home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Chip 2001 January
/
Chip_2001-01_cd1.bin
/
tema
/
mysql
/
mysql-3.23.28g-win-source.exe
/
sql
/
ha_berkeley.cpp
< prev
next >
Wrap
C/C++ Source or Header
|
2000-11-20
|
43KB
|
1,630 lines
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
TODO:
- Not compressed keys should use cmp_fix_length_key
- Don't automaticly pack all string keys (To do this we need to modify
CREATE TABLE so that one can use the pack_keys argument per key).
- An argument to pack_key that we don't want compression.
- DB_DBT_USERMEN should be used for fixed length tables
We will need an updated Berkeley DB version for this.
- Killing threads that has got a 'deadlock'
- SHOW TABLE STATUS should give more information about the table.
- Get a more accurate count of the number of rows (estimate_number_of_rows()).
We could store the found number of rows when the table is scanned and
then increment the counter for each attempted write.
- We will need a manager thread that calls flush_logs, removes old
logs and makes checkpoints at given intervals.
- When not using UPDATE IGNORE, don't make a sub transaction but abort
the main transaction on errors.
- Handling of drop table during autocommit=0 ?
(Should we just give an error in this case if there is a pending
transaction ?)
- When using ALTER TABLE IGNORE, we should not start an transaction, but do
everything wthout transactions.
Testing of:
- ALTER TABLE
- LOCK TABLES
- CHAR keys
- BLOBS
*/
#ifdef __GNUC__
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#ifdef HAVE_BERKELEY_DB
#include <m_ctype.h>
#include <myisampack.h>
#include <assert.h>
#include <hash.h>
#include "ha_berkeley.h"
#define HA_BERKELEY_ROWS_IN_TABLE 10000 /* to get optimization right */
#define HA_BERKELEY_RANGE_COUNT 100
#define HA_BERKELEY_MAX_ROWS 10000000 /* Max rows in table */
const char *ha_berkeley_ext=".db";
bool berkeley_skip=0;
u_int32_t berkeley_init_flags=0,berkeley_lock_type=DB_LOCK_DEFAULT;
ulong berkeley_cache_size;
char *berkeley_home, *berkeley_tmpdir, *berkeley_logdir;
long berkeley_lock_scan_time=0;
ulong berkeley_trans_retry=5;
ulong berkeley_lock_max;
pthread_mutex_t bdb_mutex;
static DB_ENV *db_env;
static HASH bdb_open_tables;
const char *berkeley_lock_names[] =
{ "DEFAULT", "OLDEST","RANDOM","YOUNGEST" };
u_int32_t berkeley_lock_types[]=
{ DB_LOCK_DEFAULT, DB_LOCK_OLDEST, DB_LOCK_RANDOM };
TYPELIB berkeley_lock_typelib= {array_elements(berkeley_lock_names),"",
berkeley_lock_names};
static void berkeley_print_error(const char *db_errpfx, char *buffer);
static byte* bdb_get_key(BDB_SHARE *share,uint *length,
my_bool not_used __attribute__((unused)));
static BDB_SHARE *get_share(const char *table_name);
static void free_share(BDB_SHARE *share);
/* General functions */
bool berkeley_init(void)
{
char buff[1024],*config[10], **conf_pos, *str_pos;
conf_pos=config; str_pos=buff;
DBUG_ENTER("berkeley_init");
if (!berkeley_tmpdir)
berkeley_tmpdir=mysql_tmpdir;
if (!berkeley_home)
berkeley_home=mysql_real_data_home;
if (db_env_create(&db_env,0))
DBUG_RETURN(1);
db_env->set_errcall(db_env,berkeley_print_error);
db_env->set_errpfx(db_env,"bdb");
db_env->set_tmp_dir(db_env, berkeley_tmpdir);
db_env->set_data_dir(db_env, mysql_data_home);
if (berkeley_logdir)
db_env->set_lg_dir(db_env, berkeley_logdir);
if (opt_endinfo)
db_env->set_verbose(db_env,
DB_VERB_CHKPOINT | DB_VERB_DEADLOCK | DB_VERB_RECOVERY,
1);
db_env->set_cachesize(db_env, 0, berkeley_cache_size, 0);
db_env->set_lk_detect(db_env, berkeley_lock_type);
if (berkeley_lock_max)
db_env->set_lk_max(db_env, berkeley_lock_max);
if (db_env->open(db_env,
berkeley_home,
berkeley_init_flags | DB_INIT_LOCK |
DB_INIT_LOG | DB_INIT_MPOOL | DB_INIT_TXN |
DB_CREATE | DB_THREAD | DB_PRIVATE, 0666))
{
db_env->close(db_env,0);
db_env=0;
}
(void) hash_init(&bdb_open_tables,32,0,0,
(hash_get_key) bdb_get_key,0,0);
pthread_mutex_init(&bdb_mutex,NULL);
DBUG_RETURN(db_env == 0);
}
bool berkeley_end(void)
{
int error;
DBUG_ENTER("berkeley_end");
if (!db_env)
return 1;
error=db_env->close(db_env,0); // Error is logged
db_env=0;
hash_free(&bdb_open_tables);
pthread_mutex_destroy(&bdb_mutex);
DBUG_RETURN(error != 0);
}
bool berkeley_flush_logs()
{
int error;
bool result=0;
DBUG_ENTER("berkeley_flush_logs");
if ((error=log_flush(db_env,0)))
{
my_error(ER_ERROR_DURING_FLUSH_LOGS,MYF(0),error);
result=1;
}
if ((error=txn_checkpoint(db_env,0,0,0)))
{
my_error(ER_ERROR_DURING_CHECKPOINT,MYF(0),error);
result=1;
}
DBUG_RETURN(result);
}
int berkeley_commit(THD *thd)
{
DBUG_ENTER("berkeley_commit");
DBUG_PRINT("trans",("ending transaction"));
int error=txn_commit((DB_TXN*) thd->transaction.bdb_tid,0);
#ifndef DBUG_OFF
if (error)
DBUG_PRINT("error",("error: %d",error));
#endif
thd->transaction.bdb_tid=0;
DBUG_RETURN(error);
}
int berkeley_rollback(THD *thd)
{
DBUG_ENTER("berkeley_rollback");
DBUG_PRINT("trans",("aborting transaction"));
int error=txn_abort((DB_TXN*) thd->transaction.bdb_tid);
thd->transaction.bdb_tid=0;
DBUG_RETURN(error);
}
static void berkeley_print_error(const char *db_errpfx, char *buffer)
{
sql_print_error("%s: %s",db_errpfx,buffer);
}
/*****************************************************************************
** Berkeley DB tables
*****************************************************************************/
const char **ha_berkeley::bas_ext() const
{ static const char *ext[]= { ha_berkeley_ext, NullS }; return ext; }
static int
berkeley_cmp_hidden_key(DB* file, const DBT *new_key, const DBT *saved_key)
{
ulonglong a=uint5korr((char*) new_key->data);
ulonglong b=uint5korr((char*) saved_key->data);
return a < b ? -1 : (a > b ? 1 : 0);
}
static int
berkeley_cmp_packed_key(DB *file, const DBT *new_key, const DBT *saved_key)
{
KEY *key= (KEY*) (file->app_private);
char *new_key_ptr= (char*) new_key->data;
char *saved_key_ptr=(char*) saved_key->data;
KEY_PART_INFO *key_part= key->key_part, *end=key_part+key->key_parts;
uint key_length=new_key->size;
for ( ; key_part != end && (int) key_length > 0; key_part++)
{
int cmp;
if (key_part->null_bit)
{
if (*new_key_ptr != *saved_key_ptr++)
return ((int) *new_key_ptr - (int) saved_key_ptr[-1]);
if (!*new_key_ptr++)
{
key_length--;
continue;
}
}
if ((cmp=key_part->field->pack_cmp(new_key_ptr,saved_key_ptr,
key_part->length)))
return cmp;
uint length=key_part->field->packed_col_length(new_key_ptr);
new_key_ptr+=length;
key_length-=length;
saved_key_ptr+=key_part->field->packed_col_length(saved_key_ptr);
}
return key->handler.bdb_return_if_eq;
}
/* The following is not yet used; Should be used for fixed length keys */
static int
berkeley_cmp_fix_length_key(DB *file, const DBT *new_key, const DBT *saved_key)
{
KEY *key=(KEY*) (file->app_private);
char *new_key_ptr= (char*) new_key->data;
char *saved_key_ptr=(char*) saved_key->data;
KEY_PART_INFO *key_part= key->key_part, *end=key_part+key->key_parts;
uint key_length=new_key->size;
for ( ; key_part != end && (int) key_length > 0 ; key_part++)
{
int cmp;
if ((cmp=key_part->field->pack_cmp(new_key_ptr,saved_key_ptr,0)))
return cmp;
new_key_ptr+=key_part->length;
key_length-= key_part->length;
saved_key_ptr+=key_part->length;
}
return key->handler.bdb_return_if_eq;
}
/* Compare key against row */
static bool
berkeley_key_cmp(TABLE *table, KEY *key_info, const char *key, uint key_length)
{
KEY_PART_INFO *key_part= key_info->key_part,
*end=key_part+key_info->key_parts;
for ( ; key_part != end && (int) key_length > 0; key_part++)
{
int cmp;
if (key_part->null_bit)
{
key_length--;
if (*key != (table->record[0][key_part->null_offset] &
key_part->null_bit) ? 0 : 1)
return 1;
if (!*key++) // Null value
continue;
}
if ((cmp=key_part->field->pack_cmp(key,key_part->length)))
return cmp;
uint length=key_part->field->packed_col_length(key);
key+=length;
key_length-=length;
}
return 0;
}
int ha_berkeley::open(const char *name, int mode, uint test_if_locked)
{
char name_buff[FN_REFLEN];
uint open_mode=(mode == O_RDONLY ? DB_RDONLY : 0) | DB_THREAD;
int error;
DBUG_ENTER("ha_berkeley::open");
/* Open primary key */
hidden_primary_key=0;
if ((primary_key=table->primary_key) >= MAX_KEY)
{ // No primary key
primary_key=table->keys;
fixed_length_primary_key=1;
ref_length=hidden_primary_key=BDB_HIDDEN_PRIMARY_KEY_LENGTH;
}
key_used_on_scan=primary_key;
/* Need some extra memory in case of packed keys */
uint max_key_length= table->max_key_length + MAX_REF_PARTS*2;
if (!(alloc_ptr=
my_multi_malloc(MYF(MY_WME),
&key_file, (table->keys+1)*sizeof(*key_file),
&key_type, (table->keys+1)*sizeof(u_int32_t),
&key_buff, max_key_length,
&key_buff2, max_key_length,
&primary_key_buff,
(hidden_primary_key ? 0 :
table->key_info[table->primary_key].key_length),
NullS)))
DBUG_RETURN(1);
if (!(rec_buff=my_malloc((alloced_rec_buff_length=table->rec_buff_length),
MYF(MY_WME))))
{
my_free(alloc_ptr,MYF(0));
DBUG_RETURN(1);
}
/* Init table lock structure */
if (!(share=get_share(name)))
{
my_free(rec_buff,MYF(0));
my_free(alloc_ptr,MYF(0));
DBUG_RETURN(1);
}
thr_lock_data_init(&share->lock,&lock,(void*) 0);
if ((error=db_create(&file, db_env, 0)))
{
free_share(share);
my_free(rec_buff,MYF(0));
my_free(alloc_ptr,MYF(0));
my_errno=error;
DBUG_RETURN(1);
}
file->set_bt_compare(file,
(hidden_primary_key ? berkeley_cmp_hidden_key :
berkeley_cmp_packed_key));
if (!hidden_primary_key)
file->app_private= (void*) (table->key_info+table->primary_key);
if ((error=(file->open(file, fn_format(name_buff,name,"", ha_berkeley_ext,
2 | 4),
"main", DB_BTREE, open_mode,0))))
{
free_share(share);
my_free(rec_buff,MYF(0));
my_free(alloc_ptr,MYF(0));
my_errno=error;
DBUG_RETURN(1);
}
info(HA_STATUS_NO_LOCK | HA_STATUS_VARIABLE | HA_STATUS_CONST);
transaction=0;
cursor=0;
key_read=0;
fixed_length_row=!(table->db_create_options & HA_OPTION_PACK_RECORD);
/* Open other keys */
bzero((char*) key_file,sizeof(*key_file)*table->keys);
key_file[primary_key]=file;
key_type[primary_key]=DB_NOOVERWRITE;
bzero((char*) ¤t_row,sizeof(current_row));
DB **ptr=key_file;
for (uint i=0, used_keys=0; i < table->keys ; i++, ptr++)
{
char part[7];
if (i != primary_key)
{
if ((error=db_create(ptr, db_env, 0)))
{
close();
my_errno=error;
DBUG_RETURN(1);
}
sprintf(part,"key%02d",++used_keys);
key_type[i]=table->key_info[i].flags & HA_NOSAME ? DB_NOOVERWRITE : 0;
(*ptr)->set_bt_compare(*ptr, berkeley_cmp_packed_key);
(*ptr)->app_private= (void*) (table->key_info+i);
if (!(table->key_info[i].flags & HA_NOSAME))
(*ptr)->set_flags(*ptr, DB_DUP);
if ((error=((*ptr)->open(*ptr, name_buff, part, DB_BTREE,
open_mode, 0))))
{
close();
my_errno=error;
DBUG_RETURN(1);
}
}
}
/* Calculate pack_length of primary key */
if (!hidden_primary_key)
{
ref_length=0;
KEY_PART_INFO *key_part= table->key_info[primary_key].key_part;
KEY_PART_INFO *end=key_part+table->key_info[primary_key].key_parts;
for ( ; key_part != end ; key_part++)
ref_length+= key_part->field->max_packed_col_length(key_part->length);
fixed_length_primary_key=
(ref_length == table->key_info[primary_key].key_length);
}
else
{
if (!share->primary_key_inited)
update_auto_primary_key();
}
DBUG_RETURN(0);
}
int ha_berkeley::close(void)
{
int error,result=0;
uint keys=table->keys + test(hidden_primary_key);
DBUG_ENTER("ha_berkeley::close");
for (uint i=0; i < keys; i++)
{
if (key_file[i] && (error=key_file[i]->close(key_file[i],0)))
result=error;
}
free_share(share);
my_free(rec_buff,MYF(MY_ALLOW_ZERO_PTR));
my_free(alloc_ptr,MYF(MY_ALLOW_ZERO_PTR));
if (result)
my_errno=result;
DBUG_RETURN(result);
}
/* Reallocate buffer if needed */
bool ha_berkeley::fix_rec_buff_for_blob(ulong length)
{
if (! rec_buff || length > alloced_rec_buff_length)
{
byte *newptr;
if (!(newptr=(byte*) my_realloc((gptr) rec_buff, length,
MYF(MY_ALLOW_ZERO_PTR))))
return 1;
rec_buff=newptr;
alloced_rec_buff_length=length;
}
return 0;
}
/* Calculate max length needed for row */
ulong ha_berkeley::max_row_length(const byte *buf)
{
ulong length=table->reclength + table->fields*2;
for (Field_blob **ptr=table->blob_field ; *ptr ; ptr++)
length+= (*ptr)->get_length(buf+(*ptr)->offset())+2;
return length;
}
/*
Pack a row for storage. If the row is of fixed length, just store the
row 'as is'.
If not, we will generate a packed row suitable for storage.
This will only fail if we don't have enough memory to pack the row, which;
may only happen in rows with blobs, as the default row length is
pre-allocated.
*/
int ha_berkeley::pack_row(DBT *row, const byte *record, bool new_row)
{
bzero((char*) row,sizeof(*row));
if (fixed_length_row)
{
row->data=(void*) record;
row->size=table->reclength+hidden_primary_key;
if (hidden_primary_key)
{
if (new_row)
get_auto_primary_key(current_ident);
memcpy_fixed((char*) record+table->reclength, (char*) current_ident,
BDB_HIDDEN_PRIMARY_KEY_LENGTH);
}
return 0;
}
if (table->blob_fields)
{
if (fix_rec_buff_for_blob(max_row_length(record)))
return HA_ERR_OUT_OF_MEM;
}
/* Copy null bits */
memcpy(rec_buff, record, table->null_bytes);
byte *ptr=rec_buff + table->null_bytes;
for (Field **field=table->field ; *field ; field++)
ptr=(byte*) (*field)->pack((char*) ptr,record + (*field)->offset());
if (hidden_primary_key)
{
if (new_row)
get_auto_primary_key(current_ident);
memcpy_fixed((char*) ptr, (char*) current_ident,
BDB_HIDDEN_PRIMARY_KEY_LENGTH);
ptr+=BDB_HIDDEN_PRIMARY_KEY_LENGTH;
}
row->data=rec_buff;
row->size= (size_t) (ptr - rec_buff);
return 0;
}
void ha_berkeley::unpack_row(char *record, DBT *row)
{
if (fixed_length_row)
memcpy(record,(char*) row->data,table->reclength+hidden_primary_key);
else
{
/* Copy null bits */
const char *ptr= (const char*) row->data;
memcpy(record, ptr, table->null_bytes);
ptr+=table->null_bytes;
for (Field **field=table->field ; *field ; field++)
ptr= (*field)->unpack(record + (*field)->offset(), ptr);
}
}
/* Store the key and the primary key into the row */
void ha_berkeley::unpack_key(char *record, DBT *key, uint index)
{
KEY *key_info=table->key_info+index;
KEY_PART_INFO *key_part= key_info->key_part,
*end=key_part+key_info->key_parts;
char *pos=(char*) key->data;
for ( ; key_part != end; key_part++)
{
if (key_part->null_bit)
{
if (!*pos++) // Null value
{
/*
We don't need to reset the record data as we will not access it
if the null data is set
*/
record[key_part->null_offset]|=key_part->null_bit;
continue;
}
record[key_part->null_offset]&= ~key_part->null_bit;
}
pos= (char*) key_part->field->unpack(record + key_part->field->offset(),
pos);
}
}
/*
Create a packed key from from a row
This will never fail as the key buffer is pre allocated.
*/
DBT *ha_berkeley::pack_key(DBT *key, uint keynr, char *buff,
const byte *record)
{
bzero((char*) key,sizeof(*key));
if (hidden_primary_key && keynr == primary_key)
{
key->data=current_ident;
key->size=BDB_HIDDEN_PRIMARY_KEY_LENGTH;
return key;
}
KEY *key_info=table->key_info+keynr;
KEY_PART_INFO *key_part=key_info->key_part;
KEY_PART_INFO *end=key_part+key_info->key_parts;
DBUG_ENTER("pack_key");
key->data=buff;
for ( ; key_part != end ; key_part++)
{
if (key_part->null_bit)
{
/* Store 0 if the key part is a NULL part */
if (record[key_part->null_offset] & key_part->null_bit)
{
*buff++ =0;
key->flags|=DB_DBT_DUPOK;
continue;
}
*buff++ = 1; // Store NOT NULL marker
}
buff=key_part->field->pack(buff,record + key_part->offset,
key_part->length);
}
key->size= (buff - (char*) key->data);
DBUG_DUMP("key",(char*) key->data, key->size);
DBUG_RETURN(key);
}
/*
Create a packed key from from a MySQL unpacked key
*/
DBT *ha_berkeley::pack_key(DBT *key, uint keynr, char *buff,
const byte *key_ptr, uint key_length)
{
KEY *key_info=table->key_info+keynr;
KEY_PART_INFO *key_part=key_info->key_part;
KEY_PART_INFO *end=key_part+key_info->key_parts;
DBUG_ENTER("pack_key2");
bzero((char*) key,sizeof(*key));
key->data=buff;
for (; key_part != end && (int) key_length > 0 ; key_part++)
{
uint offset=0;
if (key_part->null_bit)
{
offset=1;
if (!(*buff++ = (*key_ptr == 0))) // Store 0 if NULL
{
key_length-= key_part->store_length;
key_ptr+= key_part->store_length;
key->flags|=DB_DBT_DUPOK;
continue;
}
key_ptr++;
}
buff=key_part->field->keypack(buff,key_ptr+offset,key_part->length);
key_ptr+=key_part->store_length;
key_length-=key_part->store_length;
}
key->size= (buff - (char*) key->data);
DBUG_DUMP("key",(char*) key->data, key->size);
DBUG_RETURN(key);
}
int ha_berkeley::write_row(byte * record)
{
DBT row,prim_key,key;
int error;
DBUG_ENTER("write_row");
statistic_increment(ha_write_count,&LOCK_status);
if (table->time_stamp)
update_timestamp(record+table->time_stamp-1);
if (table->next_number_field && record == table->record[0])
update_auto_increment();
if ((error=pack_row(&row, record,1)))
DBUG_RETURN(error);
if (table->keys == 1)
{
error=file->put(file, transaction, pack_key(&prim_key, primary_key,
key_buff, record),
&row, key_type[primary_key]);
}
else
{
for (uint retry=0 ; retry < berkeley_trans_retry ; retry++)
{
uint keynr;
DB_TXN *sub_trans;
if ((error=txn_begin(db_env, transaction, &sub_trans, 0)))
break;
DBUG_PRINT("trans",("starting subtransaction"));
if (!(error=file->put(file, sub_trans, pack_key(&prim_key, primary_key,
key_buff, record),
&row, key_type[primary_key])))
{
for (keynr=0 ; keynr < table->keys ; keynr++)
{
if (keynr == primary_key)
continue;
if ((error=key_file[keynr]->put(key_file[keynr], sub_trans,
pack_key(&key, keynr, key_buff2,
record),
&prim_key, key_type[keynr])))
{
last_dup_key=keynr;
break;
}
}
}
if (!error)
{
DBUG_PRINT("trans",("committing subtransaction"));
error=txn_commit(sub_trans, 0);
}
else
{
/* Remove inserted row */
int new_error;
DBUG_PRINT("error",("Got error %d",error));
DBUG_PRINT("trans",("aborting subtransaction"));
if ((new_error=txn_abort(sub_trans)))
{
error=new_error; // This shouldn't happen
break;
}
}
if (error != DB_LOCK_DEADLOCK)
break;
}
}
if (error == DB_KEYEXIST)
error=HA_ERR_FOUND_DUPP_KEY;
DBUG_RETURN(error);
}
/* Compare if a key in a row has changed */
int ha_berkeley::key_cmp(uint keynr, const byte * old_row,
const byte * new_row)
{
KEY_PART_INFO *key_part=table->key_info[keynr].key_part;
KEY_PART_INFO *end=key_part+table->key_info[keynr].key_parts;
for ( ; key_part != end ; key_part++)
{
if (key_part->null_bit)
{
if ((old_row[key_part->null_offset] & key_part->null_bit) !=
(new_row[key_part->null_offset] & key_part->null_bit))
return 1;
}
if (key_part->key_part_flag & (HA_BLOB_PART | HA_VAR_LENGTH))
{
if (key_part->field->cmp_binary(old_row + key_part->offset,
new_row + key_part->offset,
(ulong) key_part->length))
return 1;
}
else
{
if (memcmp(old_row+key_part->offset, new_row+key_part->offset,
key_part->length))
return 1;
}
}
return 0;
}
/*
Update a row from one value to another.
*/
int ha_berkeley::update_primary_key(DB_TXN *trans, bool primary_key_changed,
const byte * old_row,
const byte * new_row, DBT *prim_key)
{
DBT row, old_key;
int error;
DBUG_ENTER("update_primary_key");
if (primary_key_changed)
{
// Primary key changed or we are updating a key that can have duplicates.
// Delete the old row and add a new one
pack_key(&old_key, primary_key, key_buff2, old_row);
if ((error=remove_key(trans, primary_key, old_row, (DBT *) 0, &old_key)))
DBUG_RETURN(error); // This should always succeed
if ((error=pack_row(&row, new_row, 0)))
{
// Out of memory (this shouldn't happen!)
(void) file->put(file, trans, &old_key, &row,
key_type[primary_key]);
DBUG_RETURN(error);
}
// Write new key
if ((error=file->put(file, trans, prim_key, &row, key_type[primary_key])))
{
// Probably a duplicated key; Return the error and let the caller
// abort.
last_dup_key=primary_key;
DBUG_RETURN(error);
}
}
else
{
// Primary key didn't change; just update the row data
if ((error=pack_row(&row, new_row, 0)))
DBUG_RETURN(error);
error=file->put(file, trans, prim_key, &row, 0);
if (error)
DBUG_RETURN(error); // Fatal error
}
DBUG_RETURN(0);
}
int ha_berkeley::update_row(const byte * old_row, byte * new_row)
{
DBT prim_key, key, old_prim_key;
int error;
DB_TXN *sub_trans;
bool primary_key_changed;
DBUG_ENTER("update_row");
statistic_increment(ha_update_count,&LOCK_status);
if (table->time_stamp)
update_timestamp(new_row+table->time_stamp-1);
if (hidden_primary_key)
{
primary_key_changed=0;
bzero((char*) &prim_key,sizeof(prim_key));
prim_key.data= (void*) current_ident;
prim_key.size=BDB_HIDDEN_PRIMARY_KEY_LENGTH;
old_prim_key=prim_key;
}
else
{
pack_key(&prim_key, primary_key, key_buff, new_row);
if ((primary_key_changed=key_cmp(primary_key, old_row, new_row)))
pack_key(&old_prim_key, primary_key, primary_key_buff, old_row);
else
old_prim_key=prim_key;
}
LINT_INIT(error);
for (uint retry=0 ; retry < berkeley_trans_retry ; retry++)
{
if ((error=txn_begin(db_env, transaction, &sub_trans, 0)))
break;
DBUG_PRINT("trans",("starting subtransaction"));
/* Start by updating the primary key */
if (!(error=update_primary_key(sub_trans, primary_key_changed,
old_row, new_row, &prim_key)))
{
// Update all other keys
for (uint keynr=0 ; keynr < table->keys ; keynr++)
{
if (keynr == primary_key)
continue;
if (key_cmp(keynr, old_row, new_row) || primary_key_changed)
{
if ((error=remove_key(sub_trans, keynr, old_row, (DBT*) 0,
&old_prim_key)) ||
(error=key_file[keynr]->put(key_file[keynr], sub_trans,
pack_key(&key, keynr, key_buff2,
new_row),
&prim_key, key_type[keynr])))
{
last_dup_key=keynr;
break;
}
}
}
}
if (!error)
{
DBUG_PRINT("trans",("committing subtransaction"));
error=txn_commit(sub_trans, 0);
}
else
{
/* Remove inserted row */
int new_error;
DBUG_PRINT("error",("Got error %d",error));
DBUG_PRINT("trans",("aborting subtransaction"));
if ((new_error=txn_abort(sub_trans)))
{
error=new_error; // This shouldn't happen
break;
}
}
if (error != DB_LOCK_DEADLOCK)
break;
}
if (error == DB_KEYEXIST)
error=HA_ERR_FOUND_DUPP_KEY;
DBUG_RETURN(error);
}
/*
Delete one key
This uses key_buff2, when keynr != primary key, so it's important that
a function that calls this doesn't use this buffer for anything else.
packed_record may be NULL if the key is unique
*/
int ha_berkeley::remove_key(DB_TXN *sub_trans, uint keynr, const byte *record,
DBT *packed_record,
DBT *prim_key)
{
int error;
DBT key;
DBUG_ENTER("remove_key");
DBUG_PRINT("enter",("index: %d",keynr));
if ((table->key_info[keynr].flags & (HA_NOSAME | HA_NULL_PART_KEY)) ==
HA_NOSAME)
{ // Unique key
dbug_assert(keynr == primary_key || prim_key->data != key_buff2);
error=key_file[keynr]->del(key_file[keynr], sub_trans,
keynr == primary_key ?
prim_key :
pack_key(&key, keynr, key_buff2, record),
0);
}
else
{
/*
To delete the not duplicated key, we need to open an cursor on the
row to find the key to be delete and delete it.
We will never come here with keynr = primary_key
*/
dbug_assert(keynr != primary_key && prim_key->data != key_buff2);
DBC *cursor;
if (!(error=file->cursor(key_file[keynr], sub_trans, &cursor, 0)))
{
if (!(error=cursor->c_get(cursor,
(keynr == primary_key ?
prim_key :
pack_key(&key, keynr, key_buff2, record)),
(keynr == primary_key ?
packed_record : prim_key),
DB_GET_BOTH)))
{ // This shouldn't happen
error=cursor->c_del(cursor,0);
}
int result=cursor->c_close(cursor);
if (!error)
error=result;
}
}
DBUG_RETURN(error);
}
/* Delete all keys for new_record */
int ha_berkeley::remove_keys(DB_TXN *trans, const byte *record,
DBT *new_record, DBT *prim_key, key_map keys,
int result)
{
for (uint keynr=0 ; keys ;keynr++, keys>>=1)
{
if (keys & 1)
{
int new_error=remove_key(trans, keynr, record, new_record, prim_key);
if (new_error)
{
result=new_error; // Return last error
if (trans)
break; // Let rollback correct things
}
}
}
return result;
}
int ha_berkeley::delete_row(const byte * record)
{
int error;
DBT row, prim_key;
key_map keys=table->keys_in_use;
DBUG_ENTER("delete_row");
statistic_increment(ha_delete_count,&LOCK_status);
if ((error=pack_row(&row, record, 0)))
DBUG_RETURN((error));
pack_key(&prim_key, primary_key, key_buff, record);
if (hidden_primary_key)
keys|= (key_map) 1 << primary_key;
for (uint retry=0 ; retry < berkeley_trans_retry ; retry++)
{
DB_TXN *sub_trans;
if ((error=txn_begin(db_env, transaction, &sub_trans, 0)))
break;
DBUG_PRINT("trans",("starting sub transaction"));
if (!error)
error=remove_keys(sub_trans, record, &row, &prim_key, keys,0);
if (!error)
{
DBUG_PRINT("trans",("ending sub transaction"));
error=txn_commit(sub_trans, 0);
}
if (error)
{
/* retry */
int new_error;
DBUG_PRINT("error",("Got error %d",error));
DBUG_PRINT("trans",("aborting subtransaction"));
if ((new_error=txn_abort(sub_trans)))
{
error=new_error; // This shouldn't happen
break;
}
}
if (error != DB_LOCK_DEADLOCK)
break;
}
DBUG_RETURN(0);
}
int ha_berkeley::index_init(uint keynr)
{
int error;
DBUG_ENTER("index_init");
active_index=keynr;
dbug_assert(cursor == 0);
if ((error=file->cursor(key_file[keynr], transaction, &cursor,
table->reginfo.lock_type > TL_WRITE_ALLOW_READ ?
0 : 0)))
cursor=0; // Safety
bzero((char*) &last_key,sizeof(last_key));
DBUG_RETURN(error);
}
int ha_berkeley::index_end()
{
int error=0;
DBUG_ENTER("index_end");
if (cursor)
{
error=cursor->c_close(cursor);
cursor=0;
}
DBUG_RETURN(error);
}
/* What to do after we have read a row based on an index */
int ha_berkeley::read_row(int error, char *buf, uint keynr, DBT *row,
DBT *found_key, bool read_next)
{
DBUG_ENTER("read_row");
if (error)
{
if (error == DB_NOTFOUND || error == DB_KEYEMPTY)
error=read_next ? HA_ERR_END_OF_FILE : HA_ERR_KEY_NOT_FOUND;
table->status=STATUS_NOT_FOUND;
DBUG_RETURN(error);
}
if (hidden_primary_key)
memcpy_fixed(current_ident,
(char*) row->data+row->size-BDB_HIDDEN_PRIMARY_KEY_LENGTH,
BDB_HIDDEN_PRIMARY_KEY_LENGTH);
table->status=0;
if (keynr != primary_key)
{
/* We only found the primary key. Now we have to use this to find
the row data */
if (key_read && found_key)
{
unpack_key(buf,found_key,keynr);
if (!hidden_primary_key)
unpack_key(buf,row,primary_key);
DBUG_RETURN(0);
}
DBT key;
bzero((char*) &key,sizeof(key));
key.data=key_buff2;
key.size=row->size;
memcpy(key_buff2,row->data,row->size);
/* Read the data into current_row */
current_row.flags=DB_DBT_REALLOC;
if ((error=file->get(file, transaction, &key, ¤t_row, 0)))
{
table->status=STATUS_NOT_FOUND;
DBUG_RETURN(error == DB_NOTFOUND ? HA_ERR_CRASHED : error);
}
row= ¤t_row;
}
unpack_row(buf,row);
DBUG_RETURN(0);
}
/* This is only used to read whole keys */
int ha_berkeley::index_read_idx(byte * buf, uint keynr, const byte * key,
uint key_len, enum ha_rkey_function find_flag)
{
statistic_increment(ha_read_key_count,&LOCK_status);
DBUG_ENTER("index_read_idx");
current_row.flags=DB_DBT_REALLOC;
DBUG_RETURN(read_row(file->get(key_file[keynr], transaction,
pack_key(&last_key, keynr, key_buff, key,
key_len),
¤t_row,0),
buf, keynr, ¤t_row, &last_key, 0));
}
int ha_berkeley::index_read(byte * buf, const byte * key,
uint key_len, enum ha_rkey_function find_flag)
{
DBT row;
int error;
KEY *key_info= &table->key_info[active_index];
DBUG_ENTER("index_read");
statistic_increment(ha_read_key_count,&LOCK_status);
bzero((char*) &row,sizeof(row));
if (key_len == key_info->key_length)
{
error=read_row(cursor->c_get(cursor, pack_key(&last_key,
active_index,
key_buff,
key, key_len),
&row, DB_SET),
buf, active_index, &row, (DBT*) 0, 0);
}
else
{
/* read of partial key */
pack_key(&last_key, active_index, key_buff, key, key_len);
/* Store for compare */
memcpy(key_buff2, key_buff, (key_len=last_key.size));
key_info->handler.bdb_return_if_eq= -1;
error=read_row(cursor->c_get(cursor, &last_key, &row, DB_SET_RANGE),
buf, active_index, &row, (DBT*) 0, 0);
key_info->handler.bdb_return_if_eq= 0;
if (!error && find_flag == HA_READ_KEY_EXACT)
{
/* Ensure that we found a key that is equal to the current one */
if (!error && berkeley_key_cmp(table, key_info, key_buff2, key_len))
error=HA_ERR_KEY_NOT_FOUND;
}
}
DBUG_RETURN(error);
}
int ha_berkeley::index_next(byte * buf)
{
DBT row;
DBUG_ENTER("index_next");
statistic_increment(ha_read_next_count,&LOCK_status);
bzero((char*) &row,sizeof(row));
DBUG_RETURN(read_row(cursor->c_get(cursor, &last_key, &row, DB_NEXT),
buf, active_index, &row, &last_key, 1));
}
int ha_berkeley::index_next_same(byte * buf, const byte *key, uint keylen)
{
DBT row;
int error;
DBUG_ENTER("index_next_same");
statistic_increment(ha_read_next_count,&LOCK_status);
bzero((char*) &row,sizeof(row));
if (keylen == table->key_info[active_index].key_length)
error=read_row(cursor->c_get(cursor, &last_key, &row, DB_NEXT_DUP),
buf, active_index, &row, &last_key, 1);
else
{
error=read_row(cursor->c_get(cursor, &last_key, &row, DB_NEXT),
buf, active_index, &row, &last_key, 1);
if (!error && ::key_cmp(table, key, active_index, keylen))
error=HA_ERR_END_OF_FILE;
}
DBUG_RETURN(error);
}
int ha_berkeley::index_prev(byte * buf)
{
DBT row;
DBUG_ENTER("index_prev");
statistic_increment(ha_read_prev_count,&LOCK_status);
bzero((char*) &row,sizeof(row));
DBUG_RETURN(read_row(cursor->c_get(cursor, &last_key, &row, DB_PREV),
buf, active_index, &row, &last_key, 1));
}
int ha_berkeley::index_first(byte * buf)
{
DBT row;
DBUG_ENTER("index_first");
statistic_increment(ha_read_first_count,&LOCK_status);
bzero((char*) &row,sizeof(row));
DBUG_RETURN(read_row(cursor->c_get(cursor, &last_key, &row, DB_FIRST),
buf, active_index, &row, &last_key, 0));
}
int ha_berkeley::index_last(byte * buf)
{
DBT row;
DBUG_ENTER("index_last");
statistic_increment(ha_read_last_count,&LOCK_status);
bzero((char*) &row,sizeof(row));
DBUG_RETURN(read_row(cursor->c_get(cursor, &last_key, &row, DB_LAST),
buf, active_index, &row, &last_key, 0));
}
int ha_berkeley::rnd_init(bool scan)
{
current_row.flags=DB_DBT_REALLOC;
return index_init(primary_key);
}
int ha_berkeley::rnd_end()
{
return index_end();
}
int ha_berkeley::rnd_next(byte *buf)
{
DBT row;
DBUG_ENTER("rnd_next");
statistic_increment(ha_read_rnd_next_count,&LOCK_status);
bzero((char*) &row,sizeof(row));
DBUG_RETURN(read_row(cursor->c_get(cursor, &last_key, &row, DB_NEXT),
buf, active_index, &row, &last_key, 1));
}
DBT *ha_berkeley::get_pos(DBT *to, byte *pos)
{
bzero((char*) to,sizeof(*to));
to->data=pos;
if (fixed_length_primary_key)
to->size=ref_length;
else
{
KEY_PART_INFO *key_part=table->key_info[primary_key].key_part;
KEY_PART_INFO *end=key_part+table->key_info[primary_key].key_parts;
for ( ; key_part != end ; key_part++)
pos+=key_part->field->packed_col_length(pos);
to->size= (uint) (pos- (byte*) to->data);
}
return to;
}
int ha_berkeley::rnd_pos(byte * buf, byte *pos)
{
DBT db_pos;
statistic_increment(ha_read_rnd_count,&LOCK_status);
return read_row(file->get(file, transaction,
get_pos(&db_pos, pos),
¤t_row, 0),
buf, active_index, ¤t_row, (DBT*) 0, 0);
}
void ha_berkeley::position(const byte *record)
{
DBT key;
if (hidden_primary_key)
{
memcpy_fixed(ref, (char*) current_ident, BDB_HIDDEN_PRIMARY_KEY_LENGTH);
}
else
pack_key(&key, primary_key, ref, record);
}
void ha_berkeley::info(uint flag)
{
DBUG_ENTER("info");
if (flag & HA_STATUS_VARIABLE)
{
records = estimate_number_of_rows(); // Just to get optimisations right
deleted = 0;
}
else if (flag & HA_STATUS_ERRKEY)
errkey=last_dup_key;
DBUG_VOID_RETURN;
}
int ha_berkeley::extra(enum ha_extra_function operation)
{
switch (operation) {
case HA_EXTRA_RESET:
case HA_EXTRA_RESET_STATE:
key_read=0;
break;
case HA_EXTRA_KEYREAD:
key_read=1; // Query satisfied with key
break;
case HA_EXTRA_NO_KEYREAD:
key_read=0;
break;
default:
break;
}
return 0;
}
int ha_berkeley::reset(void)
{
key_read=0; // Reset to state after open
return 0;
}
/*
As MySQL will execute an external lock for every new table it uses
we can use this to start the transactions.
*/
int ha_berkeley::external_lock(THD *thd, int lock_type)
{
int error=0;
DBUG_ENTER("ha_berkeley::external_lock");
if (lock_type != F_UNLCK)
{
if (!thd->transaction.bdb_lock_count++ && !thd->transaction.bdb_tid)
{
/* Found first lock, start transaction */
DBUG_PRINT("trans",("starting transaction"));
if ((error=txn_begin(db_env, 0,
(DB_TXN**) &thd->transaction.bdb_tid,
0)))
thd->transaction.bdb_lock_count--;
}
transaction= (DB_TXN*) thd->transaction.bdb_tid;
}
else
{
lock.type=TL_UNLOCK; // Unlocked
if (current_row.flags & (DB_DBT_MALLOC | DB_DBT_REALLOC))
{
current_row.flags=0;
if (current_row.data)
{
free(current_row.data);
current_row.data=0;
}
}
current_row.data=0;
if (!--thd->transaction.bdb_lock_count)
{
if (thd->transaction.bdb_tid && (thd->options & OPTION_AUTO_COMMIT)
&& !(thd->options & OPTION_BEGIN))
{
/*
F_UNLOCK is done without a transaction commit / rollback.
This happens if the thread didn't update any rows or if
something went wrong during an update.
We can in this case silenty abort the transaction.
*/
DBUG_PRINT("trans",("aborting transaction"));
error=txn_abort((DB_TXN*) thd->transaction.bdb_tid);
thd->transaction.bdb_tid=0;
}
}
}
DBUG_RETURN(error);
}
THR_LOCK_DATA **ha_berkeley::store_lock(THD *thd, THR_LOCK_DATA **to,
enum thr_lock_type lock_type)
{
if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
{
/* If we are not doing a LOCK TABLE, then allow multiple writers */
if ((lock_type >= TL_WRITE_CONCURRENT_INSERT &&
lock_type <= TL_WRITE) &&
!thd->in_lock_tables)
lock_type = TL_WRITE_ALLOW_WRITE;
lock.type=lock_type;
}
*to++= &lock;
return to;
}
static int create_sub_table(const char *table_name, const char *sub_name,
DBTYPE type, int flags)
{
int error;
DB *file;
DBUG_ENTER("create_sub_table");
DBUG_PRINT("enter",("sub_name: %s",sub_name));
if (!(error=db_create(&file, db_env, 0)))
{
file->set_flags(file, flags);
error=(file->open(file, table_name, sub_name, type,
DB_THREAD | DB_CREATE, my_umask));
if (error)
{
DBUG_PRINT("error",("Got error: %d when opening table '%s'",error,
table_name));
(void) file->remove(file,table_name,NULL,0);
}
else
(void) file->close(file,0);
}
else
{
DBUG_PRINT("error",("Got error: %d when creting table",error));
}
if (error)
my_errno=error;
DBUG_RETURN(error);
}
int ha_berkeley::create(const char *name, register TABLE *form,
HA_CREATE_INFO *create_info)
{
char name_buff[FN_REFLEN];
char part[7];
uint index=1;
DBUG_ENTER("ha_berkeley::create");
fn_format(name_buff,name,"", ha_berkeley_ext,2 | 4);
/* Create the main table that will hold the real rows */
if (create_sub_table(name_buff,"main",DB_BTREE,0))
DBUG_RETURN(1);
primary_key=table->primary_key;
/* Create the keys */
for (uint i=0; i < form->keys; i++)
{
if (i != primary_key)
{
sprintf(part,"key%02d",index++);
if (create_sub_table(name_buff, part, DB_BTREE,
(table->key_info[i].flags & HA_NOSAME) ? 0 :
DB_DUP))
DBUG_RETURN(1);
}
}
/* Create the status block to save information from last status command */
/* Is DB_BTREE the best option here ? (QUEUE can't be used in sub tables) */
if (create_sub_table(name_buff,"status",DB_BTREE,0))
DBUG_RETURN(1);
DBUG_RETURN(0);
}
int ha_berkeley::delete_table(const char *name)
{
int error;
char name_buff[FN_REFLEN];
if ((error=db_create(&file, db_env, 0)))
{
my_errno=error;
file=0;
return 1;
}
error=file->remove(file,fn_format(name_buff,name,"",ha_berkeley_ext,2 | 4),
NULL,0);
file=0; // Safety
return error;
}
/*
How many seeks it will take to read through the table
This is to be comparable to the number returned by records_in_range so
that we can decide if we should scan the table or use keys.
*/
double ha_berkeley::scan_time()
{
return records/3;
}
ha_rows ha_berkeley::records_in_range(int keynr,
const byte *start_key,uint start_key_len,
enum ha_rkey_function start_search_flag,
const byte *end_key,uint end_key_len,
enum ha_rkey_function end_search_flag)
{
DBT key;
DB_KEY_RANGE start_range, end_range;
double start_pos,end_pos,rows;
DBUG_ENTER("records_in_range");
if ((start_key && file->key_range(key_file[keynr],transaction,
pack_key(&key, keynr, key_buff, start_key,
start_key_len),
&start_range,0)) ||
(end_key && file->key_range(key_file[keynr],transaction,
pack_key(&key, keynr, key_buff, end_key,
end_key_len),
&end_range,0)))
DBUG_RETURN(HA_BERKELEY_RANGE_COUNT); // Better than returning an error
if (!start_key)
start_pos=0.0;
else if (start_search_flag == HA_READ_KEY_EXACT)
start_pos=start_range.less;
else
start_pos=start_range.less+start_range.equal;
if (!end_key)
end_pos=1.0;
else if (end_search_flag == HA_READ_BEFORE_KEY)
end_pos=end_range.less;
else
end_pos=end_range.less+end_range.equal;
rows=(end_pos-start_pos)*records;
DBUG_PRINT("exit",("rows: %g",rows));
DBUG_RETURN(rows <= 1.0 ? (ha_rows) 1 : (ha_rows) rows);
}
/****************************************************************************
Handling the shared BDB_SHARE structure that is needed to provide table
locking.
****************************************************************************/
static byte* bdb_get_key(BDB_SHARE *share,uint *length,
my_bool not_used __attribute__((unused)))
{
*length=share->table_name_length;
return (byte*) share->table_name;
}
static BDB_SHARE *get_share(const char *table_name)
{
BDB_SHARE *share;
pthread_mutex_lock(&bdb_mutex);
uint length=(uint) strlen(table_name);
if (!(share=(BDB_SHARE*) hash_search(&bdb_open_tables, table_name, length)))
{
if ((share=(BDB_SHARE *) my_malloc(sizeof(*share)+length+1,
MYF(MY_WME | MY_ZEROFILL))))
{
share->table_name_length=length;
share->table_name=(char*) (share+1);
strmov(share->table_name,table_name);
if (hash_insert(&bdb_open_tables, (char*) share))
{
pthread_mutex_unlock(&bdb_mutex);
my_free((gptr) share,0);
return 0;
}
thr_lock_init(&share->lock);
pthread_mutex_init(&share->mutex,NULL);
}
}
share->use_count++;
pthread_mutex_unlock(&bdb_mutex);
return share;
}
static void free_share(BDB_SHARE *share)
{
pthread_mutex_lock(&bdb_mutex);
if (!--share->use_count)
{
hash_delete(&bdb_open_tables, (gptr) share);
thr_lock_delete(&share->lock);
pthread_mutex_destroy(&share->mutex);
my_free((gptr) share, MYF(0));
}
pthread_mutex_unlock(&bdb_mutex);
}
void ha_berkeley::update_auto_primary_key()
{
pthread_mutex_lock(&share->mutex);
if (!share->primary_key_inited)
{
(void) extra(HA_EXTRA_KEYREAD);
index_init(primary_key);
if (!index_last(table->record[1]))
share->auto_ident=uint5korr(current_ident);
index_end();
(void) extra(HA_EXTRA_NO_KEYREAD);
}
pthread_mutex_unlock(&share->mutex);
}
/*
Return an estimated of the number of rows in the table.
Used when sorting to allocate buffers and by the optimizer.
*/
ha_rows ha_berkeley::estimate_number_of_rows()
{
ulonglong max_ident;
ulonglong max_rows=table->max_rows ? table->max_rows : HA_BERKELEY_MAX_ROWS;
if (!hidden_primary_key)
return (ha_rows) max_rows;
pthread_mutex_lock(&share->mutex);
max_ident=share->auto_ident+EXTRA_RECORDS;
pthread_mutex_unlock(&share->mutex);
return (ha_rows) min(max_ident,max_rows);
}
#endif /* HAVE_BERKELEY_DB */