home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
RISC DISC 3
/
RISC_DISC_3.iso
/
resources
/
etexts
/
gems
/
gemsi
/
quaternions.c
< prev
next >
Wrap
C/C++ Source or Header
|
1992-09-08
|
2KB
|
116 lines
/*
Using Quaternions for Coding 3D Transformations
Patrick-Gilles Maillot
from "Graphics Gems", Academic Press, 1990
*/
extern double P[3], Q[4], M[4][4];
set_obs_position(x,y,z)
float x, y, z;
{
int i;
/*
* Set the values of the eye's position.
* The position here represents the position of the orthonormal base
* in respect to the observer.
*/
P[0] = -x;
P[1] = -y;
P[2] = -z;
/*
* Set the visualization to be in the decreasing x axis
*/
Q[0] = 1.;
for (i = 1; i < 4; i++) Q[i] = 0.;
}
translate_quaternion(x,i,w)
float x;
int i, w;
{
int j, k;
float A, B, D, E, F;
if (w < 0) {
/*
* The observer moves in respect to the scene.
*/
P[i - 1] -= x;
} else {
/*
* The scene moves in respect to the observer.
* Compute the successor axis of i [1,2,3];
* and then the successor axis of j [1,2,3];
*/
if ((j = i + 1) > 3) j = 1;
if ((k = j + 1) > 3) k = 1;
A = Q[j]; B = Q[k]; F = Q[0]; E = Q[i];
P[i - 1] += x * (E * E + F * F - A * A - B * B);
D = x + x;
P[j - 1] += D * (E * A + F * B);
P[k - 1] += D * (E * B + F * A);
}
}
rotate_quaternion(x,y,i,w)
float x, y;
int i, w;
{
int j, k;
float E, F, R1;
/*
* Compute the successor axis of i [1,2,3] and j [1,2,3];
*/
if ((j = i + 1) > 3) j = 1;
if ((k = j + 1) > 3) k = 1;
E = Q[i];
Q[i] = E * x + w * y * Q[0];
Q[0] = Q[0] * x - w * y * E;
E = Q[j];
Q[j] = E * x + y * Q[k];
Q[k] = Q[k] * x - y * E;
if (w < 0) {
/* Compute a new position if the observer moves in respect to the scene. */
j -= 1; k -= 1;
R1 = x * x - y * y;
F = 2. * x * y;
E = P[j];
P[j] = E * R1 + F * P[k];
P[k] = P[k] * R1 - F * E;
}
}
Evaluate_matrix()
{
float e, f, r[4];
int i, j, k;
/*
* We will need some square values!
*/
for (i = 0; i < 4; i++) r[i] = Q[i] * Q[i];
/*
* Compute each element of the matrix.
* j is the successor of i (in 1,2,3), while k is the successor of j.
*/
for (i = 1; i < 4; i++) {
if ((j = i + 1) > 3) j = 1;
if ((k = j + 1) > 3) k = 1;
e = 2. * Q[i] * Q[j];
f = 2. * Q[k] * Q[0];
M[j][i] = e - f;
M[i][j] = e + f;
M[i][i] = r[i] + r[0] - r[j] - r[k];
M[0][i] = P[i - 1];
M[i][0] = 0.;
}
M[0][0] = 1.;
}