home *** CD-ROM | disk | FTP | other *** search
- /* atof_ieee.c - turn a Flonum into an IEEE floating point number
- Copyright (C) 1987 Free Software Foundation, Inc.
-
- This file is part of GAS, the GNU Assembler.
-
- GAS is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GAS is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GAS; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- #include "flonum.h"
- #ifdef USG
- #define bzero(s,n) memset(s,0,n)
- #define bcopy(from,to,n) memcpy((to),(from),(n))
- #endif
-
- extern FLONUM_TYPE generic_floating_point_number; /* Flonums returned here. */
- #define NULL (0)
-
- extern const char EXP_CHARS[];
- /* Precision in LittleNums. */
- #define MAX_PRECISION (6)
- #define F_PRECISION (2)
- #define D_PRECISION (4)
- #define X_PRECISION (6)
- #define P_PRECISION (6)
-
- /* Length in LittleNums of guard bits. */
- #define GUARD (2)
-
- static unsigned long int mask [] = {
- 0x00000000,
- 0x00000001,
- 0x00000003,
- 0x00000007,
- 0x0000000f,
- 0x0000001f,
- 0x0000003f,
- 0x0000007f,
- 0x000000ff,
- 0x000001ff,
- 0x000003ff,
- 0x000007ff,
- 0x00000fff,
- 0x00001fff,
- 0x00003fff,
- 0x00007fff,
- 0x0000ffff,
- 0x0001ffff,
- 0x0003ffff,
- 0x0007ffff,
- 0x000fffff,
- 0x001fffff,
- 0x003fffff,
- 0x007fffff,
- 0x00ffffff,
- 0x01ffffff,
- 0x03ffffff,
- 0x07ffffff,
- 0x0fffffff,
- 0x1fffffff,
- 0x3fffffff,
- 0x7fffffff,
- 0xffffffff
- };
-
- static int bits_left_in_littlenum;
- static int littlenums_left;
- static LITTLENUM_TYPE * littlenum_pointer;
-
- static int
- next_bits (number_of_bits)
- int number_of_bits;
- {
- int return_value;
-
- if(!littlenums_left)
- return 0;
- if (number_of_bits >= bits_left_in_littlenum)
- {
- return_value = mask [bits_left_in_littlenum] & *littlenum_pointer;
- number_of_bits -= bits_left_in_littlenum;
- return_value <<= number_of_bits;
- if(--littlenums_left) {
- bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
- littlenum_pointer --;
- return_value |= (*littlenum_pointer>>bits_left_in_littlenum) & mask[number_of_bits];
- }
- }
- else
- {
- bits_left_in_littlenum -= number_of_bits;
- return_value = mask [number_of_bits] & (*littlenum_pointer>>bits_left_in_littlenum);
- }
- return (return_value);
- }
-
- /* Num had better be less than LITTLENUM_NUMBER_OF_BITS */
- static int
- unget_bits(num)
- {
- if(!littlenums_left) {
- ++littlenum_pointer;
- ++littlenums_left;
- bits_left_in_littlenum=num;
- } else if(bits_left_in_littlenum+num>LITTLENUM_NUMBER_OF_BITS) {
- bits_left_in_littlenum= num-(LITTLENUM_NUMBER_OF_BITS-bits_left_in_littlenum);
- ++littlenum_pointer;
- ++littlenums_left;
- } else
- bits_left_in_littlenum+=num;
- }
-
- static void
- make_invalid_floating_point_number (words)
- LITTLENUM_TYPE * words;
- {
- as_warn("cannot create floating-point number");
- words[0]= ((unsigned)-1)>>1; /* Zero the leftmost bit */
- words[1]= -1;
- words[2]= -1;
- words[3]= -1;
- words[4]= -1;
- words[5]= -1;
- }
-
- /***********************************************************************\
- * Warning: this returns 16-bit LITTLENUMs. It is up to the caller *
- * to figure out any alignment problems and to conspire for the *
- * bytes/word to be emitted in the right order. Bigendians beware! *
- * *
- \***********************************************************************/
-
- /* Note that atof-ieee always has X and P precisions enabled. it is up
- to md_atof to filter them out if the target machine does not support
- them. */
-
- char * /* Return pointer past text consumed. */
- atof_ieee (str, what_kind, words)
- char * str; /* Text to convert to binary. */
- char what_kind; /* 'd', 'f', 'g', 'h' */
- LITTLENUM_TYPE * words; /* Build the binary here. */
- {
- static LITTLENUM_TYPE bits [MAX_PRECISION + MAX_PRECISION + GUARD];
- /* Extra bits for zeroed low-order bits. */
- /* The 1st MAX_PRECISION are zeroed, */
- /* the last contain flonum bits. */
- char * return_value;
- int precision; /* Number of 16-bit words in the format. */
- long int exponent_bits;
-
- return_value = str;
- generic_floating_point_number.low = bits + MAX_PRECISION;
- generic_floating_point_number.high = NULL;
- generic_floating_point_number.leader = NULL;
- generic_floating_point_number.exponent = NULL;
- generic_floating_point_number.sign = '\0';
-
- /* Use more LittleNums than seems */
- /* necessary: the highest flonum may have */
- /* 15 leading 0 bits, so could be useless. */
-
- bzero (bits, sizeof(LITTLENUM_TYPE) * MAX_PRECISION);
-
- switch(what_kind) {
- case 'f':
- case 'F':
- case 's':
- case 'S':
- precision = F_PRECISION;
- exponent_bits = 8;
- break;
-
- case 'd':
- case 'D':
- case 'r':
- case 'R':
- precision = D_PRECISION;
- exponent_bits = 11;
- break;
-
- case 'x':
- case 'X':
- case 'e':
- case 'E':
- precision = X_PRECISION;
- exponent_bits = 15;
- break;
-
- case 'p':
- case 'P':
-
- precision = P_PRECISION;
- exponent_bits= -1;
- break;
-
- default:
- make_invalid_floating_point_number (words);
- return NULL;
- }
-
- generic_floating_point_number.high = generic_floating_point_number.low + precision - 1 + GUARD;
-
- if (atof_generic (& return_value, ".", EXP_CHARS, & generic_floating_point_number)) {
- /* as_warn("Error converting floating point number (Exponent overflow?)"); */
- make_invalid_floating_point_number (words);
- return NULL;
- }
- gen_to_words(words, precision, exponent_bits);
- return return_value;
- }
-
- /* Turn generic_floating_point_number into a real float/double/extended */
- gen_to_words(words,precision,exponent_bits)
- LITTLENUM_TYPE *words;
- long int exponent_bits;
- int precision;
- {
- int return_value=0;
-
- long int exponent_1;
- long int exponent_2;
- long int exponent_3;
- long int exponent_4;
- int exponent_skippage;
- LITTLENUM_TYPE word1;
- LITTLENUM_TYPE * lp;
-
- if (generic_floating_point_number.low > generic_floating_point_number.leader) {
- /* 0.0e0 seen. */
- if(generic_floating_point_number.sign=='+')
- words[0]=0x0000;
- else
- words[0]=0x8000;
- bzero (&words[1], sizeof(LITTLENUM_TYPE) * (precision-1));
- return return_value;
- }
-
- /* NaN: Do the right thing */
- if(generic_floating_point_number.sign==0) {
- if(precision==F_PRECISION) {
- words[0]=0x7fff;
- words[1]=0xffff;
- } else {
- words[0]=0x7fff;
- words[1]=0xffff;
- words[2]=0xffff;
- words[3]=0xffff;
- }
- return return_value;
- } else if(generic_floating_point_number.sign=='P') {
- /* +INF: Do the right thing */
- if(precision==F_PRECISION) {
- words[0]=0x7f80;
- words[1]=0;
- } else {
- words[0]=0x7ff0;
- words[1]=0;
- words[2]=0;
- words[3]=0;
- }
- return return_value;
- } else if(generic_floating_point_number.sign=='N') {
- /* Negative INF */
- if(precision==F_PRECISION) {
- words[0]=0xff80;
- words[1]=0x0;
- } else {
- words[0]=0xfff0;
- words[1]=0x0;
- words[2]=0x0;
- words[3]=0x0;
- }
- return return_value;
- }
- /*
- * The floating point formats we support have:
- * Bit 15 is sign bit.
- * Bits 14:n are excess-whatever exponent.
- * Bits n-1:0 (if any) are most significant bits of fraction.
- * Bits 15:0 of the next word(s) are the next most significant bits.
- *
- * So we need: number of bits of exponent, number of bits of
- * mantissa.
- */
- bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
- littlenum_pointer = generic_floating_point_number.leader;
- littlenums_left = 1+generic_floating_point_number.leader - generic_floating_point_number.low;
- /* Seek (and forget) 1st significant bit */
- for (exponent_skippage = 0;! next_bits(1); exponent_skippage ++)
- ;
- exponent_1 = generic_floating_point_number.exponent + generic_floating_point_number.leader + 1 -
- generic_floating_point_number.low;
- /* Radix LITTLENUM_RADIX, point just higher than generic_floating_point_number.leader. */
- exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
- /* Radix 2. */
- exponent_3 = exponent_2 - exponent_skippage;
- /* Forget leading zeros, forget 1st bit. */
- exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
- /* Offset exponent. */
-
- lp = words;
-
- /* Word 1. Sign, exponent and perhaps high bits. */
- word1 = (generic_floating_point_number.sign == '+') ? 0 : (1<<(LITTLENUM_NUMBER_OF_BITS-1));
-
- /* Assume 2's complement integers. */
- if(exponent_4<1 && exponent_4>=-62) {
- int prec_bits;
- int num_bits;
-
- unget_bits(1);
- num_bits= -exponent_4;
- prec_bits=LITTLENUM_NUMBER_OF_BITS*precision-(exponent_bits+1+num_bits);
- if(precision==X_PRECISION && exponent_bits==15)
- prec_bits-=LITTLENUM_NUMBER_OF_BITS+1;
-
- if(num_bits>=LITTLENUM_NUMBER_OF_BITS-exponent_bits) {
- /* Bigger than one littlenum */
- num_bits-=(LITTLENUM_NUMBER_OF_BITS-1)-exponent_bits;
- *lp++=word1;
- if(num_bits+exponent_bits+1>=precision*LITTLENUM_NUMBER_OF_BITS) {
- /* Exponent overflow */
- make_invalid_floating_point_number(words);
- return return_value;
- }
- if(precision==X_PRECISION && exponent_bits==15) {
- *lp++=0;
- *lp++=0;
- num_bits-=LITTLENUM_NUMBER_OF_BITS-1;
- }
- while(num_bits>=LITTLENUM_NUMBER_OF_BITS) {
- num_bits-=LITTLENUM_NUMBER_OF_BITS;
- *lp++=0;
- }
- if(num_bits)
- *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-(num_bits));
- } else {
- if(precision==X_PRECISION && exponent_bits==15) {
- *lp++=word1;
- *lp++=0;
- if(num_bits==LITTLENUM_NUMBER_OF_BITS) {
- *lp++=0;
- *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-1);
- } else if(num_bits==LITTLENUM_NUMBER_OF_BITS-1)
- *lp++=0;
- else
- *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-1-num_bits);
- num_bits=0;
- } else {
- word1|= next_bits ((LITTLENUM_NUMBER_OF_BITS-1) - (exponent_bits+num_bits));
- *lp++=word1;
- }
- }
- while(lp<words+precision)
- *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS);
-
- /* Round the mantissa up, but don't change the number */
- if(next_bits(1)) {
- --lp;
- if(prec_bits>LITTLENUM_NUMBER_OF_BITS) {
- int n = 0;
- int tmp_bits;
-
- n=0;
- tmp_bits=prec_bits;
- while(tmp_bits>LITTLENUM_NUMBER_OF_BITS) {
- if(lp[n]!=(LITTLENUM_TYPE)-1)
- break;
- --n;
- tmp_bits-=LITTLENUM_NUMBER_OF_BITS;
- }
- if(tmp_bits>LITTLENUM_NUMBER_OF_BITS || (lp[n]&mask[tmp_bits])!=mask[tmp_bits]) {
- unsigned long int carry;
-
- for (carry = 1; carry && (lp >= words); lp --) {
- carry = * lp + carry;
- * lp = carry;
- carry >>= LITTLENUM_NUMBER_OF_BITS;
- }
- }
- } else if((*lp&mask[prec_bits])!=mask[prec_bits])
- lp++;
- }
-
- return return_value;
- } else if (exponent_4 & ~ mask [exponent_bits]) {
- /*
- * Exponent overflow. Lose immediately.
- */
-
- /*
- * We leave return_value alone: admit we read the
- * number, but return a floating exception
- * because we can't encode the number.
- */
- make_invalid_floating_point_number (words);
- return return_value;
- } else {
- word1 |= (exponent_4 << ((LITTLENUM_NUMBER_OF_BITS-1) - exponent_bits))
- | next_bits ((LITTLENUM_NUMBER_OF_BITS-1) - exponent_bits);
- }
-
- * lp ++ = word1;
-
- /* X_PRECISION is special: it has 16 bits of zero in the middle,
- followed by a 1 bit. */
- if(exponent_bits==15 && precision==X_PRECISION) {
- *lp++=0;
- *lp++= 1<<(LITTLENUM_NUMBER_OF_BITS)|next_bits(LITTLENUM_NUMBER_OF_BITS-1);
- }
-
- /* The rest of the words are just mantissa bits. */
- while(lp < words + precision)
- *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS);
-
- if (next_bits (1)) {
- unsigned long int carry;
- /*
- * Since the NEXT bit is a 1, round UP the mantissa.
- * The cunning design of these hidden-1 floats permits
- * us to let the mantissa overflow into the exponent, and
- * it 'does the right thing'. However, we lose if the
- * highest-order bit of the lowest-order word flips.
- * Is that clear?
- */
-
-
- /* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
- Please allow at least 1 more bit in carry than is in a LITTLENUM.
- We need that extra bit to hold a carry during a LITTLENUM carry
- propagation. Another extra bit (kept 0) will assure us that we
- don't get a sticky sign bit after shifting right, and that
- permits us to propagate the carry without any masking of bits.
- #endif */
- for (carry = 1, lp --; carry && (lp >= words); lp --) {
- carry = * lp + carry;
- * lp = carry;
- carry >>= LITTLENUM_NUMBER_OF_BITS;
- }
- if ( (word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)) ) {
- /* We leave return_value alone: admit we read the
- * number, but return a floating exception
- * because we can't encode the number.
- */
- *words&= ~ (1 << (LITTLENUM_NUMBER_OF_BITS - 1));
- /* make_invalid_floating_point_number (words); */
- /* return return_value; */
- }
- }
- return (return_value);
- }
-
- /* This routine is a real kludge. Someone really should do it better, but
- I'm too lazy, and I don't understand this stuff all too well anyway
- (JF)
- */
- void
- int_to_gen(x)
- long x;
- {
- char buf[20];
- char *bufp;
-
- sprintf(buf,"%ld",x);
- bufp= &buf[0];
- if(atof_generic(&bufp,".", EXP_CHARS, &generic_floating_point_number))
- as_warn("Error converting number to floating point (Exponent overflow?)");
- }
-
- #ifdef TEST
- char *
- print_gen(gen)
- FLONUM_TYPE *gen;
- {
- FLONUM_TYPE f;
- LITTLENUM_TYPE arr[10];
- double dv;
- float fv;
- static char sbuf[40];
-
- if(gen) {
- f=generic_floating_point_number;
- generic_floating_point_number= *gen;
- }
- gen_to_words(&arr[0],4,11);
- bcopy(&arr[0],&dv,sizeof(double));
- sprintf(sbuf,"%x %x %x %x %.14G ",arr[0],arr[1],arr[2],arr[3],dv);
- gen_to_words(&arr[0],2,8);
- bcopy(&arr[0],&fv,sizeof(float));
- sprintf(sbuf+strlen(sbuf),"%x %x %.12g\n",arr[0],arr[1],fv);
- if(gen)
- generic_floating_point_number=f;
- return sbuf;
- }
- #endif
-