home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Hackers Magazine 57
/
CdHackersMagazineNr57.iso
/
Software
/
Multimedia
/
k3d-setup-0.7.11.0.exe
/
include
/
k3d
/
k3dsdk
/
vector3.h
< prev
next >
Wrap
C/C++ Source or Header
|
2008-12-16
|
6KB
|
265 lines
#ifndef K3DSDK_VECTOR3_H
#define K3DSDK_VECTOR3_H
// K-3D
// Copyright (c) 1995-2006, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/** \file
\brief Vector (points, vectors and normals) routines
\author Timothy M. Shead (tshead@k-3d.com)
*/
/****************************************************************
*
* C++ Vector and Matrix Algebra routines
* Author: Jean-Francois DOUE
* Version 3.1 --- October 1993
*
****************************************************************/
//
// From "Graphics Gems IV / Edited by Paul S. Heckbert
// Academic Press, 1994, ISBN 0-12-336156-9
// "You are free to use and modify this code in any way
// you like." (p. xv)
//
// Modified by J. Nagle, March 1997
// - All functions are inline.
// - All functions are const-correct.
// - All checking is via the standard "assert" macro.
//
// Modified by Tim Shead for use with K-3D, January 1998
#include "almost_equal.h"
#include "result.h"
#include <boost/io/ios_state.hpp>
#include <cmath>
#include <iomanip>
namespace k3d
{
/////////////////////////////////////////////////////////////////////////////
// vector3
/// Encapsulates a direction vector in three-dimensional space
class vector3
{
public:
/// Stores the vector values
double n[3];
vector3()
{
n[0] = n[1] = n[2] = 0.0;
}
vector3(const double x, const double y, const double z)
{
n[0] = x;
n[1] = y;
n[2] = z;
}
vector3& operator+=(const vector3& v)
{
n[0] += v.n[0];
n[1] += v.n[1];
n[2] += v.n[2];
return *this;
}
vector3& operator-=(const vector3& v)
{
n[0] -= v.n[0];
n[1] -= v.n[1];
n[2] -= v.n[2];
return *this;
}
vector3& operator*=(const double d)
{
n[0] *= d;
n[1] *= d;
n[2] *= d;
return *this;
}
vector3& operator/=(const double d)
{
return_val_if_fail(d, *this);
const double d_inv = 1./d;
n[0] *= d_inv;
n[1] *= d_inv;
n[2] *= d_inv;
return *this;
}
double& operator[](const unsigned int i)
{
assert_warning((i >= 0) && (i <= 2));
return n[i];
}
double operator[](const unsigned int i) const
{
return_val_if_fail((i >= 0) && (i <= 2), 0);
return n[i];
}
/// Returns the normal length
double length() const
{
return std::sqrt(length2());
}
/// Returns the squared normal length
double length2() const
{
return n[0] * n[0] + n[1] * n[1] + n[2] * n[2];
}
friend std::ostream& operator<<(std::ostream& Stream, const vector3& RHS)
{
boost::io::ios_flags_saver stream_state(Stream);
Stream << std::setprecision(17) << RHS.n[0] << " " << RHS.n[1] << " " << RHS.n[2];
return Stream;
}
friend std::istream& operator>>(std::istream& Stream, vector3& RHS)
{
Stream >> RHS.n[0] >> RHS.n[1] >> RHS.n[2];
return Stream;
}
};
/// Negation
inline const vector3 operator-(const vector3& v)
{
return vector3(-v.n[0], -v.n[1], -v.n[2]);
}
/// Addition
inline const vector3 operator+(const vector3& a, const vector3& b)
{
return vector3(a.n[0] + b.n[0], a.n[1] + b.n[1], a.n[2] + b.n[2]);
}
/// Subtraction
inline const vector3 operator-(const vector3& a, const vector3& b)
{
return vector3(a.n[0] - b.n[0], a.n[1] - b.n[1], a.n[2] - b.n[2]);
}
/// Multiplication by a constant
inline const vector3 operator*(const vector3& a, const double d)
{
return vector3(a.n[0] * d, a.n[1] * d, a.n[2] * d);
}
/// Multiplication by a constant
inline const vector3 operator*(const double d, const vector3& a)
{
return vector3(a.n[0] * d, a.n[1] * d, a.n[2] * d);
}
/// Returns the dot product of two vectors
inline const double operator*(const vector3& a, const vector3& b)
{
return a.n[0] * b.n[0] + a.n[1] * b.n[1] + a.n[2] * b.n[2];
}
/// Division by a constant
inline const vector3 operator/(const vector3& a, const double d)
{
return_val_if_fail(d, vector3());
return vector3(a.n[0] / d, a.n[1] / d, a.n[2] / d);
}
/// Returns the cross product of two vectors
inline const vector3 operator^(const vector3& a, const vector3& b)
{
return vector3(a.n[1] * b.n[2] - a.n[2] * b.n[1], a.n[2] * b.n[0] - a.n[0] * b.n[2], a.n[0] * b.n[1] - a.n[1] * b.n[0]);
}
/// Equality
inline const bool operator==(const vector3& a, const vector3& b)
{
return a.n[0] == b.n[0] && a.n[1] == b.n[1] && a.n[2] == b.n[2];
}
/// Inequality
inline const bool operator!=(const vector3& a, const vector3& b)
{
return a.n[0] != b.n[0] || a.n[1] != b.n[1] || a.n[2] != b.n[2];
}
/// Returns the length of a vector
inline const double length(const vector3& Vector)
{
return Vector.length();
}
/// Returns the normalized form of a vector
inline const vector3 normalize(const vector3& Vector)
{
const double length = Vector.length();
return_val_if_fail(length, Vector);
return Vector / length;
}
/// Converts Cartesian coordinates to spherical coordinates
inline const vector3 spherical(const vector3& Vector)
{
return vector3(Vector.length(), std::atan2(Vector[0], Vector[2]), std::atan2(Vector[1], sqrt(Vector[0] * Vector[0] + Vector[2] * Vector[2])));
/*
// Handle the singularity at the poles
if(0.0 == Vector[0] && 0.0 == Vector[2])
return point3(n[1] > 0.0 ? sdpPiOver2 : -sdpPiOver2, 0.0, Vector.length());
return point3(atan2(Vector[1], sqrt(Vector[0] * Vector[0] + Vector[2] * Vector[2])), atan2(Vector[0], Vector[2]), Vector.length());
*/
}
/// Specialization of almost_equal that tests two vector3 objects for near-equality
template<>
class almost_equal<vector3>
{
typedef vector3 T;
public:
almost_equal(const boost::uint64_t Threshold) : threshold(Threshold) { }
inline const bool operator()(const T& A, const T& B) const
{
return std::equal(A.n, A.n + 3, B.n, almost_equal<double>(threshold));
}
private:
const boost::uint64_t threshold;
};
} // namespace k3d
#endif // !K3DSDK_VECTOR3_H