home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Internet Toolkit for Windows 95
/
Inter95.iso
/
progs
/
cryptext
/
SHA.C
< prev
Wrap
C/C++ Source or Header
|
1994-07-08
|
10KB
|
356 lines
/* Implementation of NIST's Secure Hash Algorithm (FIPS 180)
* Lightly bummed for execution efficiency.
*
* Jim Gillogly 3 May 1993
*
* 27 Aug 93: imported LITTLE_ENDIAN mods from Peter Gutmann's implementation
* 5 Jul 94: Modified for NSA fix
*
* Compile: cc -O -o sha sha.c
*
* To remove the test wrapper and use just the nist_hash() routine,
* compile with -DONT_WRAP
*
* To reverse byte order for little-endian machines, use -DLITTLE_ENDIAN
*
* To get the original SHA definition before the 1994 fix, use -DVERSION_0
*
* Usage: sha [-vt] [filename ...]
*
* -v switch: output the filename as well
* -t switch: suppress spaces between 32-bit blocks
*
* If no input files are specified, process standard input.
*
* Output: 40-hex-digit digest of each file specified (160 bits)
*
* Synopsis of the function calls:
*
* sha_file(char *filename, unsigned long *buffer)
* Filename is a file to be opened and processed.
* buffer is a user-supplied array of 5 or more longs.
* The 5-word buffer is filled with 160 bits of non-terminated hash.
* Returns 0 if successful, non-zero if bad file.
*
* void sha_stream(FILE *stream, unsigned long *buffer)
* Input is from already-opened stream, not file.
*
* void sha_memory(char *mem, long length, unsigned long *buffer)
* Input is a memory block "length" bytes long.
*
* Caveat:
* Not tested for case that requires the high word of the length,
* which would be files larger than 1/2 gig or so.
*
* Limitation:
* sha_memory (the memory block function) will deal with blocks no longer
* than 4 gigabytes; for longer samples, the stream version will
* probably be most convenient (e.g. perl moby_data.pl | sha).
*
* Bugs:
* The standard is defined for bit strings; I assume bytes.
*
* Copyright 1993, Dr. James J. Gillogly
* This code may be freely used in any application.
*/
/* #define LITTLE_ENDIAN */
/* #define VERSION_0 */ /* Define this to get the original SHA definition */
#include <stdio.h>
#include <memory.h>
#define VERBOSE
#define TRUE 1
#define FALSE 0
#define SUCCESS 0
#define FAILURE -1
int sha_file(); /* External entries */
void sha_stream(), sha_memory();
static void nist_guts();
#ifndef ONT_WRAP /* Using just the hash routine itself */
#define HASH_SIZE 5 /* Produces 160-bit digest of the message */
main(argc, argv)
int argc;
char **argv;
{
unsigned long hbuf[HASH_SIZE];
char *s;
int file_args = FALSE; /* If no files, take it from stdin */
int verbose = FALSE;
int terse = FALSE;
#ifdef MEMTEST
sha_memory("abc", 3l, hbuf); /* NIST test value from appendix A */
if (verbose) printf("Memory:");
if (terse) printf("%08lx%08lx%08lx%08lx%08lx\n",
hbuf[0], hbuf[1], hbuf[2], hbuf[3], hbuf[4]);
else printf("%08lx %08lx %08lx %08lx %08lx\n",
hbuf[0], hbuf[1], hbuf[2], hbuf[3], hbuf[4]);
#endif
for (++argv; --argc; ++argv) /* March down the arg list */
{
if (**argv == '-') /* Process one or more flags */
for (s = &(*argv)[1]; *s; s++) /* Obfuscated C contest entry */
switch(*s)
{
case 'v': case 'V':
verbose = TRUE;
break;
case 't': case 'T':
terse = TRUE;
break;
default:
fprintf(stderr, "Unrecognized flag: %c\n", *s);
return FALSE;
}
else /* Process a file */
{
if (verbose) printf("%s:", *argv);
file_args = TRUE; /* Whether or not we could read it */
if (sha_file(*argv, hbuf) == FAILURE)
printf("Can't open file %s.\n", *argv);
else
if (terse) printf("%08lx%08lx%08lx%08lx%08lx\n",
hbuf[0], hbuf[1], hbuf[2], hbuf[3], hbuf[4]);
else printf("%08lx %08lx %08lx %08lx %08lx\n",
hbuf[0], hbuf[1], hbuf[2], hbuf[3], hbuf[4]);
}
}
if (! file_args) /* No file specified */
{
if (verbose) printf("%s:", *argv);
sha_stream(stdin, hbuf);
if (terse) printf("%08lx%08lx%08lx%08lx%08lx\n",
hbuf[0], hbuf[1], hbuf[2], hbuf[3], hbuf[4]);
else printf("%08lx %08lx %08lx %08lx %08lx\n",
hbuf[0], hbuf[1], hbuf[2], hbuf[3], hbuf[4]);
}
return TRUE;
}
#endif ONT_WRAP
#ifdef LITTLE_ENDIAN /* Imported from Peter Gutmann's implementation */
/* When run on a little-endian CPU we need to perform byte reversal on an
array of longwords. It is possible to make the code endianness-
independant by fiddling around with data at the byte level, but this
makes for very slow code, so we rely on the user to sort out endianness
at compile time */
static void byteReverse( unsigned long *buffer, int byteCount )
{
unsigned long value;
int count;
byteCount /= sizeof( unsigned long );
for( count = 0; count < byteCount; count++ )
{
value = ( buffer[ count ] << 16 ) | ( buffer[ count ] >> 16 );
buffer[ count ] = ( ( value & 0xFF00FF00L ) >> 8 ) | ( ( value & 0x00FF00FFL ) << 8 );
}
}
#endif /* LITTLE_ENDIAN */
union longbyte
{
unsigned long W[80]; /* Process 16 32-bit words at a time */
char B[320]; /* But read them as bytes for counting */
};
sha_file(filename, buffer) /* Hash a file */
char *filename;
unsigned long *buffer;
{
FILE *infile;
if ((infile = fopen(filename, "rb")) == NULL)
{
int i;
for (i = 0; i < 5; i++)
buffer[i] = 0xdeadbeef;
return FAILURE;
}
(void) sha_stream(infile, buffer);
fclose(infile);
return SUCCESS;
}
void sha_memory(mem, length, buffer) /* Hash a memory block */
char *mem;
unsigned long length;
unsigned long *buffer;
{
nist_guts(FALSE, (FILE *) NULL, mem, length, buffer);
}
void sha_stream(stream, buffer)
FILE *stream;
unsigned long *buffer;
{
nist_guts(TRUE, stream, (char *) NULL, 0l, buffer);
}
#define f0(x,y,z) (z ^ (x & (y ^ z))) /* Magic functions */
#define f1(x,y,z) (x ^ y ^ z)
#define f2(x,y,z) ((x & y) | (z & (x | y)))
#define f3(x,y,z) (x ^ y ^ z)
#define K0 0x5a827999 /* Magic constants */
#define K1 0x6ed9eba1
#define K2 0x8f1bbcdc
#define K3 0xca62c1d6
#define S(n, X) ((X << n) | (X >> (32 - n))) /* Barrel roll */
#define r0(f, K) \
temp = S(5, A) + f(B, C, D) + E + *p0++ + K; \
E = D; \
D = C; \
C = S(30, B); \
B = A; \
A = temp
#ifdef VERSION_0
#define r1(f, K) \
temp = S(5, A) + f(B, C, D) + E + \
(*p0++ = *p1++ ^ *p2++ ^ *p3++ ^ *p4++) + K; \
E = D; \
D = C; \
C = S(30, B); \
B = A; \
A = temp
#else /* Version 1: Summer '94 update */
#define r1(f, K) \
temp = *p1++ ^ *p2++ ^ *p3++ ^ *p4++; \
temp = S(5, A) + f(B, C, D) + E + (*p0++ = S(1,temp)) + K; \
E = D; \
D = C; \
C = S(30, B); \
B = A; \
A = temp
#endif
static void nist_guts(file_flag, stream, mem, length, buf)
int file_flag; /* Input from memory, or from stream? */
FILE *stream;
char *mem;
unsigned long length;
unsigned long *buf;
{
int i, nread, nbits;
union longbyte d;
unsigned long hi_length, lo_length;
int padded;
char *s;
register unsigned long *p0, *p1, *p2, *p3, *p4;
unsigned long A, B, C, D, E, temp;
unsigned long h0, h1, h2, h3, h4;
h0 = 0x67452301; /* Accumulators */
h1 = 0xefcdab89;
h2 = 0x98badcfe;
h3 = 0x10325476;
h4 = 0xc3d2e1f0;
padded = FALSE;
s = mem;
for (hi_length = lo_length = 0; ;) /* Process 16 longs at a time */
{
if (file_flag)
{
nread = fread(d.B, 1, 64, stream); /* Read as 64 bytes */
}
else
{
if (length < 64) nread = length;
else nread = 64;
length -= nread;
memcpy(d.B, s, nread);
s += nread;
}
if (nread < 64) /* Partial block? */
{
nbits = nread << 3; /* Length: bits */
if ((lo_length += nbits) < nbits)
hi_length++; /* 64-bit integer */
if (nread < 64 && ! padded) /* Append a single bit */
{
d.B[nread++] = 0x80; /* Using up next byte */
padded = TRUE; /* Single bit once */
}
for (i = nread; i < 64; i++) /* Pad with nulls */
d.B[i] = 0;
if (nread <= 56) /* Room for length in this block */
{
d.W[14] = hi_length;
d.W[15] = lo_length;
#ifdef LITTLE_ENDIAN
byteReverse(d.W, 56 );
#endif /* LITTLE_ENDIAN */
}
#ifdef LITTLE_ENDIAN
else byteReverse(d.W, 64 );
#endif /* LITTLE_ENDIAN */
}
else /* Full block -- get efficient */
{
if ((lo_length += 512) < 512)
hi_length++; /* 64-bit integer */
#ifdef LITTLE_ENDIAN
byteReverse(d.W, 64 );
#endif /* LITTLE_ENDIAN */
}
p0 = d.W;
A = h0; B = h1; C = h2; D = h3; E = h4;
r0(f0,K0); r0(f0,K0); r0(f0,K0); r0(f0,K0); r0(f0,K0);
r0(f0,K0); r0(f0,K0); r0(f0,K0); r0(f0,K0); r0(f0,K0);
r0(f0,K0); r0(f0,K0); r0(f0,K0); r0(f0,K0); r0(f0,K0);
r0(f0,K0);
p1 = &d.W[13]; p2 = &d.W[8]; p3 = &d.W[2]; p4 = &d.W[0];
r1(f0,K0); r1(f0,K0); r1(f0,K0); r1(f0,K0);
r1(f1,K1); r1(f1,K1); r1(f1,K1); r1(f1,K1); r1(f1,K1);
r1(f1,K1); r1(f1,K1); r1(f1,K1); r1(f1,K1); r1(f1,K1);
r1(f1,K1); r1(f1,K1); r1(f1,K1); r1(f1,K1); r1(f1,K1);
r1(f1,K1); r1(f1,K1); r1(f1,K1); r1(f1,K1); r1(f1,K1);
r1(f2,K2); r1(f2,K2); r1(f2,K2); r1(f2,K2); r1(f2,K2);
r1(f2,K2); r1(f2,K2); r1(f2,K2); r1(f2,K2); r1(f2,K2);
r1(f2,K2); r1(f2,K2); r1(f2,K2); r1(f2,K2); r1(f2,K2);
r1(f2,K2); r1(f2,K2); r1(f2,K2); r1(f2,K2); r1(f2,K2);
r1(f3,K3); r1(f3,K3); r1(f3,K3); r1(f3,K3); r1(f3,K3);
r1(f3,K3); r1(f3,K3); r1(f3,K3); r1(f3,K3); r1(f3,K3);
r1(f3,K3); r1(f3,K3); r1(f3,K3); r1(f3,K3); r1(f3,K3);
r1(f3,K3); r1(f3,K3); r1(f3,K3); r1(f3,K3); r1(f3,K3);
h0 += A; h1 += B; h2 += C; h3 += D; h4 += E;
if (nread <= 56) break; /* If it's greater, length in next block */
}
buf[0] = h0; buf[1] = h1; buf[2] = h2; buf[3] = h3; buf[4] = h4;
}