home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
The Datafile PD-CD 3
/
PDCD_3.iso
/
pocketbk
/
utilsr
/
spydrx
/
LOGISTIC.WEB
< prev
next >
Wrap
Text File
|
1995-08-20
|
2KB
|
51 lines
<opts>
<odest>screen</odest>
<oname>home</oname>
<onewl>lf</onewl>
<cfmt>%x</cfmt>
<ctype>iterate</ctype>
<citer>10</citer>
<call>no</call>
<cdisp>fmtlist</cdisp>
<cext>yes</cext>
<rfmt>\n\N:=\F</rfmt>
<rall>yes</rall>
<starg></starg>
<srpl></srpl>
<scount>1</scount>
<sout>yes</sout>
<nfmt>fixed</nfmt>
<ndec>3</ndec>
<nang>degrees</nang></opts>
<cell>
<cname>home</cname>
<text>The emergence of chaotic dynamics from simpler behavior may be observed in this example called the logistic map.
The iterative equation:
x:=r*x*(1-x)
exhibits a variety of behaviors, depending upon its initial value, and the value of the parameter r.
To explore the behavior of this equation, set values for r and x, go to cell x, and select Evaluate from the Special menu.
For a value of the parameter r of 0.4, and an initial x value of 0.7, successive values of x approach zero and stay there.
For an r value of 2.4, and initial x value 0f 0.7, successive values of x approach a constant 0.583.
For r=3.0, and an initial x, of 0.5; an extended damped oscillation takes place between between two numbers.
For r=3.5, initial x=0.7; an extended oscillation among four numbers takes place.
For r=3.8, initial x=0.7; a chaotic sequence of numbers is the result.
For more information on the period doubling approach to chaos, see the book:
Creating Artificial Life, by Edward Rietman; from which this example was taken.
</text>
<val>0.525</val></cell>
<cell>
<cname>r</cname>
<val>3.8</val></cell>
<cell>
<cname>x</cname>
<val>0.571</val>
<form>r*x*(1-x)</form></cell></eof>