home *** CD-ROM | disk | FTP | other *** search
- /* Generate the nondeterministic finite state machine for bison,
- Copyright (C) 1984, 1986, 1989 Free Software Foundation, Inc.
-
- This file is part of Bison, the GNU Compiler Compiler.
-
- Bison is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- Bison is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with Bison; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* See comments in state.h for the data structures that represent it.
- The entry point is generate_states. */
-
- #include <stdio.h>
- #include "system.h"
- #include "machine.h"
- #include "new.h"
- #include "gram.h"
- #include "state.h"
-
-
- extern char *nullable;
- extern short *itemset;
- extern short *itemsetend;
-
-
- int nstates;
- int final_state;
- core *first_state;
- shifts *first_shift;
- reductions *first_reduction;
-
- int get_state();
- core *new_state();
-
- void new_itemsets();
- void append_states();
- void initialize_states();
- void save_shifts();
- void save_reductions();
- void augment_automaton();
- void insert_start_shift();
- extern void initialize_closure();
- extern void closure();
- extern void finalize_closure();
- extern void toomany();
-
- static core *this_state;
- static core *last_state;
- static shifts *last_shift;
- static reductions *last_reduction;
-
- static int nshifts;
- static short *shift_symbol;
-
- static short *redset;
- static short *shiftset;
-
- static short **kernel_base;
- static short **kernel_end;
- static short *kernel_items;
-
- /* hash table for states, to recognize equivalent ones. */
-
- #define STATE_TABLE_SIZE 1009
- static core **state_table;
-
-
-
- void
- allocate_itemsets()
- {
- register short *itemp;
- register int symbol;
- register int i;
- register int count;
- register short *symbol_count;
-
- count = 0;
- symbol_count = NEW2(nsyms, short);
-
- itemp = ritem;
- symbol = *itemp++;
- while (symbol)
- {
- if (symbol > 0)
- {
- count++;
- symbol_count[symbol]++;
- }
- symbol = *itemp++;
- }
-
- /* see comments before new_itemsets. All the vectors of items
- live inside kernel_items. The number of active items after
- some symbol cannot be more than the number of times that symbol
- appears as an item, which is symbol_count[symbol].
- We allocate that much space for each symbol. */
-
- kernel_base = NEW2(nsyms, short *);
- kernel_items = NEW2(count, short);
-
- count = 0;
- for (i = 0; i < nsyms; i++)
- {
- kernel_base[i] = kernel_items + count;
- count += symbol_count[i];
- }
-
- shift_symbol = symbol_count;
- kernel_end = NEW2(nsyms, short *);
- }
-
-
- void
- allocate_storage()
- {
- allocate_itemsets();
-
- shiftset = NEW2(nsyms, short);
- redset = NEW2(nrules + 1, short);
- state_table = NEW2(STATE_TABLE_SIZE, core *);
- }
-
-
- void
- free_storage()
- {
- FREE(shift_symbol);
- FREE(redset);
- FREE(shiftset);
- FREE(kernel_base);
- FREE(kernel_end);
- FREE(kernel_items);
- FREE(state_table);
- }
-
-
-
- /* compute the nondeterministic finite state machine (see state.h for details)
- from the grammar. */
- void
- generate_states()
- {
- allocate_storage();
- initialize_closure(nitems);
- initialize_states();
-
- while (this_state)
- {
- /* Set up ruleset and itemset for the transitions out of this state.
- ruleset gets a 1 bit for each rule that could reduce now.
- itemset gets a vector of all the items that could be accepted next. */
- closure(this_state->items, this_state->nitems);
- /* record the reductions allowed out of this state */
- save_reductions();
- /* find the itemsets of the states that shifts can reach */
- new_itemsets();
- /* find or create the core structures for those states */
- append_states();
-
- /* create the shifts structures for the shifts to those states,
- now that the state numbers transitioning to are known */
- if (nshifts > 0)
- save_shifts();
-
- /* states are queued when they are created; process them all */
- this_state = this_state->next;
- }
-
- /* discard various storage */
- finalize_closure();
- free_storage();
-
- /* set up initial and final states as parser wants them */
- augment_automaton();
- }
-
-
-
- /* Find which symbols can be shifted in the current state,
- and for each one record which items would be active after that shift.
- Uses the contents of itemset.
- shift_symbol is set to a vector of the symbols that can be shifted.
- For each symbol in the grammar, kernel_base[symbol] points to
- a vector of item numbers activated if that symbol is shifted,
- and kernel_end[symbol] points after the end of that vector. */
- void
- new_itemsets()
- {
- register int i;
- register int shiftcount;
- register short *isp;
- register short *ksp;
- register int symbol;
-
- #ifdef TRACE
- fprintf(stderr, "Entering new_itemsets\n");
- #endif
-
- for (i = 0; i < nsyms; i++)
- kernel_end[i] = NULL;
-
- shiftcount = 0;
-
- isp = itemset;
-
- while (isp < itemsetend)
- {
- i = *isp++;
- symbol = ritem[i];
- if (symbol > 0)
- {
- ksp = kernel_end[symbol];
-
- if (!ksp)
- {
- shift_symbol[shiftcount++] = symbol;
- ksp = kernel_base[symbol];
- }
-
- *ksp++ = i + 1;
- kernel_end[symbol] = ksp;
- }
- }
-
- nshifts = shiftcount;
- }
-
-
-
- /* Use the information computed by new_itemsets to find the state numbers
- reached by each shift transition from the current state.
-
- shiftset is set up as a vector of state numbers of those states. */
- void
- append_states()
- {
- register int i;
- register int j;
- register int symbol;
-
- #ifdef TRACE
- fprintf(stderr, "Entering append_states\n");
- #endif
-
- /* first sort shift_symbol into increasing order */
-
- for (i = 1; i < nshifts; i++)
- {
- symbol = shift_symbol[i];
- j = i;
- while (j > 0 && shift_symbol[j - 1] > symbol)
- {
- shift_symbol[j] = shift_symbol[j - 1];
- j--;
- }
- shift_symbol[j] = symbol;
- }
-
- for (i = 0; i < nshifts; i++)
- {
- symbol = shift_symbol[i];
- shiftset[i] = get_state(symbol);
- }
- }
-
-
-
- /* find the state number for the state we would get to
- (from the current state) by shifting symbol.
- Create a new state if no equivalent one exists already.
- Used by append_states */
-
- int
- get_state(symbol)
- int symbol;
- {
- register int key;
- register short *isp1;
- register short *isp2;
- register short *iend;
- register core *sp;
- register int found;
-
- int n;
-
- #ifdef TRACE
- fprintf(stderr, "Entering get_state, symbol = %d\n", symbol);
- #endif
-
- isp1 = kernel_base[symbol];
- iend = kernel_end[symbol];
- n = iend - isp1;
-
- /* add up the target state's active item numbers to get a hash key */
- key = 0;
- while (isp1 < iend)
- key += *isp1++;
-
- key = key % STATE_TABLE_SIZE;
-
- sp = state_table[key];
-
- if (sp)
- {
- found = 0;
- while (!found)
- {
- if (sp->nitems == n)
- {
- found = 1;
- isp1 = kernel_base[symbol];
- isp2 = sp->items;
-
- while (found && isp1 < iend)
- {
- if (*isp1++ != *isp2++)
- found = 0;
- }
- }
-
- if (!found)
- {
- if (sp->link)
- {
- sp = sp->link;
- }
- else /* bucket exhausted and no match */
- {
- sp = sp->link = new_state(symbol);
- found = 1;
- }
- }
- }
- }
- else /* bucket is empty */
- {
- state_table[key] = sp = new_state(symbol);
- }
-
- return (sp->number);
- }
-
-
-
- /* subroutine of get_state. create a new state for those items, if necessary. */
-
- core *
- new_state(symbol)
- int symbol;
- {
- register int n;
- register core *p;
- register short *isp1;
- register short *isp2;
- register short *iend;
-
- #ifdef TRACE
- fprintf(stderr, "Entering new_state, symbol = %d\n", symbol);
- #endif
-
- if (nstates >= MAXSHORT)
- toomany("states");
-
- isp1 = kernel_base[symbol];
- iend = kernel_end[symbol];
- n = iend - isp1;
-
- p = (core *) xmalloc((unsigned) (sizeof(core) + (n - 1) * sizeof(short)));
- p->accessing_symbol = symbol;
- p->number = nstates;
- p->nitems = n;
-
- isp2 = p->items;
- while (isp1 < iend)
- *isp2++ = *isp1++;
-
- last_state->next = p;
- last_state = p;
-
- nstates++;
-
- return (p);
- }
-
-
- void
- initialize_states()
- {
- register core *p;
- /* register unsigned *rp1; JF unused */
- /* register unsigned *rp2; JF unused */
- /* register unsigned *rend; JF unused */
-
- p = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
- first_state = last_state = this_state = p;
- nstates = 1;
- }
-
-
- void
- save_shifts()
- {
- register shifts *p;
- register short *sp1;
- register short *sp2;
- register short *send;
-
- p = (shifts *) xmalloc((unsigned) (sizeof(shifts) +
- (nshifts - 1) * sizeof(short)));
-
- p->number = this_state->number;
- p->nshifts = nshifts;
-
- sp1 = shiftset;
- sp2 = p->shifts;
- send = shiftset + nshifts;
-
- while (sp1 < send)
- *sp2++ = *sp1++;
-
- if (last_shift)
- {
- last_shift->next = p;
- last_shift = p;
- }
- else
- {
- first_shift = p;
- last_shift = p;
- }
- }
-
-
-
- /* find which rules can be used for reduction transitions from the current state
- and make a reductions structure for the state to record their rule numbers. */
- void
- save_reductions()
- {
- register short *isp;
- register short *rp1;
- register short *rp2;
- register int item;
- register int count;
- register reductions *p;
-
- short *rend;
-
- /* find and count the active items that represent ends of rules */
-
- count = 0;
- for (isp = itemset; isp < itemsetend; isp++)
- {
- item = ritem[*isp];
- if (item < 0)
- {
- redset[count++] = -item;
- }
- }
-
- /* make a reductions structure and copy the data into it. */
-
- if (count)
- {
- p = (reductions *) xmalloc((unsigned) (sizeof(reductions) +
- (count - 1) * sizeof(short)));
-
- p->number = this_state->number;
- p->nreds = count;
-
- rp1 = redset;
- rp2 = p->rules;
- rend = rp1 + count;
-
- while (rp1 < rend)
- *rp2++ = *rp1++;
-
- if (last_reduction)
- {
- last_reduction->next = p;
- last_reduction = p;
- }
- else
- {
- first_reduction = p;
- last_reduction = p;
- }
- }
- }
-
-
-
- /* Make sure that the initial state has a shift that accepts the
- grammar's start symbol and goes to the next-to-final state,
- which has a shift going to the final state, which has a shift
- to the termination state.
- Create such states and shifts if they don't happen to exist already. */
- void
- augment_automaton()
- {
- register int i;
- register int k;
- /* register int found; JF unused */
- register core *statep;
- register shifts *sp;
- register shifts *sp2;
- register shifts *sp1;
-
- sp = first_shift;
-
- if (sp)
- {
- if (sp->number == 0)
- {
- k = sp->nshifts;
- statep = first_state->next;
-
- /* The states reached by shifts from first_state are numbered 1...K.
- Look for one reached by start_symbol. */
- while (statep->accessing_symbol < start_symbol
- && statep->number < k)
- statep = statep->next;
-
- if (statep->accessing_symbol == start_symbol)
- {
- /* We already have a next-to-final state.
- Make sure it has a shift to what will be the final state. */
- k = statep->number;
-
- while (sp && sp->number < k)
- {
- sp1 = sp;
- sp = sp->next;
- }
-
- if (sp && sp->number == k)
- {
- sp2 = (shifts *) xmalloc((unsigned) (sizeof(shifts)
- + sp->nshifts * sizeof(short)));
- sp2->number = k;
- sp2->nshifts = sp->nshifts + 1;
- sp2->shifts[0] = nstates;
- for (i = sp->nshifts; i > 0; i--)
- sp2->shifts[i] = sp->shifts[i - 1];
-
- /* Patch sp2 into the chain of shifts in place of sp,
- following sp1. */
- sp2->next = sp->next;
- sp1->next = sp2;
- if (sp == last_shift)
- last_shift = sp2;
- FREE(sp);
- }
- else
- {
- sp2 = NEW(shifts);
- sp2->number = k;
- sp2->nshifts = 1;
- sp2->shifts[0] = nstates;
-
- /* Patch sp2 into the chain of shifts between sp1 and sp. */
- sp2->next = sp;
- sp1->next = sp2;
- if (sp == 0)
- last_shift = sp2;
- }
- }
- else
- {
- /* There is no next-to-final state as yet. */
- /* Add one more shift in first_shift,
- going to the next-to-final state (yet to be made). */
- sp = first_shift;
-
- sp2 = (shifts *) xmalloc(sizeof(shifts)
- + sp->nshifts * sizeof(short));
- sp2->nshifts = sp->nshifts + 1;
-
- /* Stick this shift into the vector at the proper place. */
- statep = first_state->next;
- for (k = 0, i = 0; i < sp->nshifts; k++, i++)
- {
- if (statep->accessing_symbol > start_symbol && i == k)
- sp2->shifts[k++] = nstates;
- sp2->shifts[k] = sp->shifts[i];
- statep = statep->next;
- }
- if (i == k)
- sp2->shifts[k++] = nstates;
-
- /* Patch sp2 into the chain of shifts
- in place of sp, at the beginning. */
- sp2->next = sp->next;
- first_shift = sp2;
- if (last_shift == sp)
- last_shift = sp2;
-
- FREE(sp);
-
- /* Create the next-to-final state, with shift to
- what will be the final state. */
- insert_start_shift();
- }
- }
- else
- {
- /* The initial state didn't even have any shifts.
- Give it one shift, to the next-to-final state. */
- sp = NEW(shifts);
- sp->nshifts = 1;
- sp->shifts[0] = nstates;
-
- /* Patch sp into the chain of shifts at the beginning. */
- sp->next = first_shift;
- first_shift = sp;
-
- /* Create the next-to-final state, with shift to
- what will be the final state. */
- insert_start_shift();
- }
- }
- else
- {
- /* There are no shifts for any state.
- Make one shift, from the initial state to the next-to-final state. */
-
- sp = NEW(shifts);
- sp->nshifts = 1;
- sp->shifts[0] = nstates;
-
- /* Initialize the chain of shifts with sp. */
- first_shift = sp;
- last_shift = sp;
-
- /* Create the next-to-final state, with shift to
- what will be the final state. */
- insert_start_shift();
- }
-
- /* Make the final state--the one that follows a shift from the
- next-to-final state.
- The symbol for that shift is 0 (end-of-file). */
- statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
- statep->number = nstates;
- last_state->next = statep;
- last_state = statep;
-
- /* Make the shift from the final state to the termination state. */
- sp = NEW(shifts);
- sp->number = nstates++;
- sp->nshifts = 1;
- sp->shifts[0] = nstates;
- last_shift->next = sp;
- last_shift = sp;
-
- /* Note that the variable `final_state' refers to what we sometimes call
- the termination state. */
- final_state = nstates;
-
- /* Make the termination state. */
- statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
- statep->number = nstates++;
- last_state->next = statep;
- last_state = statep;
- }
-
-
- /* subroutine of augment_automaton.
- Create the next-to-final state, to which a shift has already been made in
- the initial state. */
- void
- insert_start_shift()
- {
- register core *statep;
- register shifts *sp;
-
- statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
- statep->number = nstates;
- statep->accessing_symbol = start_symbol;
-
- last_state->next = statep;
- last_state = statep;
-
- /* Make a shift from this state to (what will be) the final state. */
- sp = NEW(shifts);
- sp->number = nstates++;
- sp->nshifts = 1;
- sp->shifts[0] = nstates;
-
- last_shift->next = sp;
- last_shift = sp;
- }
-