home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Hackers Magazine 57
/
CdHackersMagazineNr57.iso
/
Software
/
Multimedia
/
k3d-setup-0.7.11.0.exe
/
include
/
k3d
/
k3dsdk
/
point2.h
< prev
next >
Wrap
C/C++ Source or Header
|
2008-11-07
|
4KB
|
201 lines
#ifndef K3DSDK_POINT2_H
#define K3DSDK_POINT2_H
// K-3D
// Copyright (c) 1995-2007, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/****************************************************************
*
* C++ Vector and Matrix Algebra routines
* Author: Jean-Francois DOUE
* Version 3.1 --- October 1993
*
****************************************************************/
//
// From "Graphics Gems IV / Edited by Paul S. Heckbert
// Academic Press, 1994, ISBN 0-12-336156-9
// "You are free to use and modify this code in any way
// you like." (p. xv)
//
// Modified by J. Nagle, March 1997
// - All functions are inline.
// - All functions are const-correct.
// - All checking is via the standard "assert" macro.
//
// Modified by Tim Shead for use with K-3D, January 1998
#include "almost_equal.h"
#include "result.h"
#include <boost/io/ios_state.hpp>
#include <iomanip>
namespace k3d
{
class vector2;
/////////////////////////////////////////////////////////////////////////////
// point2
/// Encapsulates a location in two-dimensional space
class point2
{
public:
/// Stores the point values
double n[2];
point2()
{
n[0] = n[1] = 0.0;
}
point2(const double x, const double y)
{
n[0] = x;
n[1] = y;
}
point2(const point2& v)
{
n[0] = v.n[0];
n[1] = v.n[1];
}
/// Addition of a vector
point2& operator+=(const vector2& v);
/// Subtraction of a vector
point2& operator-=(const vector2& v);
/// Multiplication by a constant
point2& operator*=(const double d)
{
n[0] *= d;
n[1] *= d;
return *this;
}
/// Division by a constant
point2& operator/=(const double d)
{
return_val_if_fail(d, *this);
double d_inv = 1./d;
n[0] *= d_inv;
n[1] *= d_inv;
return *this;
}
/// Returns an indexed dimension by reference
double& operator[](int i)
{
return n[i];
}
/// Returns an indexed dimension by value
double operator[](int i) const
{
return n[i];
}
friend std::ostream& operator<<(std::ostream& Stream, const point2& RHS)
{
boost::io::ios_flags_saver stream_state(Stream);
Stream << std::setprecision(17) << RHS.n[0] << " " << RHS.n[1];
return Stream;
}
friend std::istream& operator>>(std::istream& Stream, point2& RHS)
{
Stream >> RHS.n[0] >> RHS.n[1];
return Stream;
}
};
/// Negation
inline const point2 operator-(const point2& a)
{
return point2(-a.n[0], -a.n[1]);
}
/// Addition
/** \note We implement this as a convenience for the benefit of linear interpolation - adding two points has no geometric meaning */
inline const point2 operator+(const point2& a, const point2& b)
{
return point2(a.n[0] + b.n[0], a.n[1] + b.n[1]);
}
/// Multiplication by a constant
inline const point2 operator*(const point2& a, const double d)
{
return point2(d * a.n[0], d * a.n[1]);
}
/// Multiplication by a constant
inline const point2 operator*(const double d, const point2& a)
{
return a * d;
}
/// Division by a constant
inline const point2 operator/(const point2& a, const double d)
{
return_val_if_fail(d, point2());
double d_inv = 1./d;
return point2(a.n[0]*d_inv, a.n[1]*d_inv);
}
/// Equality
inline const bool operator==(const point2& a, const point2& b)
{
return a.n[0] == b.n[0] && a.n[1] == b.n[1];
}
/// Non-equality
inline const bool operator!=(const point2& a, const point2& b)
{
return !(a == b);
}
/// Specialization of almost_equal that tests two point2 objects for near-equality
template<>
class almost_equal<point2>
{
typedef point2 T;
public:
almost_equal(const boost::uint64_t Threshold) : threshold(Threshold) { }
inline const bool operator()(const T& A, const T& B) const
{
return std::equal(A.n, A.n + 2, B.n, almost_equal<double>(threshold));
}
private:
const boost::uint64_t threshold;
};
} // namespace k3d
#endif // !K3DSDK_POINT2_H