home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
RISC DISC 3
/
RISC_DISC_3.iso
/
resources
/
etexts
/
gems
/
gemsi
/
boundsphere.c
< prev
next >
Wrap
C/C++ Source or Header
|
1992-09-08
|
4KB
|
134 lines
/*
An Efficient Bounding Sphere
by Jack Ritter
from "Graphics Gems", Academic Press, 1990
*/
/* Routine to calculate tight bounding sphere over */
/* a set of points in 3D */
/* This contains the routine find_bounding_sphere(), */
/* the struct definition, and the globals used for parameters. */
/* The abs() of all coordinates must be < BIGNUMBER */
/* Code written by Jack Ritter and Lyle Rains. */
#include <stdio.h>
#include <math.h>
#include "GraphicsGems.h"
#define BIGNUMBER 100000000.0 /* hundred million */
/* GLOBALS. These are used as input and output parameters. */
struct Point3Struct caller_p,cen;
double rad;
int NUM_POINTS;
/* Call with no parameters. Caller must set NUM_POINTS */
/* before calling. */
/* Caller must supply the routine GET_iTH_POINT(i), which loads his */
/* ith point into the global struct caller_p. (0 <= i < NUM_POINTS). */
/* The calling order of the points is irrelevant. */
/* The final bounding sphere will be put into the globals */
/* cen and rad. */
find_bounding_sphere()
{
register int i;
register double dx,dy,dz;
register double rad_sq,xspan,yspan,zspan,maxspan;
double old_to_p,old_to_p_sq,old_to_new;
struct Point3Struct xmin,xmax,ymin,ymax,zmin,zmax,dia1,dia2;
/* FIRST PASS: find 6 minima/maxima points */
xmin.x=ymin.y=zmin.z= BIGNUMBER; /* initialize for min/max compare */
xmax.x=ymax.y=zmax.z= -BIGNUMBER;
for (i=0;i<NUM_POINTS;i++)
{
GET_iTH_POINT(i); /* load global struct caller_p with */
/* his ith point. */
if (caller_p.x<xmin.x)
xmin = caller_p; /* New xminimum point */
if (caller_p.x>xmax.x)
xmax = caller_p;
if (caller_p.y<ymin.y)
ymin = caller_p;
if (caller_p.y>ymax.y)
ymax = caller_p;
if (caller_p.z<zmin.z)
zmin = caller_p;
if (caller_p.z>zmax.z)
zmax = caller_p;
}
/* Set xspan = distance between the 2 points xmin & xmax (squared) */
dx = xmax.x - xmin.x;
dy = xmax.y - xmin.y;
dz = xmax.z - xmin.z;
xspan = dx*dx + dy*dy + dz*dz;
/* Same for y & z spans */
dx = ymax.x - ymin.x;
dy = ymax.y - ymin.y;
dz = ymax.z - ymin.z;
yspan = dx*dx + dy*dy + dz*dz;
dx = zmax.x - zmin.x;
dy = zmax.y - zmin.y;
dz = zmax.z - zmin.z;
zspan = dx*dx + dy*dy + dz*dz;
/* Set points dia1 & dia2 to the maximally separated pair */
dia1 = xmin; dia2 = xmax; /* assume xspan biggest */
maxspan = xspan;
if (yspan>maxspan)
{
maxspan = yspan;
dia1 = ymin; dia2 = ymax;
}
if (zspan>maxspan)
{
dia1 = zmin; dia2 = zmax;
}
/* dia1,dia2 is a diameter of initial sphere */
/* calc initial center */
cen.x = (dia1.x+dia2.x)/2.0;
cen.y = (dia1.y+dia2.y)/2.0;
cen.z = (dia1.z+dia2.z)/2.0;
/* calculate initial radius**2 and radius */
dx = dia2.x-cen.x; /* x component of radius vector */
dy = dia2.y-cen.y; /* y component of radius vector */
dz = dia2.z-cen.z; /* z component of radius vector */
rad_sq = dx*dx + dy*dy + dz*dz;
rad = sqrt(rad_sq);
/* SECOND PASS: increment current sphere */
for (i=0;i<NUM_POINTS;i++)
{
GET_iTH_POINT(i); /* load global struct caller_p */
/* with his ith point. */
dx = caller_p.x-cen.x;
dy = caller_p.y-cen.y;
dz = caller_p.z-cen.z;
old_to_p_sq = dx*dx + dy*dy + dz*dz;
if (old_to_p_sq > rad_sq) /* do r**2 test first */
{ /* this point is outside of current sphere */
old_to_p = sqrt(old_to_p_sq);
/* calc radius of new sphere */
rad = (rad + old_to_p) / 2.0;
rad_sq = rad*rad; /* for next r**2 compare */
old_to_new = old_to_p - rad;
/* calc center of new sphere */
cen.x = (rad*cen.x + old_to_new*caller_p.x) / old_to_p;
cen.y = (rad*cen.y + old_to_new*caller_p.y) / old_to_p;
cen.z = (rad*cen.z + old_to_new*caller_p.z) / old_to_p;
/* Suppress if desired */
printf("\n New sphere: cen,rad = %f %f %f %f",
cen.x,cen.y,cen.z, rad);
}
}
} /* end of find_bounding_sphere() */