home *** CD-ROM | disk | FTP | other *** search
/ Chip 2001 January / Chip_2001-01_cd1.bin / tema / mysql / mysql-3.23.28g-win-source.exe / zlib / infblock.c < prev    next >
C/C++ Source or Header  |  1999-10-12  |  13KB  |  406 lines

  1. /* infblock.c -- interpret and process block types to last block
  2.  * Copyright (C) 1995-1998 Mark Adler
  3.  * For conditions of distribution and use, see copyright notice in zlib.h 
  4.  */
  5.  
  6. #include "zutil.h"
  7. #include "infblock.h"
  8. #include "inftrees.h"
  9. #include "infcodes.h"
  10. #include "infutil.h"
  11.  
  12. struct inflate_codes_state {int dummy;}; /* for buggy compilers */
  13.  
  14. /* simplify the use of the inflate_huft type with some defines */
  15. #define exop word.what.Exop
  16. #define bits word.what.Bits
  17.  
  18. /* Table for deflate from PKZIP's appnote.txt. */
  19. local const uInt border[] = { /* Order of the bit length code lengths */
  20.         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
  21.  
  22. /*
  23.    Notes beyond the 1.93a appnote.txt:
  24.  
  25.    1. Distance pointers never point before the beginning of the output
  26.       stream.
  27.    2. Distance pointers can point back across blocks, up to 32k away.
  28.    3. There is an implied maximum of 7 bits for the bit length table and
  29.       15 bits for the actual data.
  30.    4. If only one code exists, then it is encoded using one bit.  (Zero
  31.       would be more efficient, but perhaps a little confusing.)  If two
  32.       codes exist, they are coded using one bit each (0 and 1).
  33.    5. There is no way of sending zero distance codes--a dummy must be
  34.       sent if there are none.  (History: a pre 2.0 version of PKZIP would
  35.       store blocks with no distance codes, but this was discovered to be
  36.       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
  37.       zero distance codes, which is sent as one code of zero bits in
  38.       length.
  39.    6. There are up to 286 literal/length codes.  Code 256 represents the
  40.       end-of-block.  Note however that the static length tree defines
  41.       288 codes just to fill out the Huffman codes.  Codes 286 and 287
  42.       cannot be used though, since there is no length base or extra bits
  43.       defined for them.  Similarily, there are up to 30 distance codes.
  44.       However, static trees define 32 codes (all 5 bits) to fill out the
  45.       Huffman codes, but the last two had better not show up in the data.
  46.    7. Unzip can check dynamic Huffman blocks for complete code sets.
  47.       The exception is that a single code would not be complete (see #4).
  48.    8. The five bits following the block type is really the number of
  49.       literal codes sent minus 257.
  50.    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
  51.       (1+6+6).  Therefore, to output three times the length, you output
  52.       three codes (1+1+1), whereas to output four times the same length,
  53.       you only need two codes (1+3).  Hmm.
  54.   10. In the tree reconstruction algorithm, Code = Code + Increment
  55.       only if BitLength(i) is not zero.  (Pretty obvious.)
  56.   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
  57.   12. Note: length code 284 can represent 227-258, but length code 285
  58.       really is 258.  The last length deserves its own, short code
  59.       since it gets used a lot in very redundant files.  The length
  60.       258 is special since 258 - 3 (the min match length) is 255.
  61.   13. The literal/length and distance code bit lengths are read as a
  62.       single stream of lengths.  It is possible (and advantageous) for
  63.       a repeat code (16, 17, or 18) to go across the boundary between
  64.       the two sets of lengths.
  65.  */
  66.  
  67.  
  68. void inflate_blocks_reset(s, z, c)
  69. inflate_blocks_statef *s;
  70. z_streamp z;
  71. uLongf *c;
  72. {
  73.   if (c != Z_NULL)
  74.     *c = s->check;
  75.   if (s->mode == BTREE || s->mode == DTREE)
  76.     ZFREE(z, s->sub.trees.blens);
  77.   if (s->mode == CODES)
  78.     inflate_codes_free(s->sub.decode.codes, z);
  79.   s->mode = TYPE;
  80.   s->bitk = 0;
  81.   s->bitb = 0;
  82.   s->read = s->write = s->window;
  83.   if (s->checkfn != Z_NULL)
  84.     z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
  85.   Tracev((stderr, "inflate:   blocks reset\n"));
  86. }
  87.  
  88.  
  89. inflate_blocks_statef *inflate_blocks_new(z, c, w)
  90. z_streamp z;
  91. check_func c;
  92. uInt w;
  93. {
  94.   inflate_blocks_statef *s;
  95.  
  96.   if ((s = (inflate_blocks_statef *)ZALLOC
  97.        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
  98.     return s;
  99.   if ((s->hufts =
  100.        (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
  101.   {
  102.     ZFREE(z, s);
  103.     return Z_NULL;
  104.   }
  105.   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
  106.   {
  107.     ZFREE(z, s->hufts);
  108.     ZFREE(z, s);
  109.     return Z_NULL;
  110.   }
  111.   s->end = s->window + w;
  112.   s->checkfn = c;
  113.   s->mode = TYPE;
  114.   Tracev((stderr, "inflate:   blocks allocated\n"));
  115.   inflate_blocks_reset(s, z, Z_NULL);
  116.   return s;
  117. }
  118.  
  119.  
  120. int inflate_blocks(s, z, r)
  121. inflate_blocks_statef *s;
  122. z_streamp z;
  123. int r;
  124. {
  125.   uInt t;               /* temporary storage */
  126.   uLong b;              /* bit buffer */
  127.   uInt k;               /* bits in bit buffer */
  128.   Bytef *p;             /* input data pointer */
  129.   uInt n;               /* bytes available there */
  130.   Bytef *q;             /* output window write pointer */
  131.   uInt m;               /* bytes to end of window or read pointer */
  132.  
  133.   /* copy input/output information to locals (UPDATE macro restores) */
  134.   LOAD
  135.  
  136.   /* process input based on current state */
  137.   while (1) switch (s->mode)
  138.   {
  139.     case TYPE:
  140.       NEEDBITS(3)
  141.       t = (uInt)b & 7;
  142.       s->last = t & 1;
  143.       switch (t >> 1)
  144.       {
  145.         case 0:                         /* stored */
  146.           Tracev((stderr, "inflate:     stored block%s\n",
  147.                  s->last ? " (last)" : ""));
  148.           DUMPBITS(3)
  149.           t = k & 7;                    /* go to byte boundary */
  150.           DUMPBITS(t)
  151.           s->mode = LENS;               /* get length of stored block */
  152.           break;
  153.         case 1:                         /* fixed */
  154.           Tracev((stderr, "inflate:     fixed codes block%s\n",
  155.                  s->last ? " (last)" : ""));
  156.           {
  157.             uInt bl, bd;
  158.             inflate_huft *tl, *td;
  159.  
  160.             inflate_trees_fixed(&bl, &bd, &tl, &td, z);
  161.             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
  162.             if (s->sub.decode.codes == Z_NULL)
  163.             {
  164.               r = Z_MEM_ERROR;
  165.               LEAVE
  166.             }
  167.           }
  168.           DUMPBITS(3)
  169.           s->mode = CODES;
  170.           break;
  171.         case 2:                         /* dynamic */
  172.           Tracev((stderr, "inflate:     dynamic codes block%s\n",
  173.                  s->last ? " (last)" : ""));
  174.           DUMPBITS(3)
  175.           s->mode = TABLE;
  176.           break;
  177.         case 3:                         /* illegal */
  178.           DUMPBITS(3)
  179.           s->mode = BAD;
  180.           z->msg = (char*)"invalid block type";
  181.           r = Z_DATA_ERROR;
  182.           LEAVE
  183.       }
  184.       break;
  185.     case LENS:
  186.       NEEDBITS(32)
  187.       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
  188.       {
  189.         s->mode = BAD;
  190.         z->msg = (char*)"invalid stored block lengths";
  191.         r = Z_DATA_ERROR;
  192.         LEAVE
  193.       }
  194.       s->sub.left = (uInt)b & 0xffff;
  195.       b = k = 0;                      /* dump bits */
  196.       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
  197.       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
  198.       break;
  199.     case STORED:
  200.       if (n == 0)
  201.         LEAVE
  202.       NEEDOUT
  203.       t = s->sub.left;
  204.       if (t > n) t = n;
  205.       if (t > m) t = m;
  206.       zmemcpy(q, p, t);
  207.       p += t;  n -= t;
  208.       q += t;  m -= t;
  209.       if ((s->sub.left -= t) != 0)
  210.         break;
  211.       Tracev((stderr, "inflate:       stored end, %lu total out\n",
  212.               z->total_out + (q >= s->read ? q - s->read :
  213.               (s->end - s->read) + (q - s->window))));
  214.       s->mode = s->last ? DRY : TYPE;
  215.       break;
  216.     case TABLE:
  217.       NEEDBITS(14)
  218.       s->sub.trees.table = t = (uInt)b & 0x3fff;
  219. #ifndef PKZIP_BUG_WORKAROUND
  220.       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
  221.       {
  222.         s->mode = BAD;
  223.         z->msg = (char*)"too many length or distance symbols";
  224.         r = Z_DATA_ERROR;
  225.         LEAVE
  226.       }
  227. #endif
  228.       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
  229.       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
  230.       {
  231.         r = Z_MEM_ERROR;
  232.         LEAVE
  233.       }
  234.       DUMPBITS(14)
  235.       s->sub.trees.index = 0;
  236.       Tracev((stderr, "inflate:       table sizes ok\n"));
  237.       s->mode = BTREE;
  238.     case BTREE:
  239.       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
  240.       {
  241.         NEEDBITS(3)
  242.         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
  243.         DUMPBITS(3)
  244.       }
  245.       while (s->sub.trees.index < 19)
  246.         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
  247.       s->sub.trees.bb = 7;
  248.       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
  249.                              &s->sub.trees.tb, s->hufts, z);
  250.       if (t != Z_OK)
  251.       {
  252.         ZFREE(z, s->sub.trees.blens);
  253.         r = t;
  254.         if (r == Z_DATA_ERROR)
  255.           s->mode = BAD;
  256.         LEAVE
  257.       }
  258.       s->sub.trees.index = 0;
  259.       Tracev((stderr, "inflate:       bits tree ok\n"));
  260.       s->mode = DTREE;
  261.     case DTREE:
  262.       while (t = s->sub.trees.table,
  263.              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
  264.       {
  265.         inflate_huft *h;
  266.         uInt i, j, c;
  267.  
  268.         t = s->sub.trees.bb;
  269.         NEEDBITS(t)
  270.         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
  271.         t = h->bits;
  272.         c = h->base;
  273.         if (c < 16)
  274.         {
  275.           DUMPBITS(t)
  276.           s->sub.trees.blens[s->sub.trees.index++] = c;
  277.         }
  278.         else /* c == 16..18 */
  279.         {
  280.           i = c == 18 ? 7 : c - 14;
  281.           j = c == 18 ? 11 : 3;
  282.           NEEDBITS(t + i)
  283.           DUMPBITS(t)
  284.           j += (uInt)b & inflate_mask[i];
  285.           DUMPBITS(i)
  286.           i = s->sub.trees.index;
  287.           t = s->sub.trees.table;
  288.           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
  289.               (c == 16 && i < 1))
  290.           {
  291.             ZFREE(z, s->sub.trees.blens);
  292.             s->mode = BAD;
  293.             z->msg = (char*)"invalid bit length repeat";
  294.             r = Z_DATA_ERROR;
  295.             LEAVE
  296.           }
  297.           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
  298.           do {
  299.             s->sub.trees.blens[i++] = c;
  300.           } while (--j);
  301.           s->sub.trees.index = i;
  302.         }
  303.       }
  304.       s->sub.trees.tb = Z_NULL;
  305.       {
  306.         uInt bl, bd;
  307.         inflate_huft *tl, *td;
  308.         inflate_codes_statef *c;
  309.  
  310.         bl = 9;         /* must be <= 9 for lookahead assumptions */
  311.         bd = 6;         /* must be <= 9 for lookahead assumptions */
  312.         t = s->sub.trees.table;
  313.         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
  314.                                   s->sub.trees.blens, &bl, &bd, &tl, &td,
  315.                                   s->hufts, z);
  316.         ZFREE(z, s->sub.trees.blens);
  317.         if (t != Z_OK)
  318.         {
  319.           if (t == (uInt)Z_DATA_ERROR)
  320.             s->mode = BAD;
  321.           r = t;
  322.           LEAVE
  323.         }
  324.         Tracev((stderr, "inflate:       trees ok\n"));
  325.         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
  326.         {
  327.           r = Z_MEM_ERROR;
  328.           LEAVE
  329.         }
  330.         s->sub.decode.codes = c;
  331.       }
  332.       s->mode = CODES;
  333.     case CODES:
  334.       UPDATE
  335.       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
  336.         return inflate_flush(s, z, r);
  337.       r = Z_OK;
  338.       inflate_codes_free(s->sub.decode.codes, z);
  339.       LOAD
  340.       Tracev((stderr, "inflate:       codes end, %lu total out\n",
  341.               z->total_out + (q >= s->read ? q - s->read :
  342.               (s->end - s->read) + (q - s->window))));
  343.       if (!s->last)
  344.       {
  345.         s->mode = TYPE;
  346.         break;
  347.       }
  348.       if (k > 7)              /* return unused byte, if any */
  349.       {
  350.         Assert(k < 16, "inflate_codes grabbed too many bytes")
  351.         k -= 8;
  352.         n++;
  353.         p--;                    /* can always return one */
  354.       }
  355.       s->mode = DRY;
  356.     case DRY:
  357.       FLUSH
  358.       if (s->read != s->write)
  359.         LEAVE
  360.       s->mode = DONE;
  361.     case DONE:
  362.       r = Z_STREAM_END;
  363.       LEAVE
  364.     case BAD:
  365.       r = Z_DATA_ERROR;
  366.       LEAVE
  367.     default:
  368.       r = Z_STREAM_ERROR;
  369.       LEAVE
  370.   }
  371. }
  372.  
  373.  
  374. int inflate_blocks_free(s, z)
  375. inflate_blocks_statef *s;
  376. z_streamp z;
  377. {
  378.   inflate_blocks_reset(s, z, Z_NULL);
  379.   ZFREE(z, s->window);
  380.   ZFREE(z, s->hufts);
  381.   ZFREE(z, s);
  382.   Tracev((stderr, "inflate:   blocks freed\n"));
  383.   return Z_OK;
  384. }
  385.  
  386.  
  387. void inflate_set_dictionary(s, d, n)
  388. inflate_blocks_statef *s;
  389. const Bytef *d;
  390. uInt  n;
  391. {
  392.   zmemcpy(s->window, d, n);
  393.   s->read = s->write = s->window + n;
  394. }
  395.  
  396.  
  397. /* Returns true if inflate is currently at the end of a block generated
  398.  * by Z_SYNC_FLUSH or Z_FULL_FLUSH. 
  399.  * IN assertion: s != Z_NULL
  400.  */
  401. int inflate_blocks_sync_point(s)
  402. inflate_blocks_statef *s;
  403. {
  404.   return s->mode == LENS;
  405. }
  406.