUB_3V(VP, VP, v); /* h = VP + VPe */
h = VP;
normalized = 0;
}
else if (light->Flags & LIGHT_POSITIONAL) {
h = VP;
ACC_3V(h, ctx->EyeZDir);
normalized = 0;
} else {
h = light->h_inf_norm;
normalized = 1;
}
n_dot_h = correction * DOT3(normal, h);
if (n_dot_h > 0.0F)
{
GLfloat spec_coef;
struct gl_shine_tab *tab = ctx->ShineTable[side];
if (!normalized) {
n_dot_h *= n_dot_h;
n_dot_h /= LEN_SQUARED_3FV( h );
tab = ctx->ShineTable[side+2];
}
if (n_dot_h>1.0) {
spec_coef = (GLfloat) pow( n_dot_h, tab->shininess );
} else {
GET_SHINE_TAB_ENTRY( tab, n_dot_h, spec_coef);
}
specular[side] += spec_coef * light->sli * attenuation;
}
} /*loop over lights*/
/* Now compute final color index */
for (side = 0 ; side < NR_SIDES ; side++)
{
GLfloat index;
struct gl_material *mat;
if (!LIGHT_SIDE(*mask, side))
continue;
mat = &ctx->Light.Material[side];
if (specular[side] > 1.0F) {
index = mat->SpecularIndex;
}
else {
GLfloat d_a = mat->DiffuseIndex - mat->AmbientIndex;
GLfloat s_a = mat->SpecularIndex - mat->AmbientIndex;
index = mat->AmbientIndex
+ diffuse[side] * (1.0F-specular[side]) * d_a
+ specular[side] * s_a;
if (index > mat->SpecularIndex) {
index = mat->SpecularIndex;
}
}
indexResult[side][j] = (GLuint) (GLint) index;
}
} /*for vertex*/
if ( flags[j] & cm_flags )
gl_update_color_material( ctx, CMcolor[j] );
if ( flags[j] & VERT_MATERIAL )
gl_update_material( ctx, new_material[j], new_material_mask[j] );
}
static void TAG(init_shade_tab)( void )
{
gl_shade_func_tab[IDX|SHADE_RGBA_VERTICES] = TAG(shade_rgba);
gl_shade_func_tab[IDX|SHADE_RGBA_NORMALS] = TAG(shade_fast_rgba);
gl_shade_func_tab[IDX|SHADE_RGBA_SPEC] = TAG(shade_rgba_spec);
gl_shade_func_tab[IDX] = TAG(shade_ci);
}
#undef TAG
#undef INVALID
#undef IDX
#undef LIGHT_FRONT
#undef LIGHT_REAR
#undef LIGHT_SIDE
#undef NR_SIDES
#undef CULL